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ABSTRACT
The Traveling Salesman Problem (TSP) is among the most
famous NP-hard optimization problems. We design for this
problem a randomized polynomial-time algorithm that com-
putes a (1 + ε)-approximation to the optimal tour, for any
fixed ε > 0, in TSP instances that form an arbitrary metric
space with bounded intrinsic dimension.
The celebrated results of Arora [Aro98] and Mitchell [Mit99]

prove that the above result holds in the special case of TSP
in a fixed-dimensional Euclidean space. Thus, our algorithm
demonstrates that the algorithmic tractability of metric TSP
depends on the dimensionality of the space and not on its
specific geometry. This result resolves a problem that has
been open since the quasi-polynomial time algorithm of Tal-
war [Tal04].

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity.]:

Keywords
Doubling Metrics, Traveling Salesman Problem.

1. INTRODUCTION
Among all NP-complete problems, the Traveling Sales-

man Problem (TSP) stands out as fundamental and exten-
sively studied. Indeed, numerous articles and even whole
books ([Rei94, LLKS85, GP02, ABCC07]) are devoted to
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TSP, studying various algorithms for different families of in-
stances. In fact, some of the most basic techniques in combi-
natorial optimization were devised to tackle TSP, including
for instance cutting planes. The input for (the optimization
version of) TSP is a complete graph, whose vertex set we
denote by S = [n], together with edge-weights w(·, ·) that
are nonnegative and symmetric,1 and the goal is to find a
closed tour of S of minimum (total) weight, where a tour
T is simply a permutation of S, i.e. it visits every vertex
exactly once.

A prominent special case of TSP, called metric TSP, is
where the edge-weights satisfy the triangle inequality,2 and
hence the input is simply a (finite) metric space on the point
set S = [n]. The importance of this variant lies in the fact
that edge-weights arising in many of the typical applica-
tions naturally represent lengths and distances. Metric TSP
offers some basic structure that may be leveraged by algo-
rithms. In particular, Christofides [Chr76] designed a 1.5–
approximation, a polynomial-time algorithm that computes
a tour whose weight exceeds the optimum by a factor of at
most 1.5. It is a long-standing open problem to improve this
approximation for metric TSP, but it is known that there ex-
ists a constant c > 1, for which c–approximation is NP-hard
[PY93, PV06].

Celebrated results of Arora [Aro98] and Mitchell [Mit99]
prove that the important special case of metric TSP where
the input metric forms a Euclidean metric, admits a PTAS.3

To be more precise, these PTAS results apply to input met-
rics that are finite subsets of a fixed-dimensional Euclidean
metric (in the case of [Mit99], the Euclidean plane). Observ-
ing that these PTAS results require two separate conditions
– Euclidean space and fixed dimensionality – it is only nat-
ural to ask:

Question 1.1. Do TSP instances which satisfy only one
of the bounded dimension and Euclidean metric properties
admit a PTAS?

The bounded-dimensionality requirement turns out to be
necessary, as Trevisan [Tre00] shows that TSP in Euclidean
metrics (of dimension log n) is NP-hard to approximate within
some constant c > 1. It is therefore not surprising that

1Formally, w(x, y) = w(y, x) ≥ 0 for all x, y ∈ S.
2The triangle inequality says that w(x, y) ≤ w(x, z)+w(z, y)
for all x, y, z ∈ S.
3PTAS, which stands for a Polynomial-Time Approximation
Scheme, means that for every fixed ε > 0 there is a (1 + ε)–
approximation. Note that the runtime is polynomial in n
for every constant ε > 0.



the running time of the aforementioned PTAS is doubly-
exponential in the dimension.
Eliminating the Euclidean requirement was first addressed

by Talwar [Tal04]. Observe that a basic premise of this
question is that the notion of dimension applies to an ar-
bitrary (non-Euclidean) metric space. This is indeed possi-
ble, and Talwar relied on a definition put forth by Gupta,
Krauthgamer and Lee [GKL03] (following [Ass83, Cla99]):
The doubling dimension of a (finite) metric space S, de-
noted ddim(S), is the smallest k > 0 such that every ball
in the metric can be covered by 2k balls of half the radius.
This definition is essentially based on volume growth, and
indeed simple volume estimates imply that a k-dimensional
Euclidean metric has doubling dimension Θ(k). The op-
posite direction, however, is not true and in fact the fam-
ily of metrics with bounded doubling dimension is signifi-
cantly larger than that of bounded-dimensional Euclidean
metrics (see [Laa00, LP01, Laa02, GKL03] for details). Tal-
war [Tal04] generalized much of Arora’s machinery [Aro98]
and showed that TSP in metrics with fixed doubling dimen-
sion admits a QPTAS.4 But despite repeated attempts, the
original goal remained open:

Question 1.2. Does TSP in metrics of bounded doubling
dimension admit a PTAS?

This question has fascinated researchers for several reasons
(see e.g. [Lee10]). First, the existence of a QPTAS may
be interpreted as evidence that a PTAS is possible. Sec-
ond, the above question accords well with a research pro-
gram that was initiated in [GKL03, KL04, Tal04], and stud-
ies the analogy between Euclidean metrics of fixed dimen-
sion and general metrics of fixed doubling dimension, from
the perspective of algorithmic tractability. It has been ob-
served that many algorithms dealing with the former family
of metrics can be adapted to deal with the latter, see e.g.
[CG06, GR08, ACGP10, GKK10] and references therein for
recent instantiations. Likewise, the doubling dimension has
been established as a good measure of intrinsic dimension in
the theory of metric embeddings [CGT08, ABN11, GK11,
BRS11].
A natural approach to resolving this problem in the posi-

tive would be to embed the original metric space in bounded
dimensional Euclidean space (such embeddings were studied
in [ABN08, ABN11]), and then apply the PTAS of [Aro98].
While this general approach has been quite successful in
resolving many other algorithmic problems (see for exam-
ple [Bar96]), it fails here since any such embedding must
have non-constant distortion ([Laa00, LP01, Laa02]), in fact
Ω(

√
logn) ([GKL03]). It appears that achieving a PTAS for

arbitrary bounded-dimensional metric spaces requires a new
approach to bypass the limitations of the embedding.

1.1 Results
Our central contribution is a PTAS for TSP in metrics of

fixed doubling dimension.

