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Abstract ranging from a moderate number of extremely long strings,
as in computational biology, to a large number of moder-
Edit distance has been extensively studied for the pastately long strings, as in text processing and web search—
several years. Nevertheless, no linear-time algorithm is and therefore algorithms for edit distance that are efficien
known to compute the edit distance between two strings,in terms of time and/or space, even with modest approxi-
or even to approximate it to within a modest factor. Fur- mation guarantees, are highly desirable. We present super-
thermore, for various natural algorithmic problems such efficient algorithms for approximating the edit distancee, f
as low-distortion embeddings into normed spaces, approx-cusing on two powerful notions of efficiency that are appli-
imate nearest-neighbor schemes, and sketching algorjthmscable in dealing with massive data, namely, sketching algo-
known results for the edit distance are rather weak. rithms and linear-time algorithms.
We develop algorithms that solve gap versions of the edit  Edit distance has been extensively studied for the past
distance problem: given two strings of lengthwith the several years. An easy dynamic programming algorithm
promise that their edit distance is either at mbsir greater computes the edit distance in quadratic time [18, 21, 24] and

than/, decide which of the two holds. the algorithm can be made to run in linear space [10]. How-
We present two sketching algorithms for gap versions of ever, the quadratic time algorithm for computing the edit
edit distance. Our first algorithm solves thevs. (kn)?/3 distance was improved by only a logarithmic factor in [19],

gap problem, using a constant size sketch. A more involvedand even developing sub-quadratic time algorithms for ap-
algorithm solves the strongérvs. ¢ gap problem, wheré proximating it within a modest factor has proved to be quite
can be as small a®(k?)—still with a constant sketch—but  challenging, see [11, Section 6] and [13, Section 8.3.2].
works only for strings that are mildly “non-repetitive”. We design very efficient algorithms for thievs. ¢ gap
Finally, we develop am?®/7-approximation quasi-linear  version of the edit distance problem: given twebit in-

time algorithm for edit distance, improving the previous put strings with the promise that the edit distance is either
best factor ofn3/# [5]; if the input strings are assumed at mostk or more than/, decide which of the two cases
to be non-repetitive, then the approximation factor can be holds. Such algorithms immediately yield approximation
strengthened ta!/3. algorithms that are as efficient, with the approximation fac

tor directly correlated with the gap betwekand/. Specif-

ically, we design sketching algorithms and (quasi)-linear
1. Introduction time algorithms for this gap problem. In addition to the in-
herent theoretical interest in these fundamental algoiith
guestions, we believe that our efficient algorithms may find
applications (as building blocks) in a multitude of sceostri
with voluminous data.

A fundamental measure of similarity between strings is
the edit distance(aka Levenshtein distanyewhich is the
minimum number of character insertions, deletions, and
substitutions needed to transform one string to the other.
Edit distance is an important primitive with numerous appli
cations in areas like computational biology and genomics,

text processing, and web search; see, for instance, theshook A Sketching algorithm for edit distance consists of two
by Gusfield [9] and Pevzner [22]. Many of these appli- COmpression procedureand areconstruction procedure

cation areas typically deal with large amounts of data— Which work in concert as follows. The compression pro-
cedures produce a fingerprirgketch from each of the in-
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1.1. Sketching algorithms




sketches are supposed to retain the minimum amount of in-mension, and embed it in a Hamming space of constant di-
formation about the strings that is required to subsequentl mension (a la [17]). The dependenceroim the gap in the
approximate the edit distance. The procedures are allowedirst algorithm is a consequence of the encoding method for
to share random coins, and the main measure of complexitythe position of a substring. In essence, for each substreng w
is the size of the sketches produced. (In actual application produce an independent encoding of its position; while this
it is desirable that the procedures be efficient.) conveniently separates the analysis of different sulgsrin

In contrast to Hamming distance, whose sketching com-the outcome is that we fail to identify many matches, even
plexity is well-understood [17, 8], essentially nothing is in the presence of just one edit operation.
known about sketching of edit distance. In part, this is  We overcome this handicap by resorting to a method in
due to the fact that edit distance does not correspond to avhich the encodings of the substring positions are corre-
normed space. In fact, it is not even known whether the lated. Scanning the input string from left to right, we iter-
edit distance metric space embeds into some normed spacatively locateanchor substrings—identical substrings that
with low distortion [11, 1]. We note that besides being a occur in the two input strings at approximately the same
very basic computational primitive for massive data sets, position. We map each string to the set of substrings corre-
sketching is also related to (i) approximate nearest n@ighb sponding to the regions between successive anchors; the an-
algorithms [14, 17], (ii) protocols that are secure (i.eal chors are used for encoding the substring positions. As be-
no information), cf. [8], and (iii) the simultaneous messag fore, the resulting set of substrings is used to obtain an em-
communication model with public coins [25]. bedding in a Hamming space of constant dimension. Ran-
Results. Our first sketching algorithm solves the vs. dom permutations of_sma_lll size are_gsed t(_) ensure that an-
O((kn)?/) gap problem, for any < \/n. This algorithm chors are fjetected with h|g_h probapmty. This places f?\-tech
is ultra-efficient in terms of sketch size—itdsnstant This nical requirement that the input strings cannot have ident
algorithm is extremely appealing in applications where one €@l Substrings within the window where we might be look-
expects most pairs of strings to be either quite similar or INg for anchors, implying that the algorithm is applicatwe t
very dissimilar, e.g., duplicate elimination or a prepme ~ NON-repetitive strings only.
ing filter in text corpora or in computational biology. o ) ]

