
SIAM J. COMPUT. c© 2016 Society for Industrial and Applied Mathematics
Vol. 45, No. 4, pp. 1563–1581

THE TRAVELING SALESMAN PROBLEM:
LOW-DIMENSIONALITY IMPLIES A POLYNOMIAL TIME

APPROXIMATION SCHEME∗

YAIR BARTAL† , LEE-AD GOTTLIEB‡ , AND ROBERT KRAUTHGAMER§

Abstract. The traveling salesman problem (TSP) is among the most famous NP-hard opti-
mization problems. We design for this problem an algorithm that for any fixed ε > 0 computes
in randomized polynomial time a (1 + ε)-approximation to the optimal tour in TSP instances that
form an arbitrary metric space with bounded intrinsic dimension. The celebrated results of Arora
[J. ACM, 45 (1998), pp. 753–782] and Mitchell [SIAM J. Comput., 28 (1999), pp. 1298–1309] prove
that the above result holds in the special case of TSP in a fixed-dimensional Euclidean space. Thus,
our algorithm demonstrates that the algorithmic tractability of metric TSP depends on the dimen-
sionality of the space and not on its specific geometry. This result resolves a problem that has been
open since the quasi-polynomial time algorithm of Talwar [Proceedings of the 36th Annual ACM
Symposium on Theory of Computing, 2004, pp. 281–290].

Key words. traveling salesman, approximation algorithm, hierarchies

AMS subject classification. 68W25

DOI. 10.1137/130913328

1. Introduction. The traveling salesman problem (TSP) is a fundamental and
extensively studied NP-complete problem. Indeed, numerous articles and even whole
books [42, 34, 26, 4] are devoted to TSP, studying various algorithms for different
families of instances. In fact, some of the most basic techniques in combinatorial
optimization were devised to tackle TSP, including, for instance, cutting planes [19].
The input for (the optimization version of) TSP is a complete graph, whose ver-
tex set we denote by S = [n], together with edge-weights w(·, ·) that are nonnega-
tive and symmetric,1 and the goal is to find a closed tour of S of minimum (total)
weight, where a tour is simply a permutation of S, i.e., it visits every vertex exactly
once.

A prominent special case of TSP, called metric TSP, is where the edge-weights
satisfy the triangle inequality,2 and hence the input is simply a (finite) metric space on
the point set S = [n]. The importance of this variant lies in the fact that edge-weights
arising in many of the typical applications naturally represent lengths and distances.
Metric TSP offers some basic structure that may be leveraged by algorithms. In
particular, Christofides [14] designed a 1.5-approximation, meaning a polynomial time
algorithm that computes a tour whose weight exceeds the optimum by a factor of at
most 1.5. It is a long-standing open problem to improve this approximation for metric

∗Received by the editors March 18, 2013; accepted for publication (in revised form) August 17,
2015; published electronically August 30, 2016. An extended abstract of this paper appeared in
Proceedings of STOC 2012.

http://www.siam.org/journals/sicomp/45-4/91332.html
†Hebrew University, Jerusalem, Israel (yair@cs.huji.ac.il). This author’s work was supported in

part by Israel Science Foundation grant 1609/11.
‡Ariel University, Ariel, Israel (leead@ariel.ac.il).
§Weizmann Institute of Science, Rehovot 76100, Israel (robert.krauthgamer@weizmann.ac.il).

This author’s work was supported in part by US–Israel BSF grant 2010418 and by the Citi Founda-
tion.

1Formally, w(x, y) = w(y, x) ≥ 0 for all x, y ∈ S.
2The triangle inequality says that w(x, y) ≤ w(x, z) + w(z, y) for all x, y, z ∈ S.

1563

http://www.siam.org/journals/sicomp/45-4/91332.html
mailto:yair@cs.huji.ac.il
mailto:leead@ariel.ac.il
mailto:robert.krauthgamer@weizmann.ac.il

1564 Y. BARTAL, L.-A. GOTTLIEB, AND R. KRAUTHGAMER

TSP, but it is known that there exists a constant c > 1, for which c-approximation is
NP-hard [40, 38, 32].

Celebrated results of Arora [5] and Mitchell [36] prove that the important special
case of metric TSP where the input metric forms a Euclidean metric admits a PTAS.3

To be more precise, these PTAS results apply to input metrics that are finite subsets
of a fixed-dimensional Euclidean metric (in the case of [36], the Euclidean plane).
Observing that these PTAS results require two separate conditions—Euclidean space
and fixed dimensionality—it is only natural to ask the following.

Question 1.1. Do TSP instances that satisfy only one of the two properties,
bounded dimension and Euclidean metric, admit a PTAS?

The bounded-dimensionality requirement turns out to be necessary, as Trevisan
[45] shows that TSP in Euclidean metrics (of dimension log n) is NP-hard to approxi-
mate within some constant c > 1. It is therefore not surprising that the running time
of the aforementioned PTAS is doubly exponential in the dimension.

Eliminating the Euclidean requirement was first addressed by Talwar [44]. Ob-
serve that a basic premise of this question is that the notion of dimension applies to
an arbitrary (non-Euclidean) metric space. This is indeed possible, and Talwar relied
on a definition put forth by Gupta, Krauthgamer, and Lee [25] (following [7, 15]):
The doubling dimension of a (finite) metric space S, denoted ddim(S), is the smallest
k > 0 such that every ball in the metric can be covered by 2k balls of half the radius.
This definition is essentially based on volume growth, and indeed simple volume es-
timates imply that a k-dimensional Euclidean metric has doubling dimension Θ(k).
The opposite direction, however, is not true and in fact the family of metrics with
bounded doubling dimension is significantly larger than that of bounded-dimensional
Euclidean metrics (see [30, 33, 31, 25] for details). Talwar [44] generalized much of
Arora’s machinery [5] and showed that TSP in metrics with fixed doubling dimension
admits a QPTAS.4 But despite repeated attempts, the original goal remained open,
as follows.

Question 1.2. Does TSP in metrics of bounded doubling dimension admit a
PTAS?

This question has fascinated researchers (see, e.g., [35]) for several reasons. First,
the existence of a QPTAS may be interpreted as evidence that a PTAS is possible.
Second, the above question accords well with a research program that was initiated
in [25, 29, 44] and studies the analogy between Euclidean metrics of fixed dimension
and general metrics of fixed doubling dimension, from the perspective of algorithmic
tractability. It has been observed that many algorithms dealing with the former
family of metrics can be adapted to deal with the latter; see, e.g., [16, 24, 3, 22]
and references therein for recent instantiations. Likewise, the doubling dimension has
been established as a good measure of intrinsic dimension in the theory of metric
embeddings [13, 2, 23, 10].

A natural approach to resolving Question 1.2 in the positive would be to embed
the original metric space in a bounded-dimensional Euclidean space (such embeddings
were studied in [1, 2]), and then apply the PTAS of Arora [5]. While this general
approach has been quite successful in resolving many other algorithmic problems

3PTAS, which stands for polynomial time approximation scheme, means that for every fixed
ε > 0 there is a (1+ε)-approximation. Note that for every constant ε > 0, the runtime is polynomial
in n.

4QPTAS, which stands for quasi-polynomial time approximation scheme, means that for every
fixed ε > 0 there is a (1 + ε)-approximation running in quasi-polynomial time 2polylog(n).

LOW-DIMENSIONALITY IMPLIES A PTAS FOR TSP 1565

(see, for example, [8]), it fails here since any such embedding must have nonconstant
distortion [30, 33, 31], in fact Ω(

√
logn) [25]. It appears that achieving a PTAS for

arbitrary bounded-dimensional metric spaces requires a new approach to bypass the
limitations of the embedding.

1.1. Results. Our central contribution is a PTAS for TSP in metrics of fixed
doubling dimension.

Theorem 1.3. A (1 + ε)-approximation to the optimal tour of a metric TSP
instance S on n = |S| points can be computed by a randomized algorithm in time

n2O(ddim(S)) · 2(2ddim(S)/ε)O(ddim(S))√logn.

The previously known running time is quasi-polynomial in n, namely,

2(ddim(S)·ε−1 logn)O(ddim(S))

, due to Talwar [44, Theorem 8].

1.2. Techniques. We build upon the framework of [5, 44] and introduce two
main new ideas (and several more minor ones). Our baseline is a carefully chosen
variant of Talwar’s algorithm, and as described in section 2, it includes (1) a random-
ized hierarchical clustering (partitioning) of S; (2) the introduction of portals around
every cluster; (3) slightly modifying the optimal tour (for the sake of analysis only)
so that the tour is portal-respecting (crosses every cluster only at its portals) and has
few crossings into the cluster; (4) a dynamic program that computes a tour for each
cluster based on the tours already computed for its subclusters.

Our first new idea (in section 1.5) is to estimate the cost incurred by an optimal
tour inside a ball. Intuitively, the estimate is merely an instantiation of the well-
known 2-approximation of TSP using the minimum spanning tree (stated as Lemma
1.7). But in reality, edges entering and exiting the ball interfere with this calculation,
and thus the estimate includes both multiplicative and additive error terms.