Theorem 1.3. A (1 + ε)-approximation to the optimal
tour of a metric TSP instance S on n = |S| points can be

4QPTAS, which stands for a Quasi-Polynomial Time Ap-
proximate Scheme, means that for every fixed ε > 0 there is
a (1 + ε)–approximation running in quasi-polynomial time

2polylog(n).

computed by a randomized algorithm in time n2O(ddim(S))

·
2(2

ddim(S)/ε)O(ddim(S))√logn.

The previously known running time is is quasipolynomial

in n, namely 2(ddim(S)/ε·logn)O(ddim(S))

, due to Talwar [Tal04,
Theorem 8].

1.2 Techniques
We build upon the framework of [Aro98, Tal04], and in-

troduce two main new ideas (and several more minor ones).
Our framework is a variant of Talwar’s algorithm (see Sec-
tion 2) that includes: (1) a randomized hierarchical clus-
tering (partitioning) of S; (2) the introduction of portals
around every cluster; (3) slightly modifying the optimal
tour (for sake of analysis only) so that the tour is portal-
respecting (crosses every cluster only at its portals) and has
few crossings into the cluster; (4) a dynamic program that
computes a tour for each cluster based on the tours already
computed for its subclusters.

Our first new idea (in Section 1.5) is to estimate the cost
incurred by an optimal tour inside a ball. Intuitively, the
estimate is merely an instantiation of the well-known 2–
approximation of TSP using the minimum spanning tree
(stated as Lemma 1.6). But in reality, edges entering and ex-
iting the ball interfere with this calculation, and thus the es-
timate includes both multiplicative and additive error terms.

Our second new idea is to treat separately dense regions
in the metric space, meaning balls in which an optimal tour
incurs a relatively large cost. Now if all regions are sparse,
then we are almost done – in this case we use limited ran-
domization to determine the hierarchical clustering. In par-
ticular, we draw at random O(logn) radii-values for every
cluster center, and argue that with high probability at least
one of them is useful for the construction of a good parti-
tion. We then augment the aforementioned dynamic pro-
gram to search also over the different radii-values for every
cluster center. (This appears in Section 3.1.) If there is a
dense region, then we can use the first idea above to find
the (nearly) smallest one. We then “split” the TSP instance
into two portions, roughly the inside and the outside of that
dense region. The outside is solved recursively. The inside
portion is nearly sparse because it can be covered by a lim-
ited number of smaller (and thus sparse) balls, and so it can
be solved immediately by the sparse algorithm. Stitching
the solutions for the two portions may be costly, but since
the region is dense, we can effectively charge our algorithm’s
cost to that of the optimum. (This appears in Section 3.2.)

1.3 Related work
A few hardness of approximation results are known. That

general (not necessarily metric) TSP is NP-hard follows im-
mediately from Karp’s original NP-hardness proof for Hamil-
tonian cycle [Kar72]. Moreover, this proof shows that TSP
does not admit any finite factor approximation in polyno-
mial time, unless P=NP. Papadimitriou and Yannakakis [PY93]
showed that metric TSP is hard to approximate within some
constant factor c > 1, even if all the metric distances are
either 1 or 2. Papadimitriou and Vempala [PV06] proved
that approximating metric TSP within factor 220/219 is NP-
hard. Papadimitriou [Pap77] showed that two-dimensional
Euclidean TSP is NP-hard.

The runtime of Arora’s algorithm [Aro98] was later im-
proved in [RS98], and his geometric approach was subse-



quently employed for other Euclidean problems in [CL98,
ARR98, CLZ02, KR07]. Further extension of the algorithms
of [Aro98, Tal04] to the problem of TSP with neighbor-
hoods (under mild conditions) include [Mit07] and [CE11].
Chan and Gupta [CG08] gave an algorithm for TSP that
runs in sub-exponential time in metrics in which an alter-
native (more general) notion of dimension is assumed to be
bounded.

1.4 Preliminaries
Recall our notation for the metric TSP instance: S de-

notes the set of points, d(·, ·) their pairwise distances, ddim(S)
its doubling dimension, and n = |S| its size. We fix 0 <
ε < 1/20, which determines the desired approximation to
be 1 + O(ε). We may assume that ε > 1/n, as otherwise
all our results hold trivially — TSP can be solved exactly
in time n! by straightforward enumeration, providing better
approximation and faster runtime than our claimed runtime
(which is at least exponential in 1/ε). Similar to what was
done by Arora [Aro98], by suitable scaling we may assume
that the minimum interpoint distance in S is 1 and the di-
ameter is O(n/ε) = O(n2).
As usual, the metric may be viewed as the complete graph

on S, with edge weights corresponding to pairwise distances,

denoted w(x, y)
def
= d(x, y). A set of points S′ ⊆ S is

sometimes called a cluster. We let MST(S′) denote a min-
imum spanning tree (breaking ties arbitrarily) of the com-
plete graph on S′. The ball centered at x ∈ S with radius

R > 0 is defined as B(x,R)
def
= {y ∈ S : d(x, y) ≤ R}. We

define B∗(x,R) to be the edges of the complete graph on
B(x,R).

Tours. Throughout, a tour is a finite sequence of points; by
convention, it is undirected. A transition in the tour is a pair
of successive points in the sequence, which may be viewed
as an edge in the complete graph on S. A closed tour is
defined in the natural way by adding a transition between
its two endpoints (and then no point is an endpoint in the
tour).
The weight of a multiset M of transitions is defined as

w(M)
def
=

∑
(x,y)∈M w(x, y). This notation naturally extends

to a tour T , by viewing T as sequence of transitions, and so
w(T ) just denotes the (total) length of the tour T .
Let OPT(S′) denote a minimum length closed tour that

visits all points of S′ ⊆ S.

Lemma 1.4. If a tour T traverses an edge e more than
twice, then there exists a lighter tour T ′ that is a subset of
the transitions of T .

Proof. We will prove the case of three traversals, and
a similar proof holds for more. Suppose that T traverses
some edge e = (u, v) exactly thrice. Then an ordering of the
edges of T must take the form E1eE2eE3eE4, where each Ei

is a (possibly empty) set of edges, and e may be traversed
in either direction. If E2 or E3 are empty, then the tour is
of the form E1eeE3eE4 or E1eE2eeE4, and the segment ee
may be deleted. Now, if E2 is a cycle beginning and ending
at u (or v), then one of E1eeE3E2eE4 or E1eeE3eE2E4 is a
valid reordering of T , and the segment ee may be deleted,
resulting in a lighter tour. Assume then that E2 begins at u
and ends at v, and trivially E3 also begins at u and ends at v.
Then the segment E2eE3e which begins and ends at u may
be replaced by a path that follows E2 and then traverses

the edges of E3 in a backwards order, thereby skipping e
twice.