Our second sketching algorithm can distinguish a 1.2. Quasi-linear time algorithms
smaller gap and still produces a constant-sized sketch, but
it is guaranteed to work only if the input strings are “non-  As a first step towards the important goal of approxi-
repetitive”. Specifically, for any < \/n andt > 1, if each mating edit distance to within a constant factor (in near-
of the lengthit substrings of the inputs strings does not con- linear time), we propose to focus on the best approximation
tain identical lengtht substrings, then the algorithm solves achievable by linear time algorithms. We say that an algo-
the k vs. O(k2t) gap problem. We note that the study of fithm provides gp-approximation if it produces a number
algorithms for non-repetitive strings is quite standartl (c thatis at least the edit distance but no more théimes the
[23, 5]) and has often led to comparable algorithms that edit distance. Throughout, our time bounds refer to a RAM
work for arbitrary strings. Furthermore, input instancess f ~ model with word size)(log n).
the Ulam metric which is equivalent to the edit distance on Results. We design a linear time algorithm that achieve
strings that consist of distinct characters (e.g., pertiana approximationp = n%/7, which improves tp = n'/? if
of {1,...,n}), are non-repetitive with = 1. the two strings are non-repetitive. The best approximation

Section 2 describes the efficient compression and re-factor that could be achieved in quasi-linear time with pre-
construction procedures used in these two sketching algovious techniques is3/#, by a straightforward application of
rithms. an algorithm by Cole and Hariharan [5] (see below). These

Techniques. The overall structure of the first sketching al- results are described in Section 3.

gorithm is an embedding of the original edit distance space Techniques. We present a very general framework for
into a Hamming space of low dimension. This embedding, taking an approximation for the edit pattern matching and
which may be of independent interest, is achieved in two boosting it to astrongerapproximation for edit distance.
steps. First, we map each string to the multi-set of all its Here,edit pattern matchings the problem of finding all ap-
(overlapping) substrings. Each substring is annotated wit proximate matches of a pattern of sizein a text of size

a careful “encoding” of its position inside the input string n, where an approximate match of the pattern is a sub-
The encoding is insensitive to small “shifts”, and is thus string of the text whose edit distance to the pattern is at
useful in identifying substrings that are matched by an-opti mostk. We demonstrate three instances of this paradigm.
mal alignment of the two strings. In the second step, we takeFirst, a simple instantiation of this framework already-pro
the characteristic vector of the resulting set of subssing vides an algorithm that solves thevs. k2 gap problem.
which lies in a Hamming space of an exponentially high di- This implies a,/n-approximation algorithm for edit dis-



tance, while the approximation provided directly by theedi nearest-neighbor algorithm for edit distance where tha dat
pattern matching primitive that we rely on is only Using a structure size is strongly sub-exponentiahiand the query
non-trivial edit pattern matching algorithm of Cole and Har time is asymptotically smaller than the number of database
iharan [5], our framework yields an enhanced algorithm that points.

solves thek vs. k7/4 gap problem, which implies the?/7-

approximation claimed above. Under the assumption that1 4. Preliminaries

the input strings are non-repetitive, the third instardiat

3/2 Wi 1/3 i i
solves thek vs. k*/2 gap, giving am/?-approximation. The goal of this paper is to design efficient algorithms

for the k vs. / gap version of edit distancé.is given as in-
1.3. Related work put parameter to the algorithm. The smaller the difference
betweenk and?¢ = {(n, k) , the better the approximation
To the best of our knowledge, sketching or quasi-linear achievable from these algorithms. To simplify the exposi-
time algorithms for gap versions of edit distance have not tion, we make no attempt to optimize constants.
been explicitly studied before. Yet, some of the previous

work can be easily adapted to give such algorithms. Strings, alignments, and edit distance. We deal with
Batuetal.[4] de2v2elo;1)edgsub-llnear time algorithm that strings over a finite alphabét. For simplicity, most of
runs inO(p*x(2/2:22-1) time and solves the)(n®) vs. oy results are stated for Boolean strings (&2 {0, 1}).
Q(n) editdistance gap problem. Their algorithm can be cast xy denotes the concatenation of two strings x and y. The
as a sketching algorithm. On the one hand, their algorithm gty string is denoted by, For integersi, j, the inter-
applies also forv > 1/2, which our algorithm does nothan- 5 [i .. j] denotes the set of integefs, ..., j} (which is
dle. On the other hand, their algorithm would use a sketch empty ifi > j); [] is a shorthand for the intervél .. i]. Let
whose size is far more than constant; e.g. ifet /n their x € 2" be a string olengthn. Fori € [n], X() is thei-th

sketch size would be about/* compared with ouO(1)  character of x. Let ji .. j] denote thesubstringobtained by
sketch size (for the same gap problem). Furthermore, the'rprojecting x on the positions in the sét. j] N [n]. If this
algorithm cannot solve the’ vs.n!~% gap problem, even  gatis empty, then[x.. j] = e.

for arbitrarily small fixeds > 0, while we accomplish this
foranyd < 1/5. We note that their algorithm runs in sub-  {ion 4 deletion, or a substitution of a character of x. We
linear time, while ours does not. associate with each edit operation a position in the string
The dynamic programming algorithm can solve thes. x: a deletion and a substitution are associated with the po-
k + 1 gap version of edit distance i0(kn) time. Anal-  jtion of the character being deleted or substituted, and an
gorithm of Sahinalp and Vishkin [23] for the edit pattern jnsertion is associated with the position of the charaaer b
matching problem can be used to solve thes. 2k gap  fore which the new character is inserted (if the character
probleminO(n+k*) time. A simpler algorithmof Coleand s inserted after the last character of x, then we associate
Hariharan [5] for edit pattern matching yields @tn +k*)  \ith the insertion the position + 1). An alignmentof two
time algorithm for the same gap problem. This leads to strings Xy € X" is a sequence of edit operations on x that
the a_lforementioneda3/4-approximation algorithm in lin- yransform x into y (we view the operations as operating di-
ear time. In contrast, we have an algorithm that, for any rectly on x and not on the intermediate strings obtained in
k < n*/7, solves thek vs. k7/* gap problem irO(n) time, the transformation). Amptimal alignmenis one that uses
deriving ann?/"-approximation in quasi-linear time. a minimum number of edit operations. Thit distance
Other related work includes a near-linear time determin- petween x and y is the length of their optimal alignment.