Our second new idea is to treat separately dense regions in the metric space,
meaning balls in which an optimal tour incurs a relatively large cost. If all regions
are sparse (not dense), then we are almost done–in this case we use limited random-
ization and enumeration, to determine the hierarchical clustering. Specifically, we
draw at random O(log n) radii-values for every cluster center and argue that with
high probability at least one of them is useful for the construction of a good partition.
We then augment the aforementioned dynamic program to search also for the correct
radii-values for the different cluster centers. (This appears in section 3.1.) If there
is a dense region, then we can use the first idea above to find the (nearly) smallest
one. We then “split” the TSP instance into two portions, roughly the inside and the
outside of that dense region. The outside is solved recursively. The inside portion
is nearly sparse because it can be covered by a limited number of smaller (and thus
sparse) balls, and so it can be solved directly by our algorithm for sparse regions.
Stitching the solutions for the two portions may be costly, but since the region is
dense, we can effectively charge our algorithm’s cost to that of the optimum. (This
appears in section 3.2.)

1.3. Related work. A few hardness of approximation results are known. That
the general (not necessarily metric) TSP is NP-hard follows immediately from Karp’s
original NP-hardness proof for the Hamiltonian cycle [27]. Moreover, this proof shows
that TSP does not admit any finite factor approximation in polynomial time, unless
P=NP. Papadimitriou and Yannakakis [40] showed that metric TSP is hard to approx-
imate within some constant factor c > 1, even if all the metric distances are either 1
or 2. Papadimitriou and Vempala [38] proved that approximating metric TSP within

1566 Y. BARTAL, L.-A. GOTTLIEB, AND R. KRAUTHGAMER

factor 220/219 is NP-hard, and Lampis [32] recently improved this bound to 185/184.
Papadimitriou [39] showed that the two-dimensional Euclidean TSP is NP-hard.

The runtime of Arora’s algorithm [5] was later improved in [41], and his geometric
approach was subsequently employed for other Euclidean problems in [17, 6, 18, 28].
Further extension of the algorithms of [5, 44] to the problem of TSP with neighbor-
hoods (under mild conditions) include [37] and [11]. Chan and Gupta [12] gave an
algorithm for TSP that runs in subexponential time in a larger family of instances,
in which an alternative notion of dimension is assumed to be bounded.

1.4. Preliminaries. Recall our notation for the metric TSP instance: S denotes
the set of points, d(·, ·) their pairwise distances, ddim(S) its doubling dimension, and
n = |S| its size. We fix 0 < ε < 1/20, which determines the approximation we
eventually achieve to be 1+O(ε). We may assume that ε > 1/n, as otherwise all our
results hold trivially—TSP can be solved exactly in time O(n!) by straightforward
enumeration, providing better approximation and faster runtime than our claimed
runtime (which is exponential in poly(1/ε)). By arguments found in [5, section 2.1.1],
namely, a suitable scaling and moving points at most distance εn, we may assume
that the minimum interpoint distance in S is 1 and the diameter is O(n/ε) = O(n2).

As usual, the metric may be viewed as the complete graph on S, with edge-

weights corresponding to pairwise distances, denoted w(x, y)
def
= d(x, y). A subset of

points S′ ⊆ S is sometimes called a cluster. We let MST(S′) denote a minimum-
weight spanning tree (breaking ties arbitrarily) of the complete graph on S′. The ball
centered at x ∈ S with radius R > 0 is defined as B(x,R)

def
= {y ∈ S : d(x, y) ≤ R}.

We define B∗(x,R) to be the edges of the complete graph on B(x,R).

Tours. Throughout, a tour T is a finite sequence of points; by convention, it
is undirected and may visit a point more than once. A transition in T is a pair of
successive points in the sequence, which may be viewed as an edge in the complete
graph on S (or a self-loop of zero weight, which can be eliminated if needed). A closed
tour is defined in the natural way by adding a transition between the last and first
points in the sequence.

The weight (or length) of a multiset M of transitions is defined as w(M)
def
=∑

(x,y)∈M w(x, y). This notation naturally extends to a tour T , by viewing T as

sequence of transitions; hence w(T) represents the total length of the tour T .
Let OPT(S′) denote a minimum-length closed tour that visits all points of S′ ⊆ S.
Lemma 1.4. Let T be a tour that traverses some edge e more than once in the

same direction. Then there exists a lighter (smaller weight) tour T ′ that visits all the
points visited by T and begins and ends at the same points as T . Moreover, the edges
of T ′ are a subset of the edges of T (though T ′ does not necessarily traverse them in
the same direction as T).

Proof. We will prove the case where T traverses some edge e exactly twice in
a single direction; a similar proof holds for additional traversals. An ordering of
the edges of T must take the form E1eE2eE3, where each Ei is a (possibly empty)
sequence of edges, and e = (u, v) is traversed twice in the same direction, say, from u
to v. Let Ē2 be a backward ordering of E2, which begins at u and ends at v. Then
E1Ē2E3 visits all points visited by T and has the same endpoints as T , but it skips
two traversals of e and is thus lighter than T .

Doubling dimension. Let λS > 0 be the doubling constant of the point set S, the
smallest value such that every ball in S can be covered by λS balls of half the radius.

Recall that the doubling dimension of S is ddim(S)
def
= log2 λS ≥ 1 (assuming |S| ≥ 2).

LOW-DIMENSIONALITY IMPLIES A PTAS FOR TSP 1567

(For convenience, one may round up the doubling dimension to the nearest integer.)
The following packing property can be demonstrated via repeated applications of the
doubling property (see, e.g., [25]).

Lemma 1.5 (packing property). Let S′ ⊆ S have minimum interpoint distance
α > 0. Then

|S′| ≤
(

2 diam(S′)
α

)ddim(S)

,

and whenever diam(S′)
α ≥ 2, we can further bound |S′| ≤ (diam(S′)

α)2 ddim(S).
Nets. Similar to what was described in [21, 29], a subset S′ ⊆ S is called a b-net

of S if it satisfies the following two properties.
(i) Packing: For every u, v ∈ S′ we have d(u, v) > b.
(ii) Covering: Every v ∈ S is within distance b of some point u ∈ S′, i.e., S ⊆

∪u∈S′B(u, b).
We say that u ∈ S′ covers v ∈ S if d(u, v) ≤ b. The two conditions above require that
the points of S′ be spaced out yet cover all points of S.

Hierarchy of nets (or point hierarchies). Recall that diam(S) ≤ O(n2) and set

L
def
= �logs diam(S)	 = O(logs n) for a parameter s ≥ 4. (Section 3 will require that

s is roughly (logn)1/ ddim(S).) For each i = 0, . . . , L, fix Hi ⊆ S to be an si-net of S,
called the net of level i, or of scale si. We may assume that the nets are nested, i.e.,
Hi ⊆ Hi−1. Having constructed Hi, we may initialize Hi−1 = Hi and then greedily
add to Hi−1 uncovered points of S as needed [29]. Notice that the bottom level i = 0
contains all points, and the top level i = L contains only a single point.

Net-respecting tours. A tour T is said to be net respecting (NR) relative to a given
hierarchy {Hi}Li=0 and value ε > 0 if for every transition in T , say, of length �, both
of its endpoints belong to Hi for i such that si ≤ ε� < si+1. When the hierarchy is
nested, this implies that both points belong to every net Hj with j ≤ i, although we
will find it convenient to view the edge as connecting the occurrences of the endpoints
in the single level Hi. (When � < 1

ε , it suffices to connect H0 level points; in this
case the hierarchy implicitly contains levels Hi for all i < 0, and like H0 these nets
contain all points of S.) We denote by OPTNR(S′) an optimal (minimum length)
net-respecting tour that visits all points of S′ ⊆ S.

Lemma 1.6. Let 0 < ε ≤ 1
8 . Then every tour T can be converted to a net-

respecting tour T ′ which visits all points visited by T , such that

w(T ′) ≤ (1 + 16ε)w(T).

Proof. For every transition (x, y) in T do the following. Let x′, y′ be the i-level net
points covering x, y, respectively, where i is the highest level such that si ≤ 2εd(x, y).
Replace transition (x, y) with (x′, y′), and also add transitions (x, x′) and (y, y′). The
total cost of the new path is

d(x, x′) + d(x′, y′) + d(y′, y) ≤ [d(x, y) + 2 · 2εd(x, y)] + 2 · 2εd(x, y) = (1 + 8ε)d(x, y).

While transition (x′, y′) is net-respecting, transitions (x, x′) and (y, y′) may not be.
These transitions are themselves replaced by the procedure above. This leads to a
series of transition replacements. As the replacement procedure is activated on 2j

transitions of length at most (2ε)jd(x, y), and recalling that ε ≤ 1
8 , the total additive

cost is bounded by

∞∑
j=0

8ε · 2j · (2ε)jd(x, y) ≤
∞∑
j=0

8ε2−jd(x, y) = 16εd(x, y).