Doubling dimension. Let λS > 0 be the doubling constant
of the metric S, the smallest value such that every ball in
S can be covered by λS balls of half the radius. Recall
that the doubling dimension of S is ddim(S) = log2 λS ≥ 1
(assuming |S| ≥ 2). The following packing property can
be demonstrated via repeated applications of the doubling
property (see e.g. [GKL03]).

Lemma 1.5. (Packing Property) Let S′ ⊆ S have mini-
mum interpoint distance α > 0. Then

|S′| ≤
(

2 diam(S′)
α

)ddim(S)

.

Notice that whenever diam(S′)
α

≥ 2, we can further bound

|S′| ≤
(

diam(S′)
α

)2 ddim(S)

.

Nets. Similar to what was described in [GGN06, KL04],
a subset S′ ⊆ S is an (a, b)-net of S (for 0 < a ≤ b) if it
satisfies the following two properties.

(i). Packing: For every u, v ∈ S′ we have d(u, v) > a.

(ii). Covering: Every v ∈ S is within distance b of some
point u ∈ S′, i.e., S ⊆ ∪u∈S′B(u, b).

We say that u ∈ S′ covers v ∈ S if d(u, v) ≤ b. The previous
conditions require that the points of S′ be spaced out, yet
nevertheless cover all points of S. If a = b, we may refer to
the (a, b)-net as an a-net.

Hierarchy of nets (or point hierarchies). Set L
def
=

⌈logs diam(S)⌉ = O(logs n), for a parameter s ≥ 4. (In

Section 3 we will require s roughly (log n)1/ ddim(S).) For
each i = 0, . . . , L, fix Hi ⊆ S to be an si-net of S, called
the i-level net, or the si-scale net. Using a simple greedy
construction, we may assume that Hi ⊆ Hi−1. Notice that
the bottom level i = 0 contains all points, and the top level
i = L contains only a single point.

Spanning trees, tours, and patching. It is well-known
that the optimal tour on a set S′ is approximated within
factor 2 by the minimum spanning tree on S′.

Lemma 1.6. Let S′ ⊆ S. Then w(MST(S′)) ≤ w(OPT(S′)) ≤
2w(MST(S′)).

The following lemma, due to Talwar [Tal04] (see also [Smi10]),
uses the doubling dimension to bound w(MST(S)).

Lemma 1.7. Let S′ ⊆ S. Then w(MST(S′)) ≤ 4|S′|1−1/ddim(S)·
diam(S′).

The following lemma, due to [Aro98, Tal04], is known
as the Patching Lemma for doubling spaces. We say that
a transition (x, y) in a tour T crosses a cluster C ⊆ S if
exactly one of x, y belongs to C. The point (among x, y)
that belongs to C is called a cross-point.

Lemma 1.8 (Patching Lemma). Let T be a tour that
crosses a cluster C r times. Then the number of crossings
can be reduced to two, at an additional cost of at most 4 times
the minimum spanning tree of T ’s cross-points (denoted Ĉ).
That is, there is a tour T ′ that crosses C at most twice and
(plugging in Lemma 1.7)

w(T ′) ≤ w(T )+4w(MST(Ĉ)) ≤ w(T )+16r
1− 1

ddim(S) diam(C).



We also present the following lemma, which is a version
of the Patching Lemma tailored to our specific needs.

Lemma 1.9. Let T be a tour of S, and C ⊂ S be a cluster.
Consider the tour segments Ti i = 1, . . . , k that result from
removing from T edges not found in the full graph on C, and
let Ĉ be the cross-points of C. Then there exists a closed tour
T ′ on C which contains only edges in Ti and MST(Ĉ) and

w(T ′) ≤ 4w(MST(Ĉ)) +

k∑
i=1

w(Ti)

≤ 16r
1− 1

ddim(S) diam(C) +

k∑
i=1

w(Ti).

Let C ⊂ S, and let Ĉ be the cross-points of C. We say
that a tour T exits C if it transitions from a point of C to
a point of Ĉ (the exit point) and then to a point outside
the cluster. Similarly, we say that a tour T enters C if the
tour transitions from a cross-point in Ĉ (the entry point) to
another point of C, after having immediately arrived at the
cross-point from a point outside C.

Lemma 1.10. Let C1, . . . , Ci ⊂ S be a set of disjoint clus-
ters of S. Given any tour T , there exists a tour T ′ which
is a subset of the transitions of T , such that T ′ enters and
exits each cluster at most twice at each cross-point.

Proof. The proof is an easy application of Lemma 1.4.
For each cluster C, represent each crosspoint x as two points
x1 and x2 with infinitesimally small distance between them.
Let edges connecting x to points outside C be incident on
x1, and edges connecting x to points of C be incident on x2.
Then edge e = (x1, x2) is traversed at most twice.

Net-Respecting Tours. A tour is said to be net respect-
ing (NR) if every transition in it, say of length ℓ, has both
of its endpoints belonging to every net Hi with si ≤ εℓ.
(This definition is with respect to a given hierarchy {Hi}
and ε > 0.) Since H is a hierarchy, it actually suffices for
the endpoints to belong to Hi for the maximum i such that
si ≤ εℓ.) We denote by OPTNR(S′) an optimal (minimum
length) net-respecting tour that visits all points of S′ ⊆ S.

Lemma 1.11. Every tour T can be converted to a net-
respecting tour T ′ such that w(T ′) ≤ (1 + 6ε)w(T ) and T ′

visits all points visited by T .

Proof. Simply replace a transition (x, y) with (x′, y′),
where x′, y′ are the i-net points covering x, y respectively
(where level i is the highest level such that si ≤ ε

2
d(x, y)),

and connect x to x′ (and similarly y to y′) via a sequence of
net points (from levels j = i−1, i−2, . . .) covering x. Clearly
d(x′, y′) ≤ (1 + ε)d(x, y), and the path from x to x′ (or y to
y′) has length at most

∑
j≤i s

j ≤ 2si ≤ 2εd(x, y).

1.5 Local behavior of optimal tour
We next show that the weight of the optimal (net-respecting)

tour inside some neighborhood can be approximated using
a minimum spanning tree of points in that neighborhood.

Lemma 1.12. Let OPTNR(S) be an optimal net-respecting
tour visiting all points in S. Then for all u ∈ S and any ra-
dius R,

(i). w(OPTNR(S)∩B∗(u,R)) ≤ 6(1+6ε)·w(MST(B(u,R))).