istic algorithm of Cormode and Muthukrishnan [6] for a e note the following properties of the edit distance:
variant of edit distance called tlidock edit distancewhere

a block of characters can be moved in a single edit op- L Er}gangle |<n?Eq];1al|ty. fg;)any three strings ., z,
eration. Andoniet al. [1] showed that edit distance can- ,(X_’ y) = (>$7z) + (_Z’ y)-

not be embedded into the Hamming space with distor- 2 SPlitting inequality: for strings x and y of lengths
tion better tharB/2; Cormodeet al. [7, 6] and Muthukr- andm, respectively, and any integetsj, ED(x,y) <
ishnan and Sahinalp [20] showed that the block edit dis- ~ EPX[L-il,y[1..j]) + ED(X[i +-1..n],y[j +1..m]).
tance can be embedded into Hamming space with distortionFor an intervalji .. j], wherel < i < j < n + 1, we say
O(lognlog™ n). Lack of good sketching algorithms for edit that an edit operatiobelongsto the intervalfi .. ], if it is
distance is also reflected in a lack of good nearest-neighborassociated with one of the positions in the interval. Given
algorithms for edit distance, since efficient sketchingnpri an alignment- of x and y, for each intervdl .. j], we de-
tives are at the heart of many approximate nearest-neighbofineins. (i .. j), del-(i .. j), and sub(i .. j) to be the number
algorithms. Recently, Indyk [12] obtained an approximate of insertions, deletions, and substitutions, respegtithht

An edit operationon a string xe X" is either an inser-



belong to the intervali .. j]. We define theshift at [i .. j] pairs of the form(v, ), wherey is a sufficiently long sub-
to be sh(i..j) = ins.(i..j) — del.(i..j); the shift of a  string and: is a special “encoding” of the position at which
positioni € [n + 1] is defined as sii) = sh.(1..4); we the substring begins. The encoding scheme has the property
also define sh(0) = 0. Theinduced alignmenbf 7 on that nearby positions are likely to share the same encoding.
an interval(i .. j] is the subsequence of edit operationsin A pair (v,i) € T, N T, represents substrings of x and of
that belong td .. j]. We denote by ed:..j) the size of  y thatmatch i.e., they are identical (in terms of contents)
the induced alignment. We note the following property of and they occur at nearby positions in x and in y. A pair
induced alignments: (v,1) € (T \ Ty) U (Ty \ T,) represents a substring that

N ) cannot be matched using a small number of edit operations.
Proposition 1.1. For any alignmentr of x andy and for  Thjs gives rise to a natural reduction from the task of esti-
alli <j,ed (i..7) > ED;(X[i..j],y[i +sh-(i —1)..5 + mating edit distance between x and y to that of estimating
sh;(5)])- the Hamming distance between the characteristic vectors u
and v of T, andTy, respectively. (Recall that the Hamming

Definition 1.2 (Non-repetitive strings). A string x € distance between two stringsy e {0, 11" is defined as

{0,1}™ is called (t, £)-non-repetitive if for any interval dof , ,

[i .. j] of sizet, the ¢ substrings of x of length whose left ~ HD(%,Y) = [{i € [n] : (i) # y(i)}|.) The great advan-

endpoints are in this interval are distinct. tage of the Hamming distance is that it can be approximated
using constant-size sketches, as shown by Kushilevitz, Os-

. . , . trovsky and Rabani [17].
The sketching model. A sketching algorithm is best

. : L The realizations of the above idea in the two algorithms
viewed as a two-party public-coin simultaneous messages L . X X
are quite different, mainly due to the implementation of the

C?amggnfﬁéan?bmgfglgrzmtgtgzo".oiml théznr?ou(i:l;ht\r;s_ “position encoding”. The first algorithm works for arbityar
players, ' ' x Y P input strings. In this algorithni’, andT;, consist of all the

argument functioryf : X x Y — Z. Alice is givenx € X . . .
o ; (overlapping) substrings of a suitable lendgth= B(n, k)
and Bob is givery € ). Based on her input and based of x and y, respectively. (Recall thatis the length of the

on randomness that is shared with Bob, Alice prepares & out strinas and: is the 0a arameter.) The position of
“sketch” s 4(x) and sends it to the referee; similarly, Bob P 9 gap p : P

sends a sketchy (y) to the referee. The referee uses the each substring is encoded by rounding the position down

two sketches (and the shared randomness) to compute th% tEe l;] (enar](:)s : f?:ggfogfbaeqﬁepepg p;;ﬁ(;l)yig;o”séinﬂ;;eger
value of 'Fhe functipry‘(g;,y). The main measure of cost of the best c,hoi.ce of parametersfis — ©(n2/3 /k1/3) and
a sketching algorithm is the Iength Of. the sketchagz) D = n/B, which results in an algorithm that can solve the
andsg(y) on the worst-case choice of inputsy. k vs. kB gap edit distance problem

Throughout, we seek algorithms whose error probability . '

is some small constant, say 1/3. As usual, this error can Th.e' secqnd aI_gorlthm, which works .fo'r mlldly' non-
be reduced to any value < § < 1, usingO(log(1/5)) repetitive strings, introduces a more sophisticated tjpwsi
simultaneous repetitions ' encoding” method, based on selecting a set of “anchors”

In many applications, it is desirable that the three players from x and from y in a coordinated way. Anchors are sub-

are efficient (in time, space, etc.) We will say that a sketch- ;trlngs that are unique within a certain window and appear

ing algorithm ist(n)-efficient if the running time of each |n'both x and yin that window. Suppose x an'd y havc_a an
of the three players i©(t(n)), wheren is the size of the alignment that uses only a small number of edit operations.

