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Abstract. By a classical result of Gomory and Hu (1961), in every edge-
weighted graph G = (V,E,w), the minimum st-cut values, when ranging
over all s, t ∈ V , take at most |V |−1 distinct values. That is, these

(|V |
2

)
instances exhibit redundancy factor Ω(|V |). They further showed how to
construct from G a tree (V,E′, w′) that stores all minimum st-cut values.
Motivated by this result, we obtain tight bounds for the redundancy
factor of several generalizations of the minimum st-cut problem.

1. Group-Cut: Consider the minimum (A,B)-cut, ranging over all
subsets A,B ⊆ V of given sizes |A| = α and |B| = β. The re-
dundancy factor is Ωα,β(|V |).

2. Multiway-Cut: Consider the minimum cut separating every two
vertices of S ⊆ V , ranging over all subsets of a given size |S| = k.
The redundancy factor is Ωk(|V |).

3. Multicut: Consider the minimum cut separating every demand-pair
in D ⊆ V × V , ranging over collections of |D| = k demand pairs.
The redundancy factor is Ωk(|V |k). This result is a bit surprising, as
the redundancy factor is much larger than in the first two problems.

A natural application of these bounds is to construct small data struc-
tures that stores all relevant cut values, à la the Gomory-Hu tree. We
initiate this direction by giving some upper and lower bounds.

1 Introduction

One of the most fundamental combinatorial optimization problems is minimum
st-cut, where given an edge-weighted graph G = (V,E,w) and two vertices
s, t ∈ V , the goal is to find a set of edges of minimum total weight that sep-
arates s, t (meaning that removing these edges from G ensures there is no s - t
path). This problem was studied extensively, see e.g. the famous minimum-
cut/maximum-flow duality [8], and can be solved in polynomial time. It has
numerous theoretical applications, such as bipartite matching and edge-disjoint
paths, in addition to being extremely useful in many practical settings, includ-
ing network connectivity, network reliability, and image segmentation, see e.g. [1]
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for details. Several generalizations of the problem, such as multiway cut, mul-
ticut, and k-cut, have been well-studied in operations research and theoretical
computer science.

In every graph G = (V,E,w), there are in total
(|V |

2

)
instances of the min-

imum st-cut problem, given by all pairs s, t ∈ V . Potentially, each of these
instances could have a different value for the minimum cut. However, the sem-
inal work of Gomory and Hu [9] discovered that undirected graphs admit a
significantly stronger bound (see also [1, Lemma 8.15] or [7, Section 3.5.2]).

Theorem 1 ([9]). Let G = (V,E,w) be an edge-weighted undirected graph.

Then the number of distinct values over all possible
(|V |

2

)
instances of the mini-

mum st-cut problem is at most |V | − 1.

The beautiful argument of Gomory and Hu shows the existence of a tree
T = (V,E′, w′), usually called a flow-equivalent tree, such that for every s, t ∈ V
the minimum st-cut value in T is exactly the same as in G. (They further show
how to construct a so-called cut-equivalent tree, which has the stronger property
that every vertex-partitioning that attains a minimum st-cut in T , also attains a
minimum st-cut in G; see Section 1.3 for more details on this and related work.)
Every G which is a tree (e.g., a path) with distinct edge weights has exactly
|V | − 1 distinct values, and hence the Gomory-Hu bound is existentially tight.

Another way to view Theorem 1 is that there is always a huge redundancy
between the

(|V |
2

)
minimum st-cut instances in a graph. More precisely, the

“redundancy factor”, measured as the ratio between the number of instances
and the number of distinct optimal values attained by them, is always Ω(|V |).
We study this question of redundancy factor for the following generalizations of
minimum st-cut. Let G = (V,E,w) be an undirected edge-weighted graph.

– Group-Cut: Given two disjoint sets A,B ⊆ V find a minimum (A,B)-cut,
i.e., a set of edges of minimum weight that separates every vertex in A from
every vertex in B.

– Multiway-Cut: Given S ⊆ V find a minimum-weight set of edges, whose
removal ensures that for every s 6= s′ ∈ S there is no s - s′ path.

– Multicut: Given Q ⊆ V × V find a minimum-weight set of edges, whose
removal ensures that for every (q, q′) ∈ Q there is no q - q′ path.

In order to present our results about the redundancy in these cut problems
in a streamlined way, we introduce next the terminology of vertex partitions and
demand graphs.