(ii). w(MST(B(u,R))) ≤ w(OPTNR(S) ∩B∗(u, 4R))

+ (s/ε)2 ddim(S)R.

Proof of Lemma 1.12. Assume by contradiction that
(i) does not hold. Applying the Patching Lemma to the
tour OPTNR(S) with respect to the cluster B(u,R), we get
a modified tour which visits all of S and crosses that clus-
ter at most twice, while increasing the tour’s length by at
most 4MST(B(u,R)). Now replace the portion of this tour
between these unique cross-points with a tour that is de-
rived from an MST of B(u,R) (Lemma 1.7), and thus adds
total length of at most 2w(MST(B(u,R))). Convert the re-
sulting tour to be net-respecting (Lemma 1.11); this step
clearly affects only the newly-added edges. This entire pro-
cess first removes from the tour a total length of at least
w(OPTNR(S) ∩ B∗(u,R)), then adds a total length of at
most 6(1 + 6ε) · w(MST(B(u,R))). But since (i) does not
hold, it means the overall tour length has strictly decreased,
which contradicts the optimality of OPTNR(S).

To prove part (ii), consider a tour OPTNR(S). It can be
partitioned into subtours T1, T2, T3, . . ., where Tk for odd k
contains only points in B(u,R) and is maximal with respect
to containment. Thus, Tk for even k has its endpoints in-
side B(u,R), overlapping Tk−1 and Tk+1, and the remaining
points in Tk−1 and Tk+1 are outside B(u,R). By definition,
w(OPTNR(S)) =

∑
k w(Tk).

We will now construct a connected graph that spansB(u,R),
and use a charging argument to bound its weight. First,
take T1, T3, T5, . . .; we can pay for them using their own
contribution to OPTNR(S) ∩ B∗(u, 4R). Now consider any
T2k. If this T2k visits only points inside B(u, 4R), then
again take T2k itself, paying for it using its own contribu-
tion to OPTNR(S) ∩ B∗(u, 4R). Otherwise, we know that
T2k crosses the ball B(u, 4R), and obviously this happens
(at least) twice. If one of the two corresponding cross-points
is inside B(u, 4R) \ B(u, 3R), then this T2k contributes to
OPTNR(S) ∩ B∗(u, 4R) at least 2R, which suffices to pay
for connecting T2k−1 and T2k+1 with a direct edge.

The final case is when T2k crosses the ball B(u, 4R), obvi-
ously (at least) twice, and in both crossings the cross-point
is inside B(u, 3R), implying that this transition has length
at least R. Let i be the largest value for which si ≤ εR.
By the net-respecting property, the cross-point must belong
to an si-net. Although we may have many such subtours
T2k, the number of distinct si-net points inside B(u, 3R) is

at most ( 3R
εR/s

)ddim(S) ≤ 1
2
(s/ε)2 ddim(S), and we then con-

nect all these net points to an arbitrary point, say in T1,
at a cost of at most (s/ε)2 ddim(S) · R. We also take the
portion of T2k that goes until these cross-points (which are
also the said net-points), paying for this portion using T2k’s
own contribution to OPTNR(S) ∩ B∗(u, 4R). Overall, the
edges that we take are easily seen to form a connected sub-
graph that spans all vertices of B(u,R) and has total weight

at most w(OPTNR(S) ∩B∗(u, 4R)) + (s/ε)2 ddim(S)R; thus,
the weight of the MST on these points cannot be larger.

2. TSP VIA HIERARCHICAL CLUSTERING
(ARORA AND TALWAR)

As an exposition to our PTAS, we review a variant of the
algorithm of Talwar [Tal04] (and in turn Arora [Aro98]),
which uses hierarchical clustering to compute a (1 + ε)-



approximate tour in quasi-polynomial time. Recall that we
may assume (by arguments found in [Aro98, Section 2.1.1])
that the instance of TSP is a set S with minimum interpoint
distance 1 and diameter O(n/ε) = O(n2). The construction
uses a hierarchy of nets as described above. We first in-
troduce the single-scale partition invoked by the algorithm.
This partition follows the same framework used in [Bar96,
Bar98, FRT03, GKL03, ABN11], and is slightly different
from the one that appeared in [Tal04] in that it uses the
exponential distribution.

Single-scale probabilistic partition. Fix a set S′ ⊆ S to
be partitioned. Fix a level i, and impose an arbitrary order-
ing π on the points of the si-net Hi ⊆ S. The clusters are
formed one by one following the ordering π. Each point of
Hi constitutes a cluster center. With each net-point u ∈ Hi

we associate a random radius hu ∈ [si, 2si] from an expo-
nential distribution.5 The ball B(u, hu) constitutes a new
cluster of S′, which is removed and then the process con-
tinues to form the rest of the clusters. The boundary of u’s
cluster (i.e. edges that cross the cluster) is determined only
by the ordering imposed by π, and by the balls associated
with cluster centers at distance at most 4si from u. By the
packing property, there are at most 24 ddim(S) such cluster
centers. The next claim follows from [ABN11].

Claim 2.1. For every u, v ∈ S′ ⊆ S, the probability that
the single-scale probabilistic partition assigns u and v to dif-

ferent clusters (they are cut) is at most c′ ddim(S)d(u,v)

si
for

some absolute constant c′ > 0.

Hierarchical clustering. To create the clustering, we first
choose a single-scale partition for the top level L. As de-
scribed above, each net point chooses a radius in the range
[sL, 2sL], and then every point in S is assigned to the earliest
ball that covers it. For the next hierarchical level L− 1, we
take each L-level cluster separately, and build for its points a
new partition with random radius in the range [sL−1, 2sL−1].
(We may assume for simplicity that the partition employed
inside each L-level cluster is the same, i.e. it uses the same
ordering and random radii, although the analysis does not
require this assumption.) The construction continues recur-
sively until level 0, the bottom level. Note that by the pack-
ing property (Lemma 1.5), each cluster has at most s2 ddim(S)

child clusters.
The probability that u and v are cut at level i (found

in different i-level clusters) is bounded by the sum of the
probabilities that they are cut in any level i or higher, that

is
∑L

j=i
c′ ddim(S)d(u,v)

sj
= O

(
ddim(S)d(u,v)

si

)
.