o : Then, a sufficiently short substring chosen at random from
%?iﬁésrel?eﬁzg for Alice,  for Bob, and(sa (z), s5(y)) any sufficiently long window in x is unlikely to contain any

edit operation, and thus has to be matched with a corre-
] ) o sponding substring in y within the same window. This pair
2. Sketching algorithms for edit distance of substrings form anchors. The key idea is that the coor-
dinated selection of anchors can be done without Alice and
Overview. In this section we describe our two sketching Bob communicating with each other, but rather by using the
algorithms for solving gap edit distance problems. The un- shared random coins. Once this is done, the anchors induce
derlying principle in both algorithms is the same: the two & natural partitioning of x and y into disjoint substrings.
input strings have a small edit distance if and only if they and T, then consist of these substrings, with the position
share many sufficiently long substrings occurring at nearly of each substring being encoded by the number of anchors
the same position in both strings, and hence, the numbeithat precede it. This technique solves much smaller (i.e.
of mismatching substrings provides an estimate of the editStronger) gap edit distance problems, in which the gap is
distance. More formally, both algorithms map the inputs x independent of.
and y into setd, andT,, respectively; these sets consist of A technical obstacle in both algorithms is that the Ham-



ming distance instances to which the problem is reduced(See Section 1.4 for definition.) All the substrings that are

are exponentially long. While this still leads to constamési

not bad are called “good”. By Proposition 1.1, for any good

sketches, the running time needed to produce these sketchesubstringa; there is a “companion” substring = y[(i +
may be prohibitive. We observe that the Hamming distancesh. (i — 1)) .. (i + B — 1 + sh.( + B + 1))] iny, so that
instances produced above are always of Hamming weighta; = ;.

at mostn. We introduce below a sketching method that ap-

Recall that coordinates of u are associated with pairs

proximates the Hamming distance within the same guaran-of the form (v, j), where~ is a bitstring of lengthB and

tees as [17], but runs in time proportional to the Hamming

J is an integer betweet and 5 — 1. Let us upper bound

weight of the strings. This scheme may be of independentthe number of coordinates in which we hava u but0 in

interest. Due to lack of space, the proof is defered to tHe ful
version of the paper.

Lemma 2.1. For anye > 0 andk = k(n), there is an
efficient sketching algorithm that solves thes. (1 + ¢)k
gap Hamming distance problem in binary strings of length
n, with a sketch of siz&(1/£2). If the set of non-zero coor-
dinates of each input string can be computed in tinthen
Alice and Bob run irO(s 3t log n) time.

Note that the running time of Alice and Bob in the KOR
algorithm [17]isO(e~2n).

2.1. Sketching algorithm for arbitrary strings

Theorem 2.2. For any 0 < k < +/n, there exists a
quasi-linear time sketching algorithm that solves thes.
Q((kn)?/3) gap edit distance problem using sketches of siz
O(1).

e

Proof. The algorithm follows the general scheme described
in the overview above. We are thus left to formally describe
how the setsl, and T, are constructed. For simplicity
of exposition, we assume andk are powers oR with an
exponent that is a multiple & We describe now how Al-
ice creates the séf,. Bob’s algorithm is analogous. Let

B = n?/3/(2k'/?) and letD = n/B. For each position

i € [n], letDIV (%) f |7/D| (which is proportional to the

largest multiple ofD that is at most). T, is the set of pairs
(X[i..i+B—1],piv(i))fori=1,...,n— B+ 1.

The Hamming distance sketch of the vectors u and v (re-
call these are the charateristic vectordpfandT’,, respec-
tively) is tuned to determine whetheiD(u,v) < 4kB or
HD(u,v) > 8kB with (large) constant probability of er-
ror. The referee, upon receiving the sketches from Alice and
Bob, decides thdED(x,y) < k if he finds thatHD(u, v) <
4kB. Otherwise, he decides thBD(x,y) > 13(kn)?/5.

The algorithm’s correctness follows immediately from
Lemmas 2.3 and 2.4 below, using the sketching algorithm
for Hamming distance from Lemma 2.1. O

Lemma 2.3. If ED(x,y) < k, thenHD(u,v) < 4kB.

Proof. Fix any alignmentr of x and y of length at most.
Foreachi =1,...,n— B+ 1,leta; = X[i..i + B — 1].
We call a substringy; “bad”, if ed,(i..i + B — 1) > 0.

v. Each such coordinatey, j) corresponds to a uniques
[n — B+ 1] such thaty; = v andpiv (i) = j. Furthermore,
it must be the case that either (d) is a bad substring; or
(2) «; is a good substring, but its companion strifig =
y[i'..i" + B — 1] is such thabiv (i') # j.

It therefore suffices to upper bound the number of po-
sitions 7 in which (1) and (2) are satisfied. Clearly, the
number of bad substrings; is at mostkB, because ev-
ery edit operation is contained in at mdstdifferent sub-
strings. A good substring; can have a companio# with
DIV (i + sh.(i — 1)) # biv () only if 4 belongs to an in-
terval [tD — k..tD + k — 1] “centered” at some multiple
tD of D, because by definitiork < sh, (i — 1) < k (re-
call thatr consists of at most edit operations). Hence,
the total number of such positioriss at most2k - n/D.

A more careful analysis slightly improves this boundkto
per interval. Indeed, suppose (2) happens for two values
11,19 € [tD —k.tD+ k — 1] with i1 < tD < i9 (Oth-
erwise we are done); then + sh.(iy — 1) > ¢D and

io +sh.(i2 — 1) < tD, hence sh(i; — 1) —sh; (i — 1) >

(tD —i1) + (i —tD) = i3 — i1, and since the lefthand side

is clearly at most, the size of the intervdt, .. 1] is upper
bounded by.

We conclude that (2) is satisfied at méstn/D = kB
times, and therefore the number of coordinates in which u
is 1 and v is0 is at most2kB. The number of coordinates
where v is1 and u is0 is bounded similarly, which gives
HD(u,v) < 4kB. O

Lemma 2.4. If ED(x,y) > 13(kn)?/3, thenHD(u,v) >
8kB.

Proof. Assume for contradiction thatD(u,v) < 8kB.
We will show that it impliesED(x,y) < 13(kn)?/3.