1568 Y. BARTAL, L.-A. GOTTLIEB, AND R. KRAUTHGAMER

Spanning trees, tours, and patching. It is well-known that the optimal tour on a
set S′ is approximated within factor 2 by the minimum spanning tree on S′.

Lemma 1.7. Let S′ ⊆ S. Then w(MST(S′)) ≤ w(OPT(S′)) ≤ 2w(MST(S′)).
The following lemma, due to Talwar [44] (see also [43]), uses the doubling dimen-

sion to bound w(MST(S′)).
Lemma 1.8. Let S′ ⊆ S. Then w(MST(S′)) ≤ 4|S′|1−1/ddim(S) · diam(S′).
The next lemma, due to [5, 44], is known as the patching lemma for doubling

spaces. We say that a transition (x, y) in a tour T crosses a cluster C ⊆ S if exactly
one of x, y belongs to C. The point (among x, y) that belongs to C is called a cross-
point. A tour T may cross C multiple times at multiple cross-points.

Lemma 1.9 (patching lemma). Let T be a tour that crosses a cluster C at most
r times, at cross-points Ĉ ⊂ C. Then there is a tour T ′ with the same endpoints as
T which visits all points visited by T , crosses C at most twice, and

w(T ′) ≤ w(T) + 4w(MST(Ĉ)) ≤ w(T) + 16r1−
1

ddim(S) diam(Ĉ).

Remarks. The last inequality is due to Lemma 1.8. We sketch below the proof
of this lemma for completeness, as it is omitted from [44]. We also note for later
reference that the bound w(T ′) ≤ w(T) + 4w(MST(C)) follows by the same proof,
except for replacing the minimum spanning tree for Ĉ with one for C.

Proof (sketch). For simplicity, we shall consider only a closed tour T and omit
the adaptations needed for an open tour. Break the tour T at each crossing of C, and
fix arbitrarily two crossings to keep (the two is because T is closed).

Consider first the portions of the tour that are inside C. As these portions are
“disconnected” only at points of Ĉ (in fact, excluding at most two of the points),
adding a minimum spanning tree on Ĉ of total weight w(MST(Ĉ)) results in a set of
edges that is connected. Let Codd be the points in Ĉ that have an odd degree under
the current set of edges, and add a minimum-weight matching on Codd. We claim (and
will prove shortly) that the matching’s total weight is at most w(MST(Ĉ)). Using the
claim, the current set of edges (consisting of portions of the tour, a spanning tree, and
a matching) is both connected and has even degree at all but two vertices (the two
crossings we keep). By Euler’s theorem, these edges can be arranged as an open tour
connecting the two retained crossings. These manipulations increase the tour length
by at most 2w(MST(Ĉ)).

The same arguments apply separately to the portions outside C, Patching them as
before into an open tour between the two retained crossings increases the tour length
again by at most 2w(MST(Ĉ)). However, the patching described above introduces
edges inside C, and so we add a final step to “shortcut” around these edges. This
shortcut maintains all visits to vertices outside C (and their order) and does not
increase the tour length (by the triangle inequality). The lemma follows by combining
the two open tours.

To prove the claim concerning the minimum-weight matching on Codd, define new
weights w′ between points in Ĉ as follows. Let w′(x, y) be the shortest-path distance
on the tree MST(Ĉ), and observe that w′(x, y) ≥ w(x, y). Thus, it suffices to upper
bound a minimum-weight matching (on Codd) under the tree weights w′. Consider
such a matching, and view every edge in the matching as a path in the tree MST(Ĉ).
These tree-paths must be disjoint, because if two tree-paths were to use the same
tree-edge, then a simple swap would decrease the weight of the matching. Thus, this
matching’s weight (under w′) is at most the total weight of the tree, that is, at most
w(MST(Ĉ).

LOW-DIMENSIONALITY IMPLIES A PTAS FOR TSP 1569

We prove here another version of the patching lemma, tailored to our specific
needs.

Lemma 1.10. Let T be a tour that visits all of S, and suppose it crosses a cluster
C at most r times, at cross-points Ĉ ⊂ C. Let {Ti}ki=1 be the maximal subtours of T
that are entirely inside C. Then there exists a closed tour T ′ that visits all points of
C, contains only edges in ∪iTi and in MST(Ĉ), and

w(T ′) ≤
k∑

i=1

w(Ti) + 2w(MST(Ĉ)) ≤
k∑

i=1

w(Ti) + 8r1−
1

ddim(S) diam(C).

Remark. The last inequality is due to Lemma 1.8 and diam(Ĉ) ≤ diam(C).
Proof. The idea is to “stitch” together the different subtours Ti, by constructing a

suitable multigraph on the vertex set C. We initialize the multigraph to be the tours
Ti. The endpoints of these tours are all included in the cross-points Ĉ, so by adding to
our multigraph the edges of MST(Ĉ), we make sure the multigraph is connected. Let
Codd ⊆ C be the vertices of odd degree in our multigraph, and observe that Codd ⊆ Ĉ
because all vertices in C \ Ĉ have an even degree in ∪iTi and degree zero in MST(Ĉ).
Now add to our multigraph a minimum-weight perfect matching Modd on Codd. By
well-known arguments which date back to Christofides [14],

w(Modd) ≤ 1
2w(OPT(Codd)) ≤ 1

2w(OPT(Ĉ)) ≤ w(MST(Ĉ)),

and thus the total edge-weight in our multigraph is at most
∑k

i=1 w(Ti)+2w(MST(Ĉ)).
Furthermore, the multigraph is Eulerian—connected with even degrees—and thus ad-
mits a closed tour T ′ that visits all points visited by ∪iTi, and hence all points of C,
and whose weight w(T ′) is bounded as desired.

Note that the previous lemma does not address connecting the tour segments
outside the cluster. This can be done via the minimum spanning tree, which adds an

additional weight of 2w(MST(Ĉ)) ≤ 8r1−
1

ddim(S) diam(C) to the final tour.
Exponential distribution. In the construction of our hierarchy (sections 2 and 3),

we will need to create a ball centered at a point u, with a random radius chosen
according to the exponential distribution. Having fixed some value a, the density
function of this distribution can take the form

f(r) =
28ddim(S)

1− 2−8 ddim(S)
· 8 ddim(S) ln 2

a
· 2− 8 ddim(S)

a r

for r ∈ [a, 2a] and 0 for all other values of r; see [2].

1.5. Local behavior of optimal tour. We next show that the weight of the
optimal net-respecting tour inside some neighborhood can be approximated using a
minimum spanning tree of points in that neighborhood.

Lemma 1.11. Let OPTNR(S) be an optimal net-respecting tour visiting all points
in S (for 0 < ε ≤ 1

6 and s ≥ 6). Then for all u ∈ S and any radius R > 0,

(i) w(OPTNR(S) ∩B∗(u,R)) ≤ 6(1 + 16ε) · w(MST(B(u,R))),
(ii) w(OPTNR(S) ∩B∗(u, 4R)) ≥ w(MST(B(u,R))) − (s/ε)2 ddim(S)R.
Proof. We show that if (i) does not hold, we can modify the tour to reduce its

weight, which then contradicts the assumption that the tour is optimal. Applying the
patching lemma (Lemma 1.9, with the subsequent remark) to the tour OPTNR(S)
with respect to the cluster B(u,R), we get a modified tour which visits all of S

1570 Y. BARTAL, L.-A. GOTTLIEB, AND R. KRAUTHGAMER

and crosses that cluster at most twice, while increasing the tour’s length by at most
4w(MST(B(u,R))). Now replace the portion of this tour inside the cluster with
a tour that is derived from an MST of B(u,R), and thus adds total length of at
most 2w(MST(B(u,R))) (Lemma 1.8). Finally, convert the newly added edges to
be net-respecting (Lemma 1.6); this entire process first removes from the tour a
total length of w(OPTNR(S) ∩ B∗(u,R)), while adding a total length of at most
6(1 + 16ε) · w(MST(B(u,R))). Part (i) follows from the optimality of OPTNR(S).

To prove part (ii), consider a tour OPTNR(S). Ball B(u,R) partitions the tour
into subtours T1, T2, T3, . . ., where Tk for odd k contains only edges in B∗(u,R) and
Tk+1 contains only edges not in B∗(u,R). Note that the first and last points in Tk+1

must be in B(u,R). By definition, w(OPTNR(S)) =
∑

k w(Tk).
We will now construct a connected graph G whose edges are all in B∗(u, 4R) and

which spans all points of B(u,R), and we use a charging argument to bound its weight
against w(OPTNR(S) ∩ B∗(u, 4R)). First, add to G all subtours inside B∗(u,R)—
that is, Tk for odd k. The cost of these edges of G is charged to the contribution of
Tk to OPTNR(S)∩B∗(u, 4R). Now consider subtours Tk+1. If Tk+1 visits only points
inside B(u, 4R), then add Tk+1 to G, and the cost of these edges of G is charged to
the contribution of Tk+1 to OPTNR(S) ∩B∗(u, 4R).