TSP algorithm and analysis. The dynamic program-
ming TSP algorithm functions on the hierarchical clustering
above. A tour is (m, r)-light with respect to the hierarchical
partition if it crosses each i-level cluster at most r times, and

only at si

M
-net points, the cluster portals, where m is an up-

per bound on the number of portals. We choose s ≥ 4, and
let M be the smallest power of s that is greater or equal to
ddim(S) logn

ε
, so m ≤ M2 ddim(S) ≤

(
s ddim(S) logn

ε

)2 ddim(S)

.

An optimal (m, r)-light tour for the hierarchical cluster-
ing can be computed by dynamic programming as follows:
5The density function of the distribution can take the form:

28 ddim(S)

1−2−8 ddim(S) · 8 ln 2 ddim(S)

si
· 2−

8 ddim(S)

si
r
, where r ∈ [si, 2si],

and 0 for all other values of r (see [ABN11]).

Consider a cluster C. Any valid (m, r)-light tour crosses C
at most r times and only at portals, so it consists of r paths
starting and ending at portals. A configuration is a multiset
of r or fewer portals partitioned into pairs (each represent-
ing an entry/exit pair). A single portal may appear more
than once in the configuration if the tour crosses it multiple
times, but each instance counts towards r. A cluster has m
portals, so there are no more than mr possible configura-
tions. Now, if optimal (m, r)-light tours have been induc-

tively computed for the (at most) s2 ddim(S) children of C un-
der the hierarchical clustering, the optimal (m, r)-light tour
for C can be computed by a brute-force algorithm: Since the
(m, r)-light tour of each child cluster enters and exits via a
portal, we can “stitch” together the child tours through the
child portals. For each fixed configuration of C (at most
mr possible configurations), we consider all possible child

configurations (at most ms2 ddim(S)r). Having fixed a config-

uration for every child cluster, we have at most s2 ddim(S)r
candidate child portals where the tour may cross. Since each
child portal may be connected to one of at most s2 ddim(S)r
other candidate child portals, all possible graphs connect-
ing these portals can be enumerated in time bounded by(
s2 ddim(S)r

)s2 ddim(S)r

≤ rs
4 ddim(S)r. Then we consider all

graphs that support a tour connecting all child portals to
portals of C; we choose the graph with the least cost tour.

The total runtime is (mr)s
O(ddim(S))r.

Crucially, it follows from [Tal04] that with constant prob-
ability, the hierarchical clustering for S admits an (m, r)-
light tour with weight at most (1 + ε)OPT(S), for s = 4,

and m, r
def
=

(
ddim(S) logs n

ε

)2 ddim(S)

. The proof proceeds as

in [Aro98], by showing that an optimal tour can be slightly
modified to observe this property. The cost of modifying the
tour is charged to the tour’s edges, and the analysis shows
that the cost charged to each edge is small. Briefly, the prob-
ability that an edge e = (u, v) is cut by the i-level partition is

bounded by c′d(u,v) ddim(S)

si
. We then move this edge to be in-

cident on a si

M
-net point, at an additive cost (increase in tour

length) of 2si

M
. Hence, the expected cost of moving e due to

a cut at level i is c′d(u,v) ddim(S)

si
· 2si

M
= O

(
εd(u,v)
logs n

)
, and the

expected cost of moving e due to a cut in any of O (logs n)
levels is O(ε · d(u, v)). Now, if the optimal tour crosses
an i-level cluster some ro ≥ r times, the tour is patched
via the minimum spanning tree on the cross points (via
Lemma 1.8). The cost is charged to the edges participating

in the patching, at a per edge cost of O
(

sir
1−1/ddim(S)
o

ro

)
=

O
(

siε
ddim(S) logs n

)
. But an edge participates in a patching

only if it is cut, which happens with the above probability,
hence the expected charged cost to e due to patchings at one

level is O
(

d(u,v) ddim(S)

si
· siε
ddim(S) logs n

)
= O

(
ε·d(u,v)
logs n

)
, and

due to patchings at all levels is O(ε · d(u, v)). The values
for m and r imply that the algorithm above runs in quasi-
polynomial time.

3. OBTAINING A PTAS
In this section, we prove Theorem 1.3, the central contri-

bution of this paper.
Our algorithm for TSP again mimics the one employed by



Arora [Aro98]. His algorithm requires a hierarchical parti-
tion, yet we cannot directly employ the partition of Section
2. That clustering essentially decides the cluster assignment
for each level separately, and hence it cannot successfully
invoke the analysis of [Aro98] to bound the expected cost
of patchings per level. More precisely, the event that edge
e is cut by an i-level single-scale partition, and by no other

single-scale partition, is still Θ
(

ddim(S)

si

)
. Hence, the ex-

pected cost of participating in an i-level patching is mostly
independent of the expected cost of participating in a j-level
patching for all i ̸= j, and so a term of L = O(logs n) must
appear in r. This is precisely the reason why the analysis
presented by Talwar [Tal04] does not achieve a PTAS for
metric TSP.
Instead, we will employ a modified version of the above

partition, and analyze its performance on net-respecting tours.
We will show that if a tour obeys some edge-sparsity prop-
erty, then it admits an (m, r)-light tour on a hierarchy very
similar to the one above. Crucially, the edge-sparsity prop-
erty allows us to achieve r = O((logn)c) for a small constant
c < 1, which implies a polynomial runtime. (Although we
fix the value of c in the analysis, it can in fact be taken as an
arbitrarily small constant.) This partition can be found by
a “brute-force” version of the above dynamic programming
algorithm. We then show that if the tour has an edge-dense
area, then the point set S can be broken into two pieces,
and TSP solved separately on each.
While a regular optimal tour need cross a point only twice,

in an optimal net-respecting tour a net-point may have many
edges incident upon it. Because of this, we will slightly mod-
ify the term (m, r)-light to mean that tour exits or enters
the cluster at most r times at the portals, although there
may be many crossings incident on a portal. Recall from
Lemma 1.10 that we may assume that a tour enters or exits
the internal cluster points at most twice via a single portal.

3.1 An algorithm for sparse tours
A tour T is said to be q-sparse with respect to a net-

respecting hierarchy H1, . . . , HL if for all i ∈ [L] and u ∈
Hi, the edges of T inside the ball B(u, 3si) have weight
w(T ∩B∗(u, 3si)) ≤ qsi. The last inequality will be referred
to as q-sparsity of that ball.
Suppose that an oracle had informed us that S admits

a net-respecting tour that is a (1 + ε)-approximation to
OPT(S) and is q-sparse. (An oracle with a similar capa-

bility is presented in Section 3.2, for q = (s/ε)O(ddim(S)) ·
2O(ddim2(S)). Nevertheless, the following lemmas are stated
for general q.) Then we can prove the following lemma.