Foreachj = 1,...,.n— B+ 1, leta; = x[j..j +
B — 1]. We call a substringy; “good”, if there exists a
“companion” substrings;, = y[j’ ..’ + B — 1] such that
a; = B andbiv(j) = bIv(j’). Otherwiseq; is called
“bad”. If «; is bad, then the coordinate corresponding to
the pair(~;,DIV(j)) has valuel in u and0 in v. Since
HD(u,v) < 8kB, the number of bad strings is less than
8kB.

We use the good substrings to align x and y, by iteratively
extending an alignment of prefixes of x and y. The initial
alignment is trivial since both prefixes are the empty string



Assume now we already aligned the fifst 1 bits of x and
of y, and let us extend the alignment to a longer prefix. If the
substringy; is bad, we simply extend the current alignment
by one bit, paying one edit operation for the substitution
of z(j) with y(j). If a; = X[j..5 + B — 1] is good, we
extend the alignment b bits, using its companion string
Bj» =Yylj"..5' + B — 1] as much as possible. Observe that
we can alignXj..j + B — 1] withy[j..j + B — 1] using
at most2|j — j’| edit operations. Ifi’ > j, we transform
X[j..j+ B —1]intoy[j..j + B — 1]) by inserting before
its beginning the firsj’ — j bits of y{j..j + B — 1] and
deleting from it the lasj’ — j bits. If 5/ < 7, the operations
are analogous. In either case, we pay at rBgst— j| edit
operations. The key point is thatv (5) DIV(j') and
hencelj — j'| < D.

Finally, once we gettg > n — B + 1, i.e., we aligned
more tham — B bits, we just pay: — (j — 1) edit operations
to substitute thes — (j — 1) last characters of x with those
of y.

It remains to bound the total cost of this alignment. Since

we can encounter each bad substring at most once, we pay

a total of at mos8k B edit operations for all the steps in-
volving a bad substring. Similarly, we pay at mdstedit

operations for the final stage. All the remaining operations Har'n.

use good strings. Each such step pays at mbsbpera-
tions each time, but align® bits, and hence there are at
mostn/B such steps. We conclude that

ED(x,y) < 8kB + B +2D - % < 13(kn)2/3. O

2.2. Sketching algorithm for non-repetitive strings

Theorem 2.5. Forany1l < ¢t < n and for anyl < k <
O(+/n/t), there exists a polynomial-time efficient sketch-
ing algorithm that solves the vs.Q(tk?) gap edit distance
problem for(t, tk)-non-repetitive strings using sketches of
sizeO(1).

Proof. Again, the algorithm uses the general framework de-
scribed in the overview. We are left to specify how the
setsT, andT, are constructed. Lety € {0,1}" be two

(t, tk)-non-repetitive input strings (see Section 1.4). Alice
creates the setf, as follows; Bob’s algorithm is similar.

the W substrings of length whose starting position lies in
the intervallc + W..c+2W —1]. Forj =1,..., W, let

sij =X[c+j+W —1..c+j+W +1t—2]bethej-th sub-
string. Using the shared randomness, Alice picks a random
permutatioril; on the spacg0, 1}°(°e™) and sets the an-
chora; to be a substring; , whose fingerprint is minimal
according td1,, i.e.,

i (f(si,0)) = min{IL; (f(si1)), - - - IL(f(siw))}-

She then slides the window by settingo the position im-
mediately following the anchor, i.e:«— c+/4+W —1+t.
If this new value ot is at most: — (2IV +¢), Alice starts a
new iteration. Otherwise, she stops, lettingbe the num-
ber of anchors she collected.

Fori € [r;], let ¢; be the substring starting at the po-
sition immediately after the last character of ancher,
and ending at the last characterqgf For this definition to
make sense for= 1, defineag to be the empty string, and
consider it as if it is located at positidi) henceg; starts
at positionl. Finally, T, is the set of pairg¢;,i) for all
€ [rg)-

Bob constructsT), analogously, by choosing anchors
-, Br, using the same random permutatidhbs The
ming distance sketch for the strings u, v (the incidence
vectors of7’;, T;) is tuned to solve th8k vs. 6k gap Ham-
ming distance problem with probability of error at most
1/12. The referee, upon receiving the two sketches, de-
cides thaED(x,y) < k if he finds thatHD(u, v) < 3k, and
decides thaED(x,y) > Q(tk?) otherwise.

The algorithm’s correctness follows immediately from
Lemmas 2.6 and 2.8 below, using the sketching algorithm
for Hamming distance from Lemma 2.1. O

B1,

Lemma 2.6. If ED(X,y) < k, thenPr[HD(u,v) < 3k] >
5/6.

Proof. Fix any alignment- of x and y that uses at most
edit operations. We will say that two substrinds.x;j] and

y[(@ +sh-(i — 1)) .. (j + sh.(j))] are “perfectly matched”

by the alignment, if ed(i..j) = 0. We slightly abused
notation here by using in this definition not only the “con-
tents” of the two substrings, but also their position iryx

By Proposition 1.1, perfectly matched substrings must be
identical. Note that the probability that any two of the

First, she uses the shared randomness to compute a Karpgarp—Rabin fingerprints computed by Alice and Bob col-

Rabin fingerprint [16] of siz&(logn) for every substring
of x of lengtht. This can be done i®(n) time. We let
f(-) denote the chosen fingerprint function. Let- 0 be a
sufficiently large constant that will be determined later.

lide iso(1). It therefore suffices to assume that there are no
collisions and prove that the statement in the lemma holds
with probability6/7.

Lettingr = min{r,,r,}, we aim to show that with high

, o, Of X, called “anchors”, iteratively as follows.

She maintains a sliding window of lengtht 4f \tk over

her string. Let denote the left endpoint of the sliding win-
dow; initially, c is set tol. At thei-th step, Alice considers

Ay, ..

matched. Foi € r,, letc; be Alice’s value ofc at the end
of iteration, and letcy = 1 be the initial value of. It

follows thata; = X[¢; — t,¢; — 1]. Letd; be similarly for
Bob, hence3; = y[d; —¢,d; — 1].