If Tk+1 exits B(u, 4R), then consider two more cases: (i) If Tk+1 touches a point
of the annulus v ∈ B(u, 4R) \ B(u, 3R) before its initial exit from B(u, 4R) or after
its final entrance into B(u, 4R), then add to G an edge connecting the first and last
points of Tk+1. Since the endpoints of Tk+1 are in B(u,R), the added edge has weight
at most 2R. Since Tk+1 connects one of its endpoints to a point in the annulus, we
have that w(Tk+1 ∩B∗(u, 4R)) ≥ 3R−R = 2R, so the added edge can be charged to
the contribution of Tk+1 to OPTNR(S) ∩B∗(u, 4R). (ii) If Tk+1’s first exit and final
entrance into B(u, 4R) are from points not in the annulus, then we add to G an edge
connecting the exit and entry points in B(u, 3R). Now, since these cross-points are in
B(u, 3R), the edges crossing B(u, 4R) have length at least R. Let i be the value for
which si ≤ εR < si+1; by the net-respecting property, these cross-points must belong
to an si-net. Since by Lemma 1.5 the number of si-net points in B(u, 3R) is at most
(2·6R
εR/s)

ddim(S) < 1
3 (s/ε)

2 ddim(S), the cost of adding edges connecting all si-net points

in B(u, 3R) is at most 3R · 1
3 (s/ε)

2 ddim(S) = (s/ε)2 ddim(S)R, from which the lemma
follows.

2. TSP via hierarchical clustering (Arora and Talwar). As an exposition
to our PTAS, we review a variant of the algorithm of Talwar [44] (and in turn Arora
[5]), which uses hierarchical clustering to compute a (1+ε)-approximate tour in quasi-
polynomial time. Recall that we may assume that the instance of TSP is a set S with
minimum interpoint distance 1 and diameter O(n/ε) = O(n2). The construction uses
a hierarchy of nets as described above. We first introduce the single-scale partition
invoked by the algorithm—i.e., a partition which functions separately on each hierar-
chical level. This partition follows the same framework used in [8, 9, 20, 25, 2] and
is slightly different from the one that appeared in [44] in that it uses the exponential
distribution.

Single-scale probabilistic partition. Fix a set S′ ⊆ S to be partitioned. Fix a level
i, and impose an arbitrary ordering π on the points of the si-net Hi ⊆ S. The clusters
are formed one by one following the ordering π. Each point of Hi constitutes a cluster
center. With each net point u ∈ Hi we associate a random radius hu ∈ [si, 2si] from
an exponential distribution. The ball B(u, hu) constitutes a new fixed cluster of S′,
and then the process continues to form the rest of the clusters. The boundary of u’s

LOW-DIMENSIONALITY IMPLIES A PTAS FOR TSP 1571

cluster is determined only by the ordering imposed by π and by the balls associated
with cluster centers at distance at most 4si from u. By the packing property (Lemma
1.5), there are at most 23 ddim(S) such cluster centers.

The next claim follows from [2].

Claim 2.1. For every u, v ∈ S′ ⊆ S, the probability that the single-scale prob-
abilistic partition assigns u and v to different clusters (they are cut) is at most
c′ ddim(S)d(u,v)

si for some absolute constant c′ > 0.

Hierarchical clustering. To create the hierarchical clustering, we first choose a
single-scale partition for the top level L. As described above, each net point chooses
a radius in the range [sL, 2sL], and then every point in S is assigned to the first ball
in π that covers it. For the next hierarchical level L− 1, we take each L-level cluster
separately and build for its points a new partition with random radius in the range
[sL−1, 2sL−1]. The construction continues recursively until level 0, the bottom level.
Note that each cluster has sO(ddim(S)) child clusters.

It follows that an i-level cluster is ultimately formed by independent single-scale
partitions acting on all levels i and higher. It further follows that for any point pair
u and v, the probability that the pair are cut at level i (found in different i-level
hierarchical clusters) is bounded by the sum of the probabilities that they are cut by

each single-scale partition acting on a level i or higher, that is,
∑L

j=i
c′ ddim(S)d(u,v)

sj =

O(ddim(S)d(u,v)
si).

TSP algorithm and analysis. The dynamic programming TSP algorithm functions
on the hierarchical clustering above. A tour is (m, r)-light with respect to a fixed
hierarchical partition if it crosses each i-level cluster at most r times, and only at a
set of m predetermined points, called the portals. Following [44], we define the m

portals to be the si

M -net points in the cluster for some value M to be fixed below.5

Recall that the diameter of an i-level cluster is at most 4si, and so it follows from
Lemma 1.5 that m ≤ (8M)ddim(S). Throughout this section, we will take s = 6 (the
minimum admissible value of s in Lemma 1.11).

An optimal (m, r)-light tour for the hierarchical clustering can be computed by
dynamic programming as follows. Consider a cluster C. Any valid (m, r)-light tour
crosses C at most r times and only at portals, so the restriction of the path to C
consists of at most r paths starting and ending at portals. A configuration is a
multiset of r or fewer portals partitioned into pairs (each representing an entry/exit
pair). A single portal may appear more than once in the configuration if the tour
crosses it multiple times, but each instance counts toward r. A cluster has m portals,
so there are no more than mr possible configurations. Now, assuming inductively
that optimal (m, r)-light tours have already been computed for all configurations for
all sO(ddim(S)) children of C under the hierarchical clustering, the optimal (m, r)-
light tour for each possible configuration of C can be computed by a brute-force
algorithm: Since the (m, r)-light tour of each child cluster enters and exits via a portal,
we can “stitch” together the child tours through the child portals. For each fixed
configuration of C (at most mr possible configurations), we consider all possible child

configurations (msO(ddim(S))r). Having fixed a configuration for every child cluster,
we have sO(ddim(S))r candidate child portals where the tour may cross. Since each

5In the event that the hierarchical cluster does not include the si

M
-net points that cover the

cluster points, we can always add to the cluster copies of the net points. In this case, the added
points function as portals for the cluster, but do not necessarily need to be covered by a tour for the
cluster.

1572 Y. BARTAL, L.-A. GOTTLIEB, AND R. KRAUTHGAMER

child portal may be connected to one of sO(ddim(S))r other candidate child portals,
all possible graphs connecting these portals can be enumerated in time bounded by(
sO(ddim(S))r

)sO(ddim(S))r
. Below we will choose a value for r satisfying r = sω(ddim(S)),

so we can bound the previous term by rs
O(ddim(S))r. For each parent configuration, we

choose the valid graph with the least cost tour. The total runtime is (mr)s
O(ddim(S))r =

msO(ddim(S))r.

Crucially, it follows from [44] that with constant probability, the hierarchical
clustering for S admits an (m, r)-light tour with weight at most (1 + ε)OPT(S).

Define M to be the smallest power of s that is greater than or equal to ddim(S)L
ε —

that is, M
s < ddim(S)L

ε ≤ M , and so m ≤ (8M)ddim(S) ≤ (8s ddim(S)L/ε)ddim(S).
(Recall that L = logs n.) Set r equal to m. The proof proceeds as in [5] by showing
that an optimal tour can be slightly modified to observe the (m, r)-light property.
The cost of modifying the tour is charged to the tour’s edges, and the analysis shows
that the cost charged to each edge is small. Briefly, the probability that an edge

e = (u, v) is cut by the i-level partition is bounded by c′d(u,v) ddim(S)
si . If the edge

is cut, it is rerouted through si

M -net points, at an additive cost (increase in tour

length) of 4si

M . Hence, the expected cost of rerouting e due to a cut at level i is
c′d(u,v) ddim(S)

si · 4si

M = O(εd(u,v)L), and the expected cost of rerouting e due to a cut in
any of O (L) levels is O(ε · d(u, v)). The previous step ensures that all edges crossing
the cluster are incident on valid portals.

Now, if the optimal tour crosses an i-level cluster some r̃ ≥ r times, the number
of crossing must be decreased. In this event, the tour is patched via the minimum
spanning tree on the cross-points (as in Lemma 1.9). The cost is charged to the edges

participating in the patching, at a per edge cost of O(s
i r̃1−1/ddim(S)

r̃) = O(siε
ddim(S)L).

But an edge participates in a patching only if it is cut (which happens with the
probability stated above), and hence the expected charged cost to e due to patchings

at one level is O(d(u,v) ddim(S)
si · siε

ddim(S)L) = O(ε·d(u,v)L) and due to patchings for all L

levels is O(ε · d(u, v)). The values for m and r imply that the algorithm above runs

in quasi-polynomial time msO(ddim(S))r = 2(
L
ε)Õ(ddim(S))

= 2(
log n

ε)Õ(ddim(S))

.

Runtime bottleneck. In closing this section, we will elaborate on why the above
algorithm does not achieve a PTAS. The runtime is directly affected by the dependence
of r on L, which causes the term LO(ddim(S)) = (logs n)

O(ddim(S)) to appear in the
exponent. The dependence of r on L itself stems from the fact that the probability
of a pair to be cut by each single-scale partition is calculated separately, and then
these probabilities are summed over L levels, resulting in a term L appearing in
the summation. Indeed, in the hierarchical clustering employed by the algorithm,
the event that edge e is cut by an i-level single-scale partition, and by no other

single-scale partition, is Θ(ddim(S)
si). Hence, the expected cost of participating in an

i-level patching is mostly independent of the expected cost of participating in a j-level
patching for all i �= j, and so a term of L must appear in r. This is precisely the
reason why the analysis presented by Talwar [44] does not achieve a PTAS for metric
TSP.