Lemma 3.1. Suppose S admits a net-respecting q-sparse
tour T . Then there exists a hierarchical clustering for S
which admits an (m, r)-light tour T ′ with w(T ′) ≤ (1 +

ε)w(T ) for m := (sddim(S)/ε · logs n)
2 ddim(S) and r = r(q) :=

10·24 ddim(S)q logs logn+(2c′ ddim(S)/ε)
ddim(S)

+(s/ε)2 ddim(S).

We remark that the tour T ′ need not be net-respecting.

Proof. Fix T . The hierarchical clustering closely follows
the description from Section 2, with the only difference be-
ing that the cluster radii are chosen a little more carefully.
Consider a net-point u ∈ Hj . Because of the q-sparsity of
the ball B(u, 3sj), the weight of edges in T that have length
at most sj and at least one endpoint inside B(u, 2sj) is at

most qsj . Recall that we wish to assign u a random ra-
dius hu ∈ [sj , 2sj ]. Let V be the set of values which cut
fewer than 10q ddim(S) edges of T of length at most sj . A
simple averaging calculation shows that at least a fraction
1− 1

10 ddim(S)
of radii in [sj , 2sj ] belong to V (fraction here

means with respect to uniform distribution). We choose
hu randomly from an exponential distribution on [sj , 2sj ]
[ABN11], and resample until finding a hu ∈ V . Note that the
exponential distribution implies that the probability that a
sampled radius belongs to V is at least 1/2 (this can be
easily seen by considering the “worst-case” scenario where
V ⊆ [(1 + 1

10 ddim(S)
)sj , 2sj ]). Then the clustering is done

exactly as before (iterating over centers etc.), but clearly the
actual number of edges cut can only be smaller (because of
other balls cut earlier in the same level or at a higher level).
Note that knowledge of T was necessary only to determine
which radii are valid choices for hu.

We now analyze the expected cost of converting the tour T
to be (m, r)-light with respect to this hierarchical clustering.
We first consider the cost of forcing the tour to cross every
cluster only through its m cluster portals. The probability
that an edge e = (u, v) ∈ T is cut by the i-level partition is

bounded by 2c′d(u,v) ddim(S)

si
(the probability that the edge

is cut conditioned on choosing a valid radius). We then

move this edge to be incident on a si

M
-net point, where M

is the smallest power of s at least ddim(S) logs n

ε
. The cost of

this modification is ≤ 2si

M
. So the expected cost of moving

e due to a cut in level i is at most 2c′d(u,v) ddim(S)

si
· 2si

M
≤

O
(

εd(u,v)
logs n

)
, and the expected cost of moving e due to cuts in

all L = O (logs n) levels is O(εd(u, v)). The number of por-

tals is at mostm :=
(

12si

si/M

)ddim(S)

≤
(

12s ddim(S) logs n

ε

)ddim(S)

by the packing property (Lemma 1.5).
We turn to the analysis of reducing the number of entrance

and exit points to r via patching. Consider some i-level
cluster C. We define an edge to be long with respect to
level i if its length is at least si, and otherwise we consider
it short. We break the analysis into two parts, and bound the
number of crossings due to long and short edges separately.
It turns out that long edges don’t figure into the patchings.

We analyze short edges first. Recall that in the con-
struction of the clustering, each j-level ball cuts at most
10q ddim(S) edges of length at most sj . Further, edges cross-
ing our cluster C could have actually been cut by any of at
most 23 ddim(S) neighboring balls at any level j ≥ i (because

there are at most 23 ddim(S) j-level balls within distance 4sj

from C’s center). Therefore the number of short edges of
length at most si crossed by C due to j-level ball cuts (for

any j ≥ i) is at most 23 ddim(S) ddim(S)q. Set r′ = r′(q) :=

max{20 · 23 ddim(S)q ddim(S) logs logn,
(

2c′ ddim(S)
ε

)ddim(S)

}
and consider the case where C cuts more than r′ short edges.
Then at least r′/2 of the short edges crossing C must have
been cut by balls in levels j′ ≥ i + 2 logs logn, and we can
charge a patching at level i only to these short edges. We
then see that a short edge cut by a j′-level ball is only
charged for patchings that occur in levels i ≤ j′ − logs logn.

Now, if more than r′ short edges cross C, the tour is
patched via the minimum spanning tree (à la Lemma 1.8),

at a per edge cost of O
(

sir′1−1/ddim(S)

r′/2

)
= O

(
siε

ddim(S)

)
.



Recall though that the edges charged for this patching are
edges cut by balls at levels i+logs logn or higher. It follows
that the expected cost to edge (u, v) due to a patching at

level i is O
(

d(u,v) ddim(S)

si+logs log n · siε
ddim(S)

)
= O

(
εd(u,v)
logn

)
, and due

to patchings at all levels is O(εd(u, v)). This concludes the
analysis for the short edges.
We will now argue that the number of long edges entering

and exiting C is bounded by (s/ε)ddim(S), and this com-
pletes the proof of the lemma. Since the tour T is net-
respecting, each long edge enters C at an sℓ-net point such
that εsi−1 ≤ sℓ ≤ εsi. Therefore the long edges enter or exit
C at one of (8s/ε)ddim(S) candidate portals, and by Lemma

1.10 there are at most 2(8s/ε)ddim(S) ≤ (s/ε)2 ddim(S) long
edges entering or exiting C. Therefore the total number of
entry and exit portals is at most r := r′+(s/ε)2 ddim(S), and
so the long edges do not figure into the patchings.

Let s = (log n)1/(c
′′ ddim(S)) for some constant c′′ ≥ 32.

We can now provide an efficient algorithm to find a tour as
promised in the last lemma.

Lemma 3.2. If S admits a net-respecting q-sparse tour T ,
then there exists a randomized algorithm that, with constant
probability, finds a tour T ′ with w(T ′) ≤ (1+ε)w(T ) in time

nO(24 ddim(S)) · 2O(q log q(ddim(S)/ε)4 ddim(S) 4√logn).