Cut Problems via Demand Graphs. Denote by Par(V ) the set of all partitions of
V , where a partition of V is, as usual, a collection of pairwise disjoint subsets of
V whose union is V . Given a partition Π ∈ Par(V ) and a vertex v ∈ V , denote
by Π(v) the unique S ∈ Π satisfying v ∈ S. Given a graph G = (V,E,w), define
the function CutG : Par(V ) → R≥0 to be CutG(Π) =

∑
uv∈E :Π(u)6=Π(v) w(uv).

We shall usually omit the subscript G, since the graph will be fixed and clear
from the context.
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Cut problems as above can be defined by specifying the graph G and a
collectionD of demands, which are the vertex pairs that need to be separated. We
can view (V,D) as an (undirected and unweighted) demand graph, and by slight
abuse of notation, D will denote both this graph and its edges. For example,
an instance of Group-Cut is defined by G and demands that form a complete
bipartite graph KA,B (to formally view it as a graph on V , let us add that
vertices outside of A∪B are isolated). We say that partition Π ∈ Par(V ) agrees
with D if every uv ∈ D satisfies Π(u) 6= Π(v). The optimal cut-value for the
instance defined by G and D is given by

mincutG(D) := min{CutG(Π) : Π ∈ Par(V ) agrees with D}.

Redundancy among Multiple Instances. We study multiple instances on the same
graph G = (V,E,w) by considering a family D of demand graphs. For example,
all minimum st-cut instances in a single G corresponds to the family D of all
demands of the form D = {(s, t)} (i.e., demand graph with one edge). The
collection of optimal cut-values over the entire family D of instances in a single
graph G, is simply {mincut(D) : D ∈ D}. We are interested in the ratio between
the size of this collection as a multiset and its size as a set, i.e., with and without
counting multiplicities. Equivalently, we define the redundancy factor of a family
D of demand graphs to be

redundancy(D) :=
|D|

|{mincut(D) : D ∈ D}|
,

where throughout, |A| denotes the size of A as a set, i.e., ignoring multiplicities.

Motivation and Potential Applications. A natural application of the redundancy
factor is to construct small data structures that stores all relevant cut values.
For the minimum st-cut problem, Gomory and Hu were able to collect all the
cut values into a tree on the same vertex set V . This tree can easily support fast
query time, or a distributed implementation (labeling scheme) [12].

In addition, large redundancy implies that there is a small collection of cuts
that contains a minimum cut for each demand graph. Indeed, first make sure
all cut values in G are distinct (e.g., break ties consistently by perturbing edge
weights), and then pick for each cut-value in {mincut(D) : D ∈ D} just one cut
that realizes it. This yields a data structure that reports, given demands D ∈ D,
a vertex partition that forms a minimum cut (see more in Section 1.2).

1.1 Main Results

Throughout, we denote n = |V |. We use the notation Oγ(·) to suppress factors
that depend only on γ, and similarly for Ω and Θ.

The Group-Cut problem. In this problem, the demand graph is a complete
bipartite graph KA,B for some subsets A,B ⊂ V . We give a tight bound on the
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redundancy factor of the family of all instances where A and B are of given sizes
α and β, respectively. The special case α = β = 1 is just all minimum st-cuts in
G, and thus recovers the Gomory-Hu bound (Theorem 1).

Theorem 2. For every graph G = (V,E,w) and for every α, β ∈ N, we have
|{mincut(KA,B) : |A| = α, |B| = β}| = Oα,β(nα+β−1), hence the family of
(α, β)-group-cuts has redundancy factor Ωα,β(n). Furthermore, this bound is ex-
istentially tight (attained by some graph G) for all α, β and n.

The Multiway-Cut problem. In this problem, the demand graph is a complete
graph KS for some subset S ⊆ V . We give a tight bound on the redundancy
factor of the family of all instances where S is of a given size k ≥ 2. Again, the
Gomory-Hu bound is recovered by the special case k = 2.

Theorem 3. For every graph G = (V,E,w) and for every integer k ∈ N, we
have |{mincut(KS) : |S| = k}| = Ok(nk−1), hence the family of k-multiway-cuts
has redundancy factor Ωk(n). Furthermore, this bound is existentially tight for
all n and k.