3. Obtaining a PTAS. In this section, we prove Theorem 1.3, the central
contribution of this paper. Henceforth, we assert the conditions of Lemma 1.11,
namely, s ≥ 6 and 0 < ε ≤ 1

6 .

Our algorithm for TSP is an adaptation of the one employed by Talwar [44].

LOW-DIMENSIONALITY IMPLIES A PTAS FOR TSP 1573

His algorithm requires a hierarchical partition, yet we cannot directly employ the
partition of section 2. As mentioned above, that clustering essentially decides the
cluster assignment for each level separately, and hence we cannot successfully invoke
the analysis of [5] to bound the expected cost of patchings per level.

Instead, we will employ a modified version of the above partition and analyze its
performance on net-respecting tours. We will show that if a tour obeys some edge-
sparsity property, then it admits an (m, r)-light tour on a hierarchy very similar to the
one above. Crucially, the edge-sparsity property allows us to achieve r = O((log n)c)
for a small constant c < 1, which implies a polynomial runtime. (Although we fix the
value of c in the analysis, it can in fact be taken as an arbitrarily small constant.) This
partition can be found by a “brute-force” version of the above dynamic programming
algorithm. We then show that if the tour has edge-dense areas, then we can segment
S into sparse pieces and solve TSP separately on each.

In what follows, we will mostly consider net-respecting tours. Note that for an
optimal tour which is not net-respecting, we may impose the assumption that no
point of S is visited more than once: If the optimal tour visits a point v more than
once, we may shortcut around v by directly connecting its antecedent and successor
points in the tour. However, this shortcutting is not always possible for optimal net-
respecting tours, since connecting the antecedent and successor points may violate
the net-respecting property of the tour. Indeed, an i-level net point v may possess
links to ε−O(ddim(S)) j-level net points at each level j ≤ i. To address this issue, we
will consider each occurence of v in the hierarchy to be a separate copy of v: The
copy of v in Hj is connected to at most ε−O(ddim(S)) other net points of Hj . We will
also connect the copy of v in Hj to copies of v in Hj−1 and Hj+1 (if applicable), via
edges of infinitesimally small length. (We shall assume that these edges are never cut
and so do not figure into the cut analysis.) By Lemma 1.4, an optimal net-respecting
tour traverses each of these edges at most twice. We consider an i-level partition to
cut only edges incident on copies in levels j ≤ i—the longer edges are only cut by
higher level partitions.

3.1. An algorithm for sparse tours. In this section we show the following:
For any fixed hierarchy, if there exists some net-respecting tour T whose edges obey
a specific edge-sparsity condition, then there exists some clustering on the hierarchy
which supports an (m, r)-light tour T ′ with low weight w(T ′) ≤ (1+ε)w(T) (for favor-
able values of m, r, see Lemma 3.1). Further, we can find this hierarchical clustering
and the tour T in polynomial time (Lemma 3.2). Later in section 3.2, we will show
that S can always be broken down into subsets which admit edge-sparse tours.

A tour T is said to be q-sparse with respect to a hierarchy H1, . . . , HL if for all
i ∈ [L] and u ∈ Hi, the edges of T fully contained inside the ball B(u, 3si) have weight
w(T ∩B∗(u, 3si)) ≤ qsi. The ball B∗(u, 3si) is said to be q-sparse with respect to the
tour.

Suppose that an oracle had informed us that S admits a net-respecting tour that
is a (1 + ε)-approximation to OPT(S) and is q-sparse. (An oracle with a similar
capability is presented in section 3.2, for some values of q.) Then we can prove the
following lemma. (Recall that c′ is the constant appearing in Claim 2.1.)

Lemma 3.1. Suppose S admits a net-respecting q-sparse tour T . Then there
exists a hierarchical clustering for S which admits an (m, r)-light tour T ′ with w(T ′) ≤
(1 + ε)w(T) for

m := (8 logs n · s ddim(S)/ε)
ddim(S)

1574 Y. BARTAL, L.-A. GOTTLIEB, AND R. KRAUTHGAMER

and

r = r(q) := 18q ·26ddim(S) ddim(S) logs logn+(2c′ ddim(S)/ε)
ddim(S)

+(4s/ε)2ddim(S).

We remark that the tour T ′ need not be net-respecting.

Proof. The proof proceeds in three steps. In Step 1, we show how to construct
the hierarchical clustering. We then prove the existence of (m, r)-light tour T ′ by
showing that T can be modified to cross the clusters only at portal points (Step 2)
and to cross the portal points only r times (Step 3).

Step 1. Fix T . The hierarchical clustering closely follows the description from
section 2, with the only difference being that the cluster radii are chosen a little more
carefully. Consider a net point u ∈ Hj . Let Ej -short be the edges of T of length at

most sj , and let Ẽj -short ⊆ Ej -short include only edges of T with at least one endpoint
inside B(u, 2sj). As a consequence of the q-sparsity of the ball B(u, 3sj), we have
that

∑
e∈Ẽj -short

w(e) ≤ qsj .

Recall that we wish to assign u a random radius hu ∈ [sj , 2sj]. Let V include all
values in the (continuous) range [sj , 2sj] which cut fewer than 9q23 ddim(S) ddim(S)
edges of Ẽj -short. Since B(u, 2sj) is q-sparse, the sum of edge lengths in Ẽj -short

is at most qsj , and so a simple averaging argument gives that less than a fraction
1

9·23 ddim(S) ddim(S)
of radii in [sj , 2sj] intersect more than 9q · 23 ddim(S) ddim(S) edges

of Ẽj -short. We choose hu randomly from an exponential distribution on [sj , 2sj] and
resample until finding a hu ∈ V . Recalling that the density function f(·) of the
exponential distribution is decreasing, and setting parameter a = sj , the probability
that a sampled radius is invalid is less than f(a) · a

9·23 ddim(S) ddim(S)
< 2−3 ddim(S) ln 2.

The rest of the clustering is done exactly as before by iterating over centers. Note
that knowledge of T was necessary to determine which radii are valid choices for hu.

Step 2. We now analyze the expected cost of converting the tour T to cross every
cluster only through its m cluster portals. Consider some j-level cluster C, and recall
that C is formed by combining a sequence of single-scale partitions in levels i ≥ j.

Let M be the smallest power of s at least ddim(S) logs n
ε , and as above we define the

m portals to be sj

M -net points in the cluster. So the number of portals is at most

(8M)ddim(S) ≤ (8s logs n ddim(S)
ε)ddim(S) as required.

Recall from above that Ej -short is the set of edges of T of length at most sj , and
similarly define Ej -long to be the edges of T of length greater than sj . Since T is
net-respecting, the edges of Ej -long must all be incident on sk-net points (or higher

level points) for sk ≤ εsj < sk+1. Since M is a power of s and εsj > sj

M , we conclude

that sk ≥ sj

M . Hence these long edges cross C at a subset of the sj

M -net points, and
no further action is required.

We turn to edges Ej -short. Claim 2.1 asserted that the probability that a given

edge e = (u, v) ∈ T is cut by an i-level single-scale partition is bounded by c′d(u,v) ddim(S)
si .

We show that the probability that e is cut conditioned on choosing only valid radii

(those belonging to V) is at most 16c′d(u,v) ddim(S)
si : An i-level ball cutting e is within

distance 2si of an endpoint of e, and so by Lemma 1.5 at most b = 2(2 · 4)ddim(S) =
2 · 23 ddim(S) balls may cut e. The partition imposed an ordering on these balls.
Let E� be the event that the radius of the �th ball covers exactly one endpoint of
e, and let F� be the event that it covers neither. Then the probability that e is
cut is exactly Pr[E1] + Pr[E2] Pr[F1] + Pr[E3] Pr[F1] Pr[F2] + · · ·+Pr[Eb]Π

b−1
i=1 Pr[Fi].

LOW-DIMENSIONALITY IMPLIES A PTAS FOR TSP 1575

Conditioning on choosing a valid radius increases this sum by at most a factor

(1− 2−3 ddim(S) ln 2)−b < e2b2
−3 ddim(S) ln 2 = 16, as claimed.

If e ∈ Ej -short is cut, we reroute it through si

M -net points, increasing the tour

by at most 4si

M . So the expected cost of moving e due to a cut in level i is at most
16c′d(u,v) ddim(S)

si · 4si

M = O(εd(u,v)logs n), and the expected cost of moving e due to cuts in

all L = O (logs n) levels is O(εd(u, v)).
Step 3. Finally, we turn to the analysis of reducing the number of utilized cross-

points to r via patching. First consider edges of Ej -long. As explained above, these are
incident on sk-net points (or higher level net points) for sk ≤ εsj < sk+1. By the pack-
ing property, these cross-points account for at most (4sj/sk)ddim(S) < (4s/ε)ddim(S)

active portals. Since a cluster may have at most (4s)ddim(S) sibling clusters, and
a tour may traverse each edge at most twice (Lemma 1.4), these acount for at most
2(4s)ddim(S)(4s/ε)ddim(S) < (4s/ε)2ddim(S) crossings. We can afford to retain all these
crossings.