The key ingredient is the “inductive” step provided by The anchor selection process fails, if at some iteration

the next claim. Foi > 1, let&; be the event that; andj3; i < r, the anchorsy; and 8; do not perfectly match.
do not perfectly match and < r. For consistency, lef, WLOG, leti be the first such iteration. Necessarily; 0,
be the eventyy # By (which is empty by definition). Let  because the anchasg, g, trivially match. Thus, if the pro-
m; = ed.(¢; .. (¢; +2W +t — 2)). cess fails, there is somie> 0 so that the evenf; N &;_;

Claim 2.7. Then for every > 0, p;:ﬁfé i;’gfrrﬁcf)c;e, by the union bound, the probability of
Pr[51+1‘gz’] S 4tmi+1/W

Proof. Fix i > 0. We may assumeé < r, as otherwise Pr{U;>1(&N&i—1)] < ZPr[&,I&_ﬂ < 4t Zml
we're done. Supposg& holds. Ifi > 0, thena; = X[¢;—1 — i>1 w i=1
t..c;—1]andg; = y[d; —t..d; — 1] are perfectly matched,
hence positior; — 1 in x is aligned with positioni; — 1 in
Y, |e,d7 —1=c¢ -1+ ShT(CZ‘ — 1)

Let A be the set of length substrings of x whose first
character is in the intervéllc; + W) .. (¢; +2W —1)]. Sim-
ilarly, let B be the set of lengthsubstrings of y whose first
character is in the interv@ld; + W) .. (d; +2W —1)]. Since
x and y are non-repetitivéA| = |B| = W.

Any position: € [n] is contained in at most two intervals
of the form[(c; + W) .. (¢; + 2W +t — 2)], simply because
every iteration increasesbhy at leastiV + ¢ > %(QW +
t —1). Therefore"._, m; < 2k, implying that the above
probability is at mos8tk /W . Choosing a constatt > 56,
this probability is at most /7.

Let A’ C A be the substrings it that are perfectly Assume then that all the first anchors are perfectly
matched. Let,..., ¢, be the substrings used to create

matched with substrings iB. Similarly, let B’ C be the dl be th bstri d
substrings inB that are perfectly matched with substrings = @nd ey, ..., 4., bethe substrings used to credle It

in A. Since perfectly matched substrings are identidak is easy to verify that for all € [r], since the anchors before
B' C An B. We will upper boundA \ A'|. ¢; andy; perfectly match and also the anchors afteand

First, we argue that at mosi; substrings ind are not ¥ Perfectly maich, the only way fas; # v'; is thatg; con-

perfectly matched at all (i.e., to any substring in y). Indlee ta?ns edit operations. Since t_he substriggsare disjoint,

such substrings must contain an edit operation, and belong[hls can haPpe” for at m_osts_tnngs@, and hence also for

to the interval(c; + W) .. (¢; + 2W +t — 2)] in x, but this at mostk stringsy;, contrlbutlng at moszk to HD_(u, v). It

interval contains onlyn; edit operations, and each opera- €2SY 10 verify that by our definition of, andr, if a, and

tion appears in at mostsubstrings ind. Next, we argue  [r Perfectly match, themax{r;,r,} <7 +1. Thus, the

that at mostn; substrings ind are perfectly matched to a extra substring in x or in y can contribute an additional one

substring in y that is not ir3. Indeed, position;; — 1in  ©©HD(W, V). We conclude thaD(u, v) < 2k+1 < 3k. [J

X is aligned with positioni; — 1 iny (for i = 0 we have

insteadcy = 1 = dy), and since there are at mosf insert

operations in ; .. (¢; + 2W — 1)], only them; substrings ~ Lemma 2.8. If HD(u,v) < 6k, thenED(x,y) < O(tk?).

in A with largest starting point might fall into this category.

Combining the two, we have that \ A’[ < (¢ + 1)m;. Proof. Let ¢y, ..., ., be the substrings Alice used to cre-
Recall that Alice and Bob choose their anchors frdm  gte u and letys,...,¢,, be similarly for v. Letr =

and B, respectively, using a min-wise permutation (of the max{r,,r,}. Fori = r, +1,...,r let ¢; = ¢ be the

fingerprints). Since there are no collisions among the fin- empty string and similarly for =, +1,...,r lety; = e.

gerprints, the minimum among the fingerprints is attained SinceHD(u,v) < 6k, we know that there are at mosk

uniquely. Consider the string iA U B whose fingerprint  values; [r] for which ¢; # ;. For every sucti we have

attains the minimum according to the permutatibnused ED(¢i,1;) < 2W + t, since the length of; and of 1/

by Alice and Bob. Noting thatd| = [B| andA" = B'im- s |ess thar2IV’ + ¢. For the remaining’s, with ¢; = 1,
plies|A\ A'| = |B\ B[, we get that the probability this  clearly ED(¢;,%;) = 0. Recall that the strings; form a
minimum string does not belong W' = B’ is at most partition of x, except possibly for the la8tV + ¢ or less
(A\A)U(B\ B)| _2(A\A'| _ 4tm; characters, and similarly; for y. Therefore, we get as de-
< < . sired
|AU B| |A] w

The claim follows by observing that if the minimum string r

belongs toA’ = B’ C AN B then Alice’s and Bob's an-  ED(X,y) < > ED(¢;,;) < (6k+1)-(2W+t) = O(tk?)
chors are equaly; 1 = (3;4+1, and since the substrings ih i=1

and the substrings iB are distinct, this means that the two

anchors are perfectly matched afid; does not occur. [J by using the Splitting inequality (Section 1.4). O



3. Algorithms for approximating the edit dis-
tance

Overview. In this section, we develop quasi-linear time al-
gorithms for edit distance gap problems. Tédit graph
G is a well-known representation of the edit distance by

means of a directed graph (cf. [9]). In essence, a source-to

sink shortest path i@ ¢ is equivalent to the natural dynamic
programming algorithm. We will define a gragh which
can be viewed as a lossy compressiottzgf—the shortest
path inG provides an approximation to the edit distance.
Each edge inG will correspond to edit distance between
substrings, unlike irGg where each edge corresponds to
at most a single edit operation. The advantagé&/a$ its

structure that allows to speed up the shortest path computa

tion by handling multiple edges simultaneously. The latter

turns out to be essentially an instance of the edit pattern

matching problem.