The Multicut problem. In this problem, the demand graph is a collection D
of demand pairs. We give a tight bound on the redundancy factor of the family
of all instances where D is of a given size k ∈ N. Again, the Gomory-Hu bound
is recovered by the special case k = 1.

Theorem 4. For every graph G = (V,E,w) and k ∈ N, we have |{mincut(D) :
D ⊆ V × V, |D| = k}| = Ok(nk), and hence the family of k-multicuts has
redundancy factor Ωk(nk). Furthermore, this bound is existentially tight for all
n and k.

Theorem 4 is a bit surprising, since it shows a redundancy factor that is poly-
nomial, rather than linear, in n (for fixed α, β and k), so in general Multicut
has significantly larger redundancy than Group-Cut and Multiway-Cut.

1.2 Extensions and Applications

Our main results above actually apply more generally and have algorithmic
consequences, as discussed below briefly.

Terminals Version. In this version, the vertices to be separated are limited to
a subset T ⊆ V called terminals, i.e., we consider only demands inside T × T .
All our results above (Theorems 2, 3, and 4) immediately extend to this version
of the problem — we simply need to replace |V | by |T | in all the bounds. As

an illustration, the terminals version of Theorem 1 states that the
(|T |

2

)
mini-

mum st-cuts (taken over all s, t ∈ T ) attain at most |T | − 1 distinct values. (See
also [7, Section 3.5.2] for this same version.) Extending our proofs to the termi-
nals version is straightforward; for example, in Section 2.1 we need to consider
polynomials in |T | variables instead of |V | variables.

4



Data Structures. Flow-equivalent or cut-equivalent trees, such as those con-
structed by Gomory and Hu [9], may be viewed more generally as succinct data
structures that support certain queries, either for the value of an optimal cut,
or for its vertex-partition, respectively. Motivated by this view, we define data
structures, which we call as evaluation schemes, that preprocess an input graph
G, a set of terminals T , and a collection of demand graphsD, so as to answer a cut
query given by a demand graph D ∈ D. The scheme has two flavors, one reports
the minimum cut-value, the second reports a corresponding vertex-partition. In
Section 5 we initiate the study of such schemes, and provide constructions and
lower bounds for some special cases.

Functions Different From Cuts. Recall that the value of the minimum st-cut is
min{CutG(X,V \X) : X ⊆ V, s ∈ X, t /∈ X}. Cheng and Hu [5] extended the
Gomory-Hu bound (Theorem 1) to a wider class of problems as follows. Instead
of a graph G, fix a ground set V and a function f : 2V → R. Now for every
s, t ∈ V , consider the optimal value min{f(X) : X ⊆ V, |X ∩ {s, t}| = 1}. They
showed that ranging over all s, t ∈ V , the number of distinct optimal values is
also at most |V |−1. All our results above (Theorems 2, 3, and 4) actually extend
to every function f : Par(V ) → R. However, to keep the notation simple, we
opted to present all our results only for the function Cut.

Directed Graphs. What happens if we ask the same questions for the directed
variants of the three problems considered previously? Here, an s→ t cut means
a set of edges whose removal ensures that no s → t path exists. Under this
definition, we can construct explicit examples for the directed variants of our
three problems above where there is no non-trivial redundancy, i.e., the number
of distinct cut values is asymptotically equal to the total number of instances.

1.3 Related Work

Gomory and Hu [9] showed how to compute a cut-equivalent tree, and in par-
ticular a flow-equivalent tree, using |V | − 1 minimum st-cut computations on
graphs no larger than G. Gusfield [10] has shown a version where all the cut
computations are performed on G itself (avoiding contractions). For unweighted
graphs, a faster (randomized) algorithm for computing a Gomory-Hu tree which
runs in Õ(|E| · |V |) time was recently given by Bhalgat et al. [3].

We have mentioned that Cheng and Hu [5] extended Theorem 1 from cuts to
an arbitrary function f : 2V → R. They further showed how to construct a flow-
equivalent tree for this case (but not a cut-equivalent tree). Benczúr [2] showed
a function f for which there is no cut-equivalent tree. In addition, he showed
that for directed graphs, even flow-equivalent trees do not exist in general.