We turn to the short edges of Ej -short. Consider some j-level cluster C centered
at u, and recall that C is formed by choosing a valid radius hu ∈ [sj , 2sj], and
further combining a sequence of single-scale partitions in levels i ≥ j. Since the
radius of each (i ≥ j)-level single-scale partition is chosen from V , it cuts at most
9q ddim(S) edges of length at most sj . Further, edges crossing C could have actually
been cut by any i-level ball whose center is within distance hu + 2si ≤ 4si from the
center of C; there are at most 23 ddim(S) such balls at each level i. It follows that
the number of edges in Ẽj -short cut by each i-level single-scale partition is at most
23 ddim(S) · 9q · 23 ddim(S) ddim(S). Set

r′ = r′(q) := max

{
26 ddim(S) · 18q ddim(S) logs logn,

(
2c′ ddim(S)

ε

)ddim(S)
}

and consider the case where at least r′ edges of Ẽj -short are cut. Then at least r′/2
edges of Ẽj -short must have been cut by balls in levels i ≥ j + logs logn, and we can
charge a patching for j-level cluster C only to these short edges.

Now, if more than r′ short edges cross C, the tour is patched via the minimum

spanning tree (à la Lemma 1.9), at a per-edge cost of O(s
jr′1−1/ddim(S)

r′/2) = O(sjε
ddim(S)).

Recall though that the edges charged for this patching are edges cut by balls at levels
j+logs logn or higher. It follows that the expected cost to edge (u, v) due to a patching

for j-level cluster C is O(d(u,v) ddim(S)
sj+logs log n · sjε

ddim(S)) = O(εd(u,v)logn) and due to patchings at

all levels is O(εd(u, v)). This concludes the analysis for the short edges, and together
with the long edges the total number of cross-points is at most r := r′+(4s/ε)ddim(S).

Let s = (logn)1/(c
′′ ddim(S)) for some constant c′′ ≥ 32. We can now provide an

efficient algorithm to find a tour with the guarantees of the last lemma.
Lemma 3.2. If S admits a net-respecting q-sparse tour T , then there exists a

randomized algorithm that, with constant probability, finds a tour T ′ with w(T ′) ≤
(1 + ε)w(T) in time nO(24 ddim(S)) · 2O(q(ddim(S)/ε)3 ddim(S) 4

√
logn).

Proof. If we could compute a hierarchical clustering that realizes Lemma 3.1,
then the standard dynamic program from section 2 would give a tour for S satisfying
Lemma 3.2. However, we cannot compute this hierarchical clustering, since we do
not have access to T and cannot know which radii are valid choices for hu. Instead,
we present a dynamic program that guesses the proper value of hu. Recall that the

1576 Y. BARTAL, L.-A. GOTTLIEB, AND R. KRAUTHGAMER

exponential distribution of [2] implies that a random guess for the value of hu is a
valid value with probability at least 1/2. Hence, O(log n) independent random choices
ensure that at least one choice for hu is valid with probability 1− 1

n2 , which by a union
bound implies that with constant probability, for each net point at least one of its
O(log n) choices is valid.

We begin by fixing O(log n) random radius choices for each net point. Now con-
sider some j-level cluster C centered at u ∈ Hj . C is formed by cuts from neighboring
balls in levels j and above, and we wish to enumerate all possible formations of C:
Recall that we make O(log n) random choices for hu ∈ [sj , 2sj]. Further, since for
all i ≥ j, u is within distance hu + 2si < 4si of 23 ddim(S) other si-net points whose
radii may cut C, and we guess O(log n) radii for each of these net points, C may be

cut in (O(log n))2
3 ddim(S)

different ways by the i-level partition. Since C may be cut
from above in all L− j levels, it follows that the number of possible formations for C

is bounded by (O(log n))2
3 ddim(S)L. Recall that s = (logn)1/c

′′ ddim(S), and it follows

that the number of levels in the hierarchy is L = O(logs n) = O(ddim(S) logn
log logn). So the

number of possible formations for C is bounded by (O(log n))2
3 ddim(S)L = nO(24 ddim(S)).

Having fixed all random radii, we compute tour T via a dynamic programming
algorithm which executes an exhaustive search. The dynamic programming table pos-
sesses a single entry for each possible portal configuration of each possible formation

of each cluster center. So the table possesses mr ·nO(24 ddim(S)) entries. The algorithm
must compute for each entry an optimal cluster tour for the particular cluster forma-
tion and portal configuration. The table is filled in a bottom-up fashion, from level
0 to level L, and the algorithm computes the entry for a j-level cluster by consult-
ing the entries of its child clusters in level j − 1: An j-level cluster C has at most
s2 ddim(S) child clusters, and since each cluster has O(log n) possible radii, there are

(O(log n))s
2 ddim(S)

possible child formations. For each fixed child formation, we con-

sider each portal configuration for the set of children ((mr)s
2 ddim(S)

possibilities) and
consult the appropriate table entries for the cost of the optimal child cluster tours.
We then compute the cost of connecting the child portals to form a valid tour through
the portals of C: This can be done by enumerating all graphs with one edge on each

vertex, in at most
(
rs2 ddim(S)

)rs2 ddim(S)

different ways.

Note that (assuming sufficiently large ddim(S) = Ω(1))

r logm = O(q26 ddim(S) log logn · (s ddim(S)/ε)2 ddim(S) · log logn · log(1/ε))
= O(q(ddim(S)/ε)3 ddim(S)s2 ddim(S)(log logn)2).

So we can bound each of the expressions above by

(mr logn)O(rs2 ddim(S)) = 2O(r logms2 ddim(S)) = 2O(q(ddim(S)/ε)3 ddim(S)s4 ddim(S)(log log n)2)

= 2O(q(ddim(S)/ε)3 ddim(S)) 4
√
log n).

Lemma 3.2 follows.

3.2. Eliminating dense areas. Lemmas 3.1 and 3.2 show that sparse tours
admit efficient hierarchical decompositions and algorithms. Here, we consider tours
that have dense neighborhoods and show that the point set can be divided into areas
with all light tours. We then solve TSP on each subset and join the resulting subtours
into a single tour.

LOW-DIMENSIONALITY IMPLIES A PTAS FOR TSP 1577

Set q := (s/ε)O(ddim(S)) · 2O(ddim2(S)).
Lemma 3.3. There is a (randomized) polynomial time algorithm that given a set

S (with |S| > 1) computes two subsets S1 ⊂ S and S2 � S with S1 ∪ S2 = S and
S1 ∩ S2 �= ∅, such that

(a) OPTNR(S1) is q′-sparse, for q′ = O(q 8
√
logn); and

(b) w(OPTNR(S1)) + w(OPTNR(S2)) ≤ w(OPTNR(S)) + εw(OPTNR(S1)).
Before proving Lemma 3.3, we will demonstrate that it can be used to complete

the proof of Theorem 1.3.
Proof of Theorem 1.3. Given a point set S, if S contains a single point then we

are done. Otherwise, we use the procedure of Lemma 3.3 to create two instances of
TSP, S1 ⊆ S and S2 ⊂ S. S1 admits a q′-sparse and net-respecting tour OPTNR(S1)
as promised by Lemma 3.3. A tour of almost the same cost (at most 1 + ε factor
larger) can be computed by the algorithm of Lemma 3.2, obtaining a tour T1, where
w(T1) ≤ (1 + ε)w(OPTNR(S1)). The tour for S2 is solved recursively (that is, S is
replaced by S2), obtaining a tour T2. The inequality S1∩S2 �= ∅ implies that separate
tours T1 and T2 can be joined together to obtain a complete tour T at no additional
cost.

We now prove inductively that w(T) ≤ (1+ε
1−ε) · w(OPTNR(S)). By the induction

hypothesis we have that w(T2) ≤ (1+ε
1−ε) · w(OPTNR(S2)). Lemma 3.3 implies that

w(T1) ≤ (1 + ε)w(OPTNR(S1)) ≤
(
1 + ε

1− ε

)
· (w(OPTNR(S))− w(OPTNR(S2))).

Therefore

w(T) = w(T1)+w(T2) ≤ w(T1)+

(
1 + ε

1− ε

)
·w(OPTNR(S2)) ≤

(
1 + ε

1− ε

)
·w(OPTNR(S)),

proving the inductive claim. Finally, by Lemma 1.6 we have that w(T) = (1+O(ε)) ·
w(OPT(S)). The runtime follows from executing the algorithm of Lemma 3.2 on the
q′-sparse sets of Lemma 3.3.

We now return to proving Lemma 3.3. We require a preliminary lemma. Define
the annulus A(v, r1, r2) = B(v, r2) \B(v, r1), and let A∗(v, r1, r2) be the set of edges
with both endpoints inside the annulus A(v, r1, r2).