The graphG is defined as follows. LeB be a pa-

rameter that will determine the size of substrings used in

the algorithm; assume tha dividesn. Each vertex in
G corresponds to a paifi, s) where: = jB, for some

j € [0..n/B] ands € [—k..k]; this vertex is closely
related to the edit distance between the substririgs
and y{1..i + s] (s denotes the amount by which we ex-
tend/diminishy with respect tar). There is a directed edge
e from (¢, s") to (4, s) if and only if either (1)i’ = ¢ and
|s" —s| = 1,0r(2)i =i— Bands = s. The edge
e has an associated weighte) which equals 1 ifi’ = i
and|s’ — s| = 1. For the other case wheh = i — B
ands’ = s, we will allow some flexibility in setting the
value ofw(e). In particular, given an approximation pa-
rametere, thenw(e) can be any value such thate)/c <
ED(X[i" + 1..4,y[' + 1 + s..i + s]) < w(e). We will
deal with the issue of computing such weights during the
development of our algorithms.

For any pathP in G, let the weightw(P) of the pathP
equal the sum of the weights of the edge#inLet T" equal
the weight of the shortest path fro(f,0) to (n,0). The
following two lemmas show that the value’6fcan be used

Proof. Consider an optimal alignment using at mostk
edit operations on x. This implies thgh, (:)| < k for ev-
eryi. We claim that for every, there is a path fronf0, 0)
to (i, sh- (7)) of weight at most2c+ 1) - ed.(1..4). Apply-
ing this claim withi = n, we obtain a path fronf0, 0) to
(n,sh.(n)) whose weight is at mog2c+1)-ed.(1..n) <
(2¢ + 1)k. Extending this path tén, 0) using an additional

‘weight of at most, it follows thatT < (2c + 2)k, as re-

quired.

It remains to prove the claim, which we will prove by
induction on the legal values éf Fori = 0, the claim is
trivial since sh(0) = 0. Assume the claim is true far
and let's show it is true fof + B. To ease the presentation,
let r = sh.(i) and lets = sh.(i + B). By the induction
hypothesis, there is a patif from (0,0) to (¢, r) such that
w(P') < (2¢+1)-ed-(1..1).

Now define the patt®” from (i, ) to (i + B, s) by first
traversing the edge from (i,r) to (¢ + B,r) and then
using the path fron(i + B,r) to (i + B,s). To bound
w(P") = w(e) + |r — s|, we introduce some notation. Let
a = X[i+1..i+B], § = y[i+1+r..i+B+r]andy = y[i+
1+r..i+ B+s]. By definition,w(e) < ¢-ED(«, 3). Using
the triangle inequalityED(a, 8) < ED(«, ) + ED(v, 3).
Observe thakD(«,v) < ed-(i + 1..i + B) via Proposi-
tion 1.1. Since one of the strings 3 is a prefix of the other,
we haveED (v, 8) < |r — s|. Putting these observations to-
gether giveso(P”) < c-ed.(i4+1..i+B)+(c+1)|r—s|.
Since|r — s| = |sh. (i) —sh, (i + B)| < ed.(i+1..i+ B),
it follows thatw(P”) < (2c+1)-ed.(i+1..i+ B).

Let P denote the concatenation 6f with P”. By the
derivation abovew(P) = w(P’) + w(P") < (2¢+ 1) -
ed-(1..i)+ed (i+1..i+B)] = (2¢+1)-ed-(1..i+ B),
so P satisfies the induction step for+ B. This completes
the proof of the lemma. O

It remains to show how to compute the shortest path in
G from (0,0) to (n, 0) efficiently. Fix ani and consider the
set of edges fron(, s) to (¢ + B, s) for all s. These repre-
sent the approximate edit distances betwgeén .. i + B]
and every substring of[y+ 1 — k..7 + B + k] of length
B.

If we can somehow simultaneously compute all these
weights efficiently, then it is conceivable that the shdrtes
path algorithm can also be implemented efficiently. This is
formalized as a separate problem below:

to solve thek vs. ¢ edit distance gap problem for a suitable
=1Lk, c).

Lemma3.1. T > ED(x,y).

Definition 3.3 (Edit pattern matching). Given a pattern
string P of lengthp and a text string T of length > p,

Proof (Sketch).We first claim thatw(P) > ED(x][1..1],
y[1..i + s]) for any pathP from (0, 0) to (¢, s). In particu-
lar, we show that ¥ .. 4] can be transformed tdy..i -+ s] the c(p, t)-edit pattern matching problenfor somec
by a sequence of edit operations corresponding to the se<(p,t) > 1, is to produce numbeis , d, . .., d; 11 Such
quence of edges if; the cost of each operation is at most thatd;/c < ED(P,T[i..i 4+ p — 1]) < d; for all <.

the weight of the corresponding edge. The details are given
in the full version of the paper. O

Theorem 3.4. Suppose there is an algorithm that can
solve thec(p,t)-edit pattern matching problem in time

Lemma 3.2. If ED(x,y) < k, thenT < (2¢ + 2)k. TIME(p, t). Then, given two stringsandy of lengthn, and



the corresponding grapli: with parameterB, the short-
est path in the grapltz can be used to solve theversus
(2¢(B, B + 2k) + 2)k edit distance gap problem in time
O((k + TIME(B, B + 2k))n/B)