Another relevant notion here is that of mimicking networks, introduced by
Hagerup et al. [11]. A mimicking network for G = (V,E,w) and a terminals set
T ⊆ V is a graph G′ = (V ′, E′, w′) where T ⊂ V ′ and for every X,Y ∈ T , the
minimum (X,Y )-cut in G and in G′ have the exact same value. They showed

that every graph has a mimicking network with at most 22
|T |

vertices. Some
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improved bounds are known, e.g., for graphs that are planar or have bounded
treewidth, as well as some lower bounds [4, 14, 13]. Mimicking networks deal
with the Group-Cut problem for all A,B ⊂ V ; we consider A,B of bounded
size, and thus typically achieve much smaller bounds.

2 Group-Cut: The Case of Complete Bipartite Demands

This section is devoted to proving Theorem 2. First we give two proofs, one
in Section 2.1 via polynomials and the second in Section 2.2 via matrices, for
the bound | {mincut(KA,B) : |A| = α, |B| = β}| = Oα,β(nα+β−1). Then in
Section 2.3 we construct examples of graphs for which this bound is tight. Since
|{KA,B : |A| = α, |B| = β}| =

(
n
α

)
·
(
n−α
β

)
= Θα,β(nα+β), it follows that the

redundancy factor is Ωα,β(n).

2.1 Proof via Polynomials

Let r =
(
n
α

)(
n−α
β

)
and the set of demand graphs for (α, β)-Group-Cut be

{KA1,B1
,KA2,B2

, . . . ,KAr,Br
}. For every vertex v ∈ V we assign a boolean vari-

able denoted by φv. Given an instance A,B we can assume that the optimal
partition only contains two parts, one which contains A and other which con-
tains B, since we can merge other parts into either of these parts.

Fix some j ∈ [r]. Recall that Π = {U, V \ U} ∈ Par(V ) agrees with, i.e.,
is a feasible solution for, the demand graph KAj ,Bj

if and only if the following
holds: Π(u) 6= Π(v) whenever u ∈ Aj and v ∈ Bj or vice versa. Fix arbitrary
aj ∈ Aj and bj ∈ Bj . We associate with the demand graph KAj ,Bj the formal
polynomial Pj over the variables {φv : v ∈ V }

Pj =
∏
b∈Bj

(
φaj − φb

)
·

∏
a∈Aj\{aj}

(
φa − φbj

)
.

Note that Pj is a polynomial of degree α + β − 1. Given U ⊆ V , we may think
of Π = {U, V \ U} as a vector in {0, 1}n. We denote by Pj(Π) the value of the
polynomial Pj (over F2) when instantiated on Π.

Lemma 1. A partition Π is feasible for the demand graph KAj ,Bj if and only
if Pj(Π) 6= 0

Proof. Suppose Π is feasible for the demand graph KAj ,Bj . So Π(u) 6= Π(v) if
u ∈ Aj , v ∈ Bj or vice versa. Since every term of Pj contains one variable from
each of Aj and Bj , it follows that Pj(Π) 6= 0.

Conversely, assume Pj(Π) 6= 0. Let u ∈ Aj . Since Π(u) 6= Π(bj) and Π(bj) 6=
Π(aj) it follows that Π(u) = Π(aj). Similarly for every v ∈ Bj , Π(v) = Π(bj).
Therefore, it follows that Π(u) 6= Π(v) whenever u ∈ Aj and v ∈ Bj or vice
versa, i.e., Π is feasible for KAj ,Bj . ut

Next we show that the polynomials corresponding to demand graphs with
distinct values under mincut are linearly independent.
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Lemma 2. Reorder the demand graphs such that mincut(KA1,B1
) < . . . <

mincut(KAq,Bq
). Then the polynomials P1, . . . , Pq are linearly independent.

Proof. Let Π1, . . . ,Πq be the optimal partitions for the instances corresponding
to the demand graphs KA1,B1 , . . . ,KAq,Bq respectively, i.e., for each i ∈ [q] we
have that mincut(KAi,Bi) = Cut(Πi). Since mincut(KAi,Bi) < mincut(KAj ,Bj )
whenever i < j, it follows that Πi is not feasible for the demand graph KAj ,Bj

for all i < j.