Lemma 3.4. For any level i, let v ∈ S be a point for which w(MST(B(v, si))) is
maximized, and let this weight be q∗si. Let T = OPTNR(S). If q∗ ≥ 6.5 the following
hold:

(i) w(MST(B(v, 13si))) < 25 ddim(S) · q∗si.
(ii) Set δ ≤ 1

12 . There exists a radius h ∈ [12si, 13si] for which

w(T ∩ A∗(v, h− 6δsi, h+ 6δsi)) < 144δ(1 + 16ε)w(MST(B(v, 13si))).

(iii) Let h be as above, let k satisfy sk ≤ δsi < sk+1, and let N(h) denote the set
of all k-level points which cover points of A(v, h− δsi, h+ δsi). Then∑

u∈N(h)

w(MST(u, sk)) < 25 ddim(S)w(T ∩ A∗(v, h− 6δsi, h+ 6δsi))

+ (2s2/εδ)2 ddim(S)sk.

Proof. To prove the first item, Lemma 1.5 implies that B(v, 13si) can be covered
by (2 · 13/3)ddim < 24 ddim(S) balls of radius 3si centered at points of S. Note that

1578 Y. BARTAL, L.-A. GOTTLIEB, AND R. KRAUTHGAMER

w(MST(B(v, 13si))) is bounded by the cost of constructing a minimum spanning
tree inside each of these small balls and then connecting the balls together. By
choice of v, each small ball has minimum spanning tree weight at most q∗si, so the
sum of the weights of these minimum spanning trees is less than 24 ddim(S)q∗si. By
Lemma 1.8, the centers of the small balls can be joined by a spanning tree of weight
4(24 ddim(S))1−1/ ddim(S) ·26si = 24 ddim(S) ·6.5si. It follows that w(MST(B(v, 13si)) <
24 ddim(S)(q∗ + 6.5)si ≤ 25 ddim(S) · q∗si.

To prove the second item, by an averaging argument, there is a value for h for
which T ∩A∗(v, h−6δsi, h+6δsi) contains edges of total weight at most 12 ·2δ ·w(T ∩
B∗(v, 13si)). By Lemma 1.11(i), w(T ∩B∗(v, 13si)) ≤ 6(1+16ε)w(MST(B(v, 13si))).
The item follows.

To prove the third item, by Lemma 1.11(ii) for each k-level net point u we have
w(MST(B(u, sk))) ≤ w(T ∩B∗(u, 4sk))+(s/ε)2 ddim(S)sk. By Lemma 1.5, the number
of k-level net points covering the annulus is upper bounded by (2 · 2((13 + δ)si +
sk)/sk)ddim(S) < (2 · 2(1 + 13.1s/δ))ddim(S) < (2s/δ)2 ddim(S). Hence,∑

u∈N(h)

w(MST(B(u, sk))) ≤
∑

u∈N(h)

[
w(T ∩B∗(u, 4sk))

]
+ (2s2/εδ)2 ddim(S)sk.

Now, each ball B(u, 4sk) is fully contained in the larger annulus A∗(v, h − 6δsi, h +
6δsi)) and intersects at most (2·16)ddim(S) = 25 ddim(S) other balls. So

∑
u∈N(h) w(T ∩

B∗(u, 4sk)) ≤ 25 ddim(S)w(T ∩A∗(v, h− 6δsi, h+ 6δsi)), and the item follows.
Finally, we complete the proof of Lemma 3.3.
Proof of Lemma 3.3. Suppose first that for all level i and u ∈ S, the edge-sparsity

condition w(MST(B(u, 3si)) ≤ 2qsi holds. Then we conclude by Lemma 1.11(i) that
OPTNR(S) is 13q-sparse, and our lemma is trivial: Set S1 = S and S2 includes an
arbitrary single point. Assume then that the edge-sparsity condition does not hold.
The algorithm begins by locating the lowest level i for which there exists u ∈ S such
that w(MST(B(u, 3si)) > 2qsi and setting v to be such that w(MST(B(v, 3si))) is
maximized. Let q∗ := w(MST(B(v, 3si))/si, and it follows that q∗ > 2q.

Fix a tour T = OPTNR(S). Ideally, we would now like to choose some radius h,
partition S into two point sets S̃1 = B(v, h) and S̃2 = S \ S̃1, and then provide tours
for the two sets whose combined weight is only slightly greater than that of T . Let
S̃∗
i denote the edges of the complete graph on the points of S̃i (for i = 1, 2); then

we could bound the weight of the subtours by showing that each Ti = S̃∗
i ∩ T (for

i = 1, 2) can be made into a closed tour by adding only a lightweight collection of
edges to “patch” the edges of T cut by the partition (as in Lemma 1.10). However,
this plan may be costly because the patchings might be expensive; for example, a
radius h ball can cut many edges of T which then need to be patched. Moreover,
in order to ensure that the subtours are net-respecting, we need to augment the sets
S̃i with appropriate (nearby) net points. To solve this problem, we will show how to
create sets S1 ⊃ S̃1 (which also contains some points of S̃2) and S2 ⊃ S̃2 (which also
contains some points of S̃1) for which the lemma holds.

We choose a radius h ∈ [12si, 13si] given by Lemma 3.4. In what follows, we will
show separately how to patch long and short edges crossing S̃1. (Similar arguments
allow for patching S̃2.)

Let Ei -long be the set of long edges of T crossing S̃1, those of length more than

δsi for δ = O(ε/210 ddim(S)). Since T is net-respecting, these edges must cross S̃1 at j-
level net points, where j satisfies sj ≤ εδsi < sj+1. We will patch the edges of Ei -long

crossing S̃1 using the minimum spanning tree of all j-level net points covering S̃1.

LOW-DIMENSIONALITY IMPLIES A PTAS FOR TSP 1579

There are (s/εδ)4 ddim(S) such net points, and their net-respecting minimun spanning
tree has weight less than (1+16ε)(s/εδ)4ddim(S)si < εqsi for an appropriate choice of
q (see Lemmas 1.6, 1.8), which bounds, up to a constant factor, the cost of patching
the long edges crossing S̃1.

We now turn to patching the shorter edges of T that cross S̃1. Let Ei -short

include edges of length at most δsi. Now, these edges cross into S̃1 from a set of
points V ⊂ S̃2 inside the annulus A(v, h− δsi, h+ δsi). Since we have shown how to
patch the long edges of T1 crossing j-level net points, the short edges of T1 crossing
V will be patched by connecting them to k-level net points (though not necessarily
directly) where k satisfies sk ≤ δsi < sk+1. To this end, add to S̃1 copies of all
k-level net points which cover points in V—call this set N(h)—as well as all lower
level points within distance sk of N(h), and let the resulting point set be S1. We
patch the short edges via the minimum spanning tree of the sk-radius balls of points
in N(h), that is, ∪u∈N(h) MST(B(u, sk)). By the three items of Lemma 3.4, when

q ≥ ε−1(2s2/εδ)2 ddim(S) we have that the total cost of this patching is

∪u∈N(h)w(MST(B(u, sk))) = O(δ) · 210 ddim(S)q∗si.

Since δ = O(ε/210 ddim(S)), this last bound is O(εq∗si). We then reroute all new edges
to be net-respecting (adding to S̃1 net points of S̃2 as necessary) at a trivial cost
(Lemma 1.6).

We conclude that the total weight of all patchings (including short and long edges)
isO(εq∗si). By Lemma 1.11(ii) (and since S1 ⊃ B(v, 12si)) we have w(OPTNR(S1)) ≥
w(MST(B(v, 3si)))−(s/ε)2 ddim(S)3si = q∗si−(s/ε)2ddim(S)3si ≥ 1

2q
∗si, so the patch-

ing cost is indeed O(ε) ·w(OPTNR(S1)). A similar argument applies to the patchings
needed for S2, by adding to S̃2 all j-level net points of S̃1, as well as all k-level
net points of S̃1 covering points of S̃2 and their balls; the resulting set is S2. This
completes the proof of part (b) of the lemma.

We note that by construction S1 ∩ S2 �= ∅, and that S2 �= S (as implied by part
(b) of the lemma).

We now complete the proof of part (a) translating balls with light MST to light
tours. By the choice of i, for every � < i and every net point u ∈ H�, MST(B(u, 3s�)) ≤
2qs�, and so by Lemma 1.11(i), w(OPTNR(S1)∩B∗(u, 3s�)) ≤ 6(1+16ε)qs� ≤ 22qs�.
While by assumption the �-level balls have light minimum spanning trees, this is not
the tree of the i-level ball B(v, 3si). Fix � to be the value satisfying s� ≤ si < s�+1, and
by the packing property the i-level ball covers (4s)ddim(S) �-level balls. It follows that
w(OPTNR(S1) ∩ B∗(u, 3si)) ≤ (4s)ddim(S)22qs� = O(16

√
logn) · qsi, which completes

the proof.

Acknowledgments. We thank Ittai Abraham, Alex Andoni, Anupam Gupta,
Liam Roditty, and Kunal Talwar for helpful discussions.