Proof. If we could compute a hierarchical clustering that
satisfies Lemma 3.1, then the standard dynamic program
from Section 2 would give a tour for S satisfying Lemma
3.2. However, we cannot compute this hierarchical cluster-
ing, since we do not have access to T and cannot know which
radii are valid choices for hu. Instead, we present a dynamic
program that guesses the proper value of hu. Since only
a fraction of 1

10 ddim(S)
of the candidate values for hu are

invalid, recall that the exponential distribution of [ABN11]
implies that a random guess for the value of hu is a valid
value with probability at least 1/2. Hence, O(logn) inde-
pendent random choices ensure that at least one choice for
hu is valid with probability 1− 1

n2 , which by a union bound
implies that with constant probability, for each net-point at
least one of the O(log n) choices is valid.
The dynamic program guesses a radius for each net-point

(i.e., it tries all the O(logn) random choices made above)
and builds the tour in a bottom-up fashion, from level 1 to

level L. Recall that s = (log n)1/c
′′ ddim(S). It follows that

the number of levels in the hierarchy is L = O(logs n) =

O
(

ddim(S) logn
log logn

)
. Suppose by induction that the dynamic

program for computing a tour at level i − 1 has been com-
pleted. We show how to compute level i.
Consider some i-level cluster C centered at u ∈ Hi. C

is formed by cuts from neighboring balls in levels above i,
and we wish to enumerate all possible formations of C: Re-
call that we make O(logn) random choices for hu ∈ [si, 2si].

Further, since u is within distance 4si of 23 ddim(S) other
si-net points whose radii may cut C, and we guess O(logn)
radii for each of these net-point, C may be cut in

(O(logn))2
3 ddim(S)

different ways in this level. Since C may
be cut from above in all L− i levels, it follows that the num-
ber of possible formations for C is bounded by

(O(logn))2
3 ddim(S)L = nO(24 ddim(S)). For each fixed for-

mation, we must calculate the minimum (m, r)-light tour
for each possible choice of r exit portals of C (mr possibili-

ties). C has at most s2 ddim(S) child clusters, and so there are

(O(log n))2
3 ddim(S)s2 ddim(S)

possible child formations. (Note
that since the radii of higher level balls has already been
fixed, we need not consider all ways that these higher level
balls can cut into C’s children.). For each fixed child for-
mation, we consider each portal configuration for the set of

children ((mr)s
2 ddim(S)

possibilities). We then compute the
cost of connecting the child portals to the r exit portals of C:
This can be done by enumerating all graphs with one edge

on each vertex, in at most
(
rs2 ddim(S)

)rs2 ddim(S)

different

ways. We can bound each of the expressions above by:

O(mr logn)rs
2 ddim(S)

= 2O(q log q(ddim(S)/ε)4 ddim(S)s4 ddim(S)(log logn)2)

= 2O(q log q(ddim(S)/ε)4 ddim(S)) 4√logn).

Lemma 3.2 follows.

3.2 Eliminating dense areas
Lemmas 3.1 and 3.2 show that sparse tours admit efficient

hierarchical decompositions and algorithms. Here, we con-
sider tours that have dense neighborhoods, and show that
the point set can be divided into areas with all light tours.
We then solve TSP on each subset, and join the resulting
subtours into a single tour.

Set q := (s/ε)O(ddim(S)) · 2O(ddim2(S)).

Lemma 3.3. There is a (randomized) polynomial-time al-
gorithm that given a set S (with |S| > 1), computes two sub-
sets S1 ⊂ S and S2 ( S with S1 ∪ S2 = S and S1 ∩ S2 ̸= ∅,
such that

(a). OPTNR(S1) is q′-sparse, for q′ = O(q 8
√
log n) ; and

(b). w(OPTNR(S1))+w(OPTNR(S2)) ≤ w(OPTNR(S))+
εw(OPTNR(S1)).

Proof. The algorithm begins by locating the lowest level
i for which there exists u ∈ S such that w(MST(B(u, 3si)) >
2qsi, and setting v to be such that w(MST(B(v, 3si))) is
maximized. If no such i exists, then we conclude by Lemma
1.12(i) that OPTNR(S) is 13q-sparse, and our lemma is triv-
ial: Set S1 = S and S2 includes an arbitrary single point.
Assume then that i exists, and further that v has been
found. Let q∗ := w(MST(B(v, 3si))/(2si), and it follows
that q∗ > q.

Fix a tour T = OPTNR(S). Ideally, we would now like
to choose some radius h, partition S into two point sets
S̃1 = B(v, h) and S̃2 = S \ S̃1, and then show tours for
the two sets, whose combined weight is only slightly greater
than that of T . Let S̃∗

i denote the edges of the complete
graph on the points of S̃i (for i = 1, 2); then we could bound

the weight of the subtours by showing that Ti = S̃∗
i ∩T (for

i = 1, 2) can each be made into a closed tour by adding only a
light-weight collection of edges to “patch” the edges of T cut
by the partition (as in Lemma 1.9). However, this plan may
be costly because a radius h ball can cut many edges of T
which then need to be patched. Moreover, in order to ensure
that the subtours are net-respecting, we need to augment the
sets S̃i with appropriate (nearby) net points. To solve this

problem, we will show how to create sets S1 ⊃ S̃1 (which

contains copies of some points of S̃2) and S2 ⊃ S̃2 (which

contains copies of some points of S̃1) for which the lemma
holds.



Below, we will choose (deterministically) a value
h ∈ [12si, 13si]. Assume that h has been chosen, and let

us focus on the long edges of T crossing S̃1, those of length
more than δsi for δ = O(ε/210 ddim(S)). Since T is net-

respecting, these edges must cross S̃1 at ℓ-level net points,
where ℓ is the maximum value such that sℓ ≤ εδsi. We will
patch T1 with respect to these long edges via the minimum
spanning tree of the ℓ-level net points covering S̃1. There
are (s/εδ)4 ddim(S) such net points, and their net-respecting

MST has weight at most (1 + 6ε)(s/εδ)4 ddim(S)si < εqsi

(see Lemma 1.11), which bounds, up to a constant factor,

the cost of patching the long edges crossing S̃1.
Turning to the shorter edges of T (of length at most δsi)

crossing S̃1, we show how to patch T1 with respect to these
edges. Now, these edges cross into S̃1 from a set of points
V ⊂ S̃2 within distance h + δsi of v. Since we have shown
how to patch the long edges of T1 crossing ℓ-level net points,
the short edges of T1 crossing V will be patched by con-
necting them to ℓ′-level net points (though not necessarily
directly, see below), where ℓ′ is the largest value such that

sℓ
′
≤ δsi. To this end, add to S̃1 copies of all ℓ′-level and

lower level net points in S̃2 which cover points in V , and let
the resulting point set be S1. Note that we can now patch
the short edges using the MST of the new points, and then
convert the new edges to be net-respecting.
We now bound the cost of this patching (which also in-

cludes the cost of covering the copies of S̃2 points in S1).
Define the annulus A(v, r1, r2) = B(v, r2) \ B(v, r1). The
patching cost is bounded, up to a constant factor, by the

sum of the minimum spanning trees of all balls of radius sℓ
′

centered at ℓ′-level net points inside the annulus A(v, h −
δsi, h+ δsi). Let N(h) denote the set of all such net points,
and our algorithm chooses the value for h such that the
sum