Proof (Sketch).The correctness follows from Lemmas 3.1
and 3.2. Our implementation of the shortest path algorithm
proceeds in stages where thth stage computes the dis-
tanceT' (i, s) from (0,0) to (i, s) simultaneously for alk.
The key idea is to reduce this problem to computing single-
source shortest paths on a graph wilitk) edges. As-
sume thafl'(i — B, s) has been computed for all values of
s. We will show how to computéd’(i, s) for all s in time
O(k + TIME(B, B + 2k)); the claim on the overall running
time of the algorithm follows easily. Note that any short-
est path to(i, s) consists of a shortest path froff,0) to
(i—B, s"), for somes’, followed by the edge frori — B, s’)

to (4, s’), and then followed by the path frofw, s') to (i, s).
Consider the following graplt/ of at most2k + 2 nodes
with a start node; and a nodey, for everys € [—k, k.
There is an edge between andv, with weight 1 if and
onlyif |s—r| = 1; there is an edge fromto v, with weight
T(i— B,s)+w((i — B, s), (i,s)). This graph can be con-
structed in timeD (k + TIME (B, B+2k)). It can be verified
that the shortest path fromto v, equalsT'(i, s). This can

be implemented using Dijkstra’s shortest path algorithm in
time O(klogk). A direct implementation is also possible
by sorting the edges from to v, in non-decreasing order
of weight; the valueqd'(i, s) can be calculated by carefully
eliminating the edges, each one(j1) time. O

For non-repetitive strings, we can get a stronggr-
approximation algorithm for the edit pattern matching prob
lem that runs in quasi-linear-time. Details are given in the
full version of the paper. Now Theorem 3.4 (with= k)
implies the following:

Theorem 3.7. Thek vs.k3/2 edit distance gap problem can
be solved in quasi-linear-time if at least one of the pair of
input strings is(k, O(vk)-non-repetitive.

It is easy to see that Theorems 3.6 and 3.7 yield approx-
imation algorithms for edit distance with factor$/” and
n'/3, respectively.

4. Discussion

We turn our attention to lower bounds for edit distance
in the sketching model. Lower bounds on sketch size are
usually obtained via randomized communication complex-
ity lower bounds in the public-coin simultaneous messages
model [25]. A communication model that is closely re-
lated to the simultaneous messages model iotieway
model. In the terminology of Section 2, the one-way model
is the same as the simultaneous one, except that Bob him-
self acts as the referee. For a Boolean functfgnlet
RI(f) (resp., R (f)) denote the randomized simultane-
ous (resp., one-way) communication pf By definition,
RI(f) > R (f). In fact, most known lower bounds for
sketching algorithms (i.e., randomized simultaneous f)ode
hold also for the one-way model; the only known exception
is the generalized addressing function [2, 3]. There are no

As an application of the theorem, suppose we run ageneral purpose lower bound techniques for the simultane-

pattern matching algorithm and outpdt = 0 if P
T[i..i + p — 1] andd; = p otherwise; thus¢(p,t) = p.

By precomputing the Karp—Rabin fingerprints of all blocks
of lengthB in x and y in timeO(n), we obtain an algorithm
for edit pattern matching that runs in tinigk).

Theorem 3.5. There is an algorithm for thé vs. (2B +
2)k edit distance gap problem that runs in tirdgkn/B +
n). In particular, there is a quasi-linear-time algorithm to
distinguish betweeh and O (k?).

For the second application, we apply the algorithm of
Cole and Hariharan [5] for edit pattern matching. Here,
given a parametek, the goal is to output for each €
[1..t—p+ 1] whether there is a substringiT. j], for some
j, such thatED(P, T[:.. j]) is at mostk. The algorithm
in [5] runs in timeO(k* - t/p + t + p). Their algorithm can
be easily modified to obtain a quasi-linear time algorithm

ous messages model with public coins. For the remainder of
the section, we useDy, , (resp.,HDy ¢) to denote the: vs.
¢ gap version of edit (resp., Hamming) distance problem.

In the one-way model, it is straightforward to obtain
lower bounds for edit distance by exploiting its connec-
tion to the Hamming distance. In particular, we can show
that fork < n'/2/2, R (EDg x+1) > R (HDg k1)
Q(k). Indeed, we reduce Hamming distance to edit dis-
tance; lettingec = 0%, Alice transforms her input to
X' = zi0x9---0x, and Bob transforms his input td y=
Yy10Ys - - - oy,. Itis easy to see that ID(x,y) < k then
ED(X,y’) < k, so it remains to showiD(X,y) > k im-
pliesED(x',y’) > k. Assume for contradiction there exists
an alignment of X y’ with at mostk edit operations. For
each index with z; # y;, atleast one af;, y; is not0; let's
call it z;. SinceHD(X,y) > k, there are at leagt+ 1 such
indicesi, so at least one of them must involve no edit op-

for edit pattern matching whose approximation parametererationv i.e., match a character in the other string. But the

is ¢ = p*/4. Applying Theorem 3.4 wittB = k, we get:

Theorem 3.6. Thek versusk”/* edit distance gap problem
can be solved in quasi-linear-time.

the positions of; and of its matching character must differ
by at least + 1, which cannot happen if the alignment has
at mostk edit operations. The lower bound follows since
R (HDy k1) = (k) (cf. [15)).



On the other hand, in the one-way model there is an
O(klogn) upper bound folEDy, 141 that nearly matches
thisQ (k) lower bound. The basic idea is to use hashing; we
omit the details in this version.

This state of affairs indicates that proving sketching
lower bounds for edit distance may be quite hard. First,
strong sketching lower bounds fBDy, ;.1 require proving
lower bounds that go beyond lower bounds in the one-way

model. Second, the above approach does not go beyond thei 4]

hardness of Hamming distance. For instance, it says noth-
ing aboutEDy, 55, simply becauseiDy, 2, can be solved us-

ing a constant size sketch. At the moment, we do not know
of anw(1) sketching lower bound fdEDj, 2, or more gen-
erally, of any randomized (one-way or simultaneous) com-
munication lower bound for edit distance that exceeds its
Hamming distance counterpart.
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