REFERENCES

[1] I. Abraham, Y. Bartal, and O. Neiman, Embedding metric spaces in their intrinsic dimen-
sion, in Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms,
2008, pp. 363–372.

[2] I. Abraham, Y. Bartal, and O. Neiman, Advances in metric embedding theory, Adv. Math.,
228 (2011), pp. 3026–3126.

[3] I. Abraham, S. Chechik, C. Gavoille, and D. Peleg, Forbidden-set distance labels for
graphs of bounded doubling dimension, in Proceedings of 29th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, ACM, New York, 2010, pp. 192–200.

1580 Y. BARTAL, L.-A. GOTTLIEB, AND R. KRAUTHGAMER

[4] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The Traveling Salesman
Problem: A Computational Study, Princeton Ser. Appl. Math., Princeton University Press,
Princeton, NJ, 2007.

[5] S. Arora, Polynomial time approximation schemes for Euclidean traveling salesman and other
geometric problems, J. ACM, 45 (1998), pp. 753–782.

[6] S. Arora, P. Raghavan, and S. Rao, Approximation schemes for Euclidean k-medians and
related problems, in Proceedings of the 30th Annual ACM Symposium on Theory of Com-
puting, ACM, New York, 1998, pp. 106–113.

[7] P. Assouad, Plongements Lipschitziens dans Rn, Bull. Soc. Math. France, 111 (1983), pp. 429–
448.

[8] Y. Bartal, Probabilistic approximation of metric spaces and its algorithmic applications, in
Proceedings of the 37th Annual Symposium on Foundations of Computer Science, IEEE
Computer Society, New York, 1996, pp. 184–193.

[9] Y. Bartal, On approximating arbitrary metrices by tree metrics, in Proceedings of the 30th
Annual ACM Symposium on Theory of Computing, ACM, New York, 1998, pp. 161–168.

[10] Y. Bartal, B. Recht, and L. J. Schulman, Dimensionality reduction: Beyond the Johnson-
Lindenstrauss bound, in Proceedings of the 22nd Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’11, SIAM, Philadelphia, 2011, pp. 868–887.

[11] T.-H. H. Chan and K. M. Elbassioni, A QPTAS for TSP with fat weakly disjoint neighbor-
hoods in doubling metrics, Discrete Comput. Geom., 46 (2011), pp. 704–723.

[12] T-H. H. Chan and A. Gupta, Approximating TSP on metrics with bounded global growth, in
Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
2008, pp. 690–699.

[13] T-H. H. Chan, A. Gupta, and K. Talwar, Ultra-low-dimensional embeddings for doubling
metrics, in Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’08, SIAM, Philadelphia, 2008, pp. 333–342.

[14] N. Christofides, Worst-Case Analysis of a New Heuristic for the Travelling Salesman Prob-
lem, Technical report, Carnegie-Mellon University Management Sciences Research Group,
Pittsburgh, PA, 1976.

[15] K. L. Clarkson, Nearest neighbor queries in metric spaces, Discrete Comput. Geom., 22
(1999), pp. 63–93.

[16] R. Cole and L.-A. Gottlieb, Searching dynamic point sets in spaces with bounded doubling
dimension, in Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
2006, pp. 574–583.

[17] A. Czumaj and A. Lingas, A polynomial time approximation scheme for Euclidean minimum
cost k-connectivity, in Proceedings of the 25th International Colloquium on Automata,
Languages and Programming, ICALP ’98, Springer-Verlag, New York, 1998, pp. 682–694.

[18] A. Czumaj, A. Lingas, and H. Zhao, Polynomial-time approximation schemes for the Eu-
clidean survivable network design problem, in Proceedings of the 29th International Col-
loquium on Automata, Languages and Programming, ICALP ’02, Springer-Verlag, New
York, 2002, pp. 973–984.

[19] G. Dantzig, R. Fulkerson, and S. Johnson, Solution of a large-scale traveling-salesman
problem, Oper. Res., 2 (1954), pp. 393–410.

[20] J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbitrary
metrics by tree metrics, in Proceedings of the 35th Annual ACM Symposium on Theory
of Computing, ACM, New York, 2003, pp. 448–455.

[21] J. Gao, L. J. Guibas, and A. Nguyen, Deformable spanners and applications, Comput. Geom.
Theory Appl., 35 (2006).

[22] L.-A. Gottlieb, L. Kontorovich, and R. Krauthgamer, Efficient classification for metric
data, in Proceedings of the 23rd Conference on Learning Theory, Omnipress, Madison, WI,
2010, pp. 433–440.

[23] L.-A. Gottlieb and R. Krauthgamer, A nonlinear approach to dimension reduction, in
Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’11, SIAM, Philadelphia, 2011, pp. 888–899.

[24] L.-A. Gottlieb and L. Roditty, An optimal dynamic spanner for doubling metric spaces, in
Proceedings of the 16th Annual European Symposium on Algorithms, ESA ’08, Springer-
Verlag, New York, 2008, pp. 478–489.

[25] A. Gupta, R. Krauthgamer, and J. R. Lee, Bounded geometries, fractals, and low-distortion
embeddings, in Proceedings of the 44th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS ’03, IEEE Computer Society, New York, 2003, pp. 534–543.

[26] G. Gutin and A. P. Punnen, eds., The Traveling Salesman Problem and Its Variations,
Comb. Optim. 12, Kluwer Academic Publishers, Dordrecht, Netherlands, 2002.

LOW-DIMENSIONALITY IMPLIES A PTAS FOR TSP 1581

[27] R. Karp, Reducibility Among Combinatorial Problems, in Complexity of Computer Computa-
tions, R. Miller and J. Thatcher, eds., Plenum Press, London, 1972.

[28] S. G. Kolliopoulos and S. Rao, A nearly linear-time approximation scheme for the Euclidean
k-median problem, SIAM J. Comput., 37 (2007), pp. 757–782.

[29] R. Krauthgamer and J. R. Lee, Navigating nets: Simple algorithms for proximity search,
in Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, 2004,
pp. 791–801.

[30] T. J. Laakso, Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequal-
ity, Geom. Funct. Anal., 10 (2000), pp. 111–123.

[31] T. J. Laakso, Plane with A∞-weighted metric not bi-Lipschitz embeddable to RN , Bull. London
Math. Soc., 34 (2002), pp. 667–676.

[32] M. Lampis, Improved inapproximability for TSP, in Approximation, Randomization, and Com-
binatorial Optimization, Lecture Notes in Comput. Sci. 7408, Springer, New York, 2012,
pp. 243–253.

[33] U. Lang and C. Plaut, Bilipschitz embeddings of metric spaces into space forms, Geom.
Dedicata, 87 (2001), pp. 285–307.

[34] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, eds., The Traveling
Salesman Problem, Wiley-Intersci. Ser. Discrete Math., Wiley, Hoboken, NJ, 1985.

[35] J. R. Lee, The Gödel Prize, TSP, and Volume Growth, http://tcsmath.wordpress.com/2010/
06/24/the-godel-prize-tsp-and-volume-growth (2010).

[36] J. S. B. Mitchell, Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems,
SIAM J. Comput., 28 (1999), pp. 1298–1309.

[37] J. S. B. Mitchell, A PTAS for TSP with neighborhoods among fat regions in the plane, in
Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
Philadelphia, 2007, pp. 11–18.

[38] C. Papadimitriou and S. Vempala, On the approximability of the traveling salesman problem,
Combinatorica, 26 (2006), pp. 101–120.

[39] C. H. Papadimitriou, The Euclidean travelling salesman problem is NP-complete, Theoret.
Comput. Sci., 4 (1977), pp. 237–244.

[40] C. H. Papadimitriou and M. Yannakakis, The traveling salesman problem with distances
one and two, Math. Oper. Res., 18 (1993), pp. 1–11.

[41] S. B. Rao and W. D. Smith, Approximating geometrical graphs via “spanners” and “banyans,”
in Proceedings of the 30th Annual ACM Symposium on Theory of Computing, ACM, New
York, 1998, pp. 540–550.

[42] G. Reinelt, The Traveling Salesman, Lecture Notes in Comput. Sci. 840, Springer-Verlag,
Berlin, 1994.

[43] M. Smid, On Some Combinatorial Problems in Metric Spaces of Bounded Doubling Dimension,
manuscript, http://people.scs.carleton.ca/∼michiel/research.html (2010).

[44] K. Talwar, Bypassing the embedding: Algorithms for low dimensional metrics, in Proceedings
of the 36th Annual ACM Symposium on Theory of Computing, ACM, New York, 2004,
pp. 281–290.

[45] L. Trevisan, When Hamming meets Euclid: The approximability of geometric TSP and
Steiner tree, SIAM J. Comput., 30 (2000), pp. 475–485.

http://tcsmath.wordpress.com/2010/06/24/the-godel-prize-tsp-and-volume-growth
http://tcsmath.wordpress.com/2010/06/24/the-godel-prize-tsp-and-volume-growth
http://people.scs.carleton.ca/~michiel/research.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