∑
u∈N(h) w(MST(B(u, 4ℓ′))) is minimum. The number

of ℓ′-level net points inside this annulus is upper bounded
by (2 · 14s/δ)2 ddim(S) ≤ (s/δ)4 ddim(S). By Lemma 1.12(ii)

for each ℓ′-level net point u we have w(MST(B(u, sℓ
′
))) ≤

w(T∩B∗(u, 4sℓ
′
))+(s/ε)2 ddim(S)sℓ

′
. Recalling that sℓ

′
≤ si,

the total cost of the patching for short edges is bounded by∑
u∈N(h)

w(MST(B(u, ℓ′))) ≤
∑

u∈N(h)

[
w(T ∩B∗(u, 4sℓ

′
))
]

+ (s6/ε2δ4)ddim(S)si.

Now, each of the balls B(u, sℓ
′
) intersects at most 25 ddim(S)

other balls centered at ℓ′-level net points. Hence, it follows

easily that
∑

u∈N(h) w(T ∩ B∗(u, 4sℓ
′
)) ≤ 25 ddim(S)w(T ∩

A∗(v, h − 5δsi, h + 5δsi)), where A∗(v, r1, r2) is defined as
all edges with both endpoints inside the annulus A(v, r1, r2).
It remains only to show there exists an h giving a low-

weight annulus, and this will in turn bound the cost of the
patching. By an averaging argument, there is a value for
h for which A∗(v, h − 5δsi, h + 5δsi) contains edges of to-
tal weight O(δ) · w(T ∩ B∗(v, 13si)). (Here, we assumed
that 12si + 5δsi ≤ h ≤ 13si − 5δsi.) By Lemma 1.12(i),
w(B∗(v, 13si) ∩ T ) ≤ 7w(MST(B(v, 13si))). To bound
w(MST(B(v, 13si))), first recall that v was chosen to max-
imize w(MST(B(v, 3si))). Now by repeated application of
the definition of doubling dimension, B(v, 13si) can be cov-

ered by 24 ddim(S) balls of radius 3si (with centers from S),
and so MST(B(v, 13si)) is bounded by the cost of construct-

ing a minimum spanning tree inside each of these small balls
and connecting them together. It follows that

w(MST(B(v, 13si)) ≤ 24 ddim(S)w(MST(B(v, 3si)))

+ 24 ddim(S)26si

≤ 25 ddim(S) · 3q∗si.

Therefore we obtain∑
u∈N(h)

w(T ∩B∗(u, 4sℓ
′
)) ≤ O(δ) · 210 ddim(S)q∗si.

Since δ = O(ε/210 ddim(S)), this last bound is at most εq∗si.

Recalling that q ≥ ε−1(s6/ε2δ4)ddim(S), we can conclude
that the total weight of all patchings (including short and

long edges) is at most O(εqsi)+εq∗si+(s6/ε2δ4)ddim(S)si ≤
O(εq∗si). Since h > 12si, S1 contains the ballB(v, 12si) and
so by Lemma 1.12(ii) w(OPTNR(S1)) ≥ w(MST(B(v, 3si)))−
(s/ε)2 ddim(S)3si = 2q ∗ si − (s/ε)2 ddim(S)3si ≥ q∗si, so we
may conclude that the patching cost isO(ε)·w(OPTNR(S1)).

A similar argument applies to the patchings needed for
S2, by adding to S̃2 all ℓ-level net points of S̃1, as well as all
ℓ′-level net points of S̃1 covering points of S̃2; the resulting
set is S2. This completes the proof of part (b) of the lemma.

We note that by construction S1∩S2 ̸= ∅, and that S2 ̸= S
(as implied by part (b) of the lemma).

We now turn to proving part (a). By the choice of i, for
every j < i and every net-point u ∈ Hj , MST(B(u, 3sj)) ≤
2qsj , and so by Lemma 1.12(i), w(OPTNR(S1)∩B∗(u, 3sj)) ≤
14qsj . By the packing property, for every net point u ∈
Hi, w(OPTNR(S1) ∩ B∗(u, 3si)) ≤ 14(4s)ddim(S)qsi−1 =
O( 16

√
logn) · qsi, which completes the lemma.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Given a point set S, if S con-
tains a single point then we are done. Otherwise, we use the
procedure of Lemma 3.3 to create two instances of TSP, S1 ⊆
S and S2 ⊂ S. S1 admits a q′-sparse and net-respecting tour
OPTNR(S1) as promised by Lemma 3.3. A tour of almost
the same cost (at most 1+ ε factor larger) can be computed
by the algorithm of Lemma 3.2, obtaining a tour T1, where
w(T1) ≤ (1 + ε)w(OPTNR(S1)). The tour for S2 is solved
recursively (that is S is replaced by S2), obtaining a tour
T2. The inequality S1 ∩ S2 ̸= ∅ implies that separate tours
T1 and T2 can be joined together to obtain a complete tour
T at no additional cost.

We now prove inductively that w(T ) ≤
(

1+ε
1−ε

)
·w(OPTNR(S)).

By the induction hypothesis we have that w(T2) ≤
(

1+ε
1−ε

)
·

w(OPTNR(S2)). Lemma 3.3 implies that

w(T1) ≤ (1 + ε)w(OPTNR(S1))

≤
(
1 + ε

1− ε

)
· (w(OPTNR(S))− w(OPTNR(S2))).

Therefore

w(T ) = w(T1) + w(T2)

≤ w(T1) +

(
1 + ε

1− ε

)
· w(OPTNR(S2))

≤
(
1 + ε

1− ε

)
· w(OPTNR(S)),



proving the inductive claim. Finally, by Lemma 1.11 we
have that w(T ) = (1 + O(ε)) · w(OPT(S)). The runtime
follows from executing the algorithm of Lemma 3.2 on the
q′-sparse sets of Lemma 3.3.
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