Suppose that the polynomials P1, P2, . . . , Pq are not linearly independent.
Then there exist constants λ1, . . . , λq ∈ R which are not all zero such that P =∑
j∈[q] λjPj is the zero polynomial. We will now show that each of the constants

λ1, λ2, . . . , λq is zero, leading to a contradiction. Instantiate P on Π1. Recall that
Π1 is not feasible for any KAi,Bi

with i ≥ 2. Therefore, by Lemma 1, we have
that Pi(Π1) = 0 for all i ≥ 2. Therefore λ1P1(Π1) = 0. Since Π1 is an (optimal)
feasible partition for instance corresponding to KA1,B1 , applying Lemma 1 we
get that P1(Π1) 6= 0. This implies λ1 = 0. Hence, we have P =

∑
2≤j≤q λjPj

is the zero polynomial. Now instantiate P on Π2 to obtain λ2 = 0 via a similar
argument as above. In the last step, we will get that λq−1 = 0 and hence P =
λqPq is the zero polynomial. Instantiating on Πq gives 0 = P (Πq) = λqPq(Πq).
Since Πq is (optimal) feasible partition for the demand graph KAq,Bq it follows
that Pq(Πq) 6= 0, and hence λq = 0. ut

Note that each of the polynomials P1, P2, . . . , Pq is contained in the vector
space of polynomials with n variables and degree ≤ α+β− 1. This vector space
is spanned by {

∏
v∈V φ

rv
v :

∑
v∈V rv ≤ α+ β − 1} and therefore is of dimension(

n+(α+β−1)
α+β−1

)
= Oα,β(nα+β−1). From Lemma 2 and the fact that size of any set

of linearly independent elements is at most the size of a basis, it follows that∣∣∣ {mincut(KA,B) : |A| = α, |B| = β}
∣∣∣ = Oα,β(nα+β−1).

2.2 Proof via Matrices

We shall prove the (slightly stronger) bound that | {mincut(KA,B) : |A| ≤
α, |B| ≤ β}| = Oα,β(nα+β−1). Let Par2(V ) ⊆ Par(V ) be the set of parti-
tions of V into exactly two parts. Let Q := {(A,B) : |A| ≤ α, |B| ≤ β}.
Consider the matrix M over F2 with |Q| rows (one for each element from Q)
and | Par2(V )| = 2n columns (one for each partition Π of V into two parts).
We now define the entries of M. Given (A,B) ∈ Q and Π ∈ Par2(V ), we set
M(A,B),Π = 1 if and only if the partition Π ∈ Par2(V ) agrees with the de-
mand graph KA,B , which is equivalent to saying that Π(u) 6= Π(v) whenever
u ∈ A and v ∈ B or vice versa. Fix a vertex v0 ∈ V , and consider the set
R := {(A,B) ∈ Q : v0 ∈ A ∪B} .

Proposition 1. Over F2, the row space of M is spanned by the rows corre-
sponding to elements from R.
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Proof. Consider (A,B) ∈ Q and Π ∈ Par2(V ). If v0 ∈ A ∪ B then (A,B) ∈ R.
Henceforth we assume that v0 /∈ A ∪B. Let

L(Π) :=M(A,B),Π +
∑
A′⊂A

M(v0∪A′,B),Π +
∑
B′⊂B

M(A,B′∪v0),Π ,

where addition is over F2. Note that (v0 ∪ A′, B), (A,B′ ∪ v0) ∈ R for every
A′ ⊂ A and B′ ⊂ B, and therefore it is enough to show that L(Π) ≡ 0 (mod 2).

Assume first thatM(A,B),Π = 1, i.e. Π agrees with the demand graph KA,B .
Without loss of generality assume that Π(v0) = Π(a) for some a ∈ A. Then we
have M(v0∪A′,B),Π = 1 for all A′ ⊂ A, and M(A,v0∪B′),Π = 0 for all B′ ⊂ B.

So, L(Π) = 1 + (2|A| − 1) ≡ 0 (mod 2).
Otherwise, we have M(A,B),Π = 0. If for every v ∈ A ∪ B it holds that

Π(v) 6= Π(v0) then

L(Π) = 0 +M(v0,B),Π +M(A,v0),Π = 1 + 1 ≡ 0 (mod 2) .

Hence suppose that there exists v ∈ A ∪ B such that Π(v) = Π(v0). Without
loss of generality, assume v ∈ A. Then M(A,B′+v0),Π = 0 for all B′ ⊂ B.
Note that if A1, A2 ⊂ A satisfy M(v0∪A1,B),Π = 1 = M(v0∪A2,B),Π , then
M(v0∪A1∪A2,B),Π = 1. Hence there is an inclusion-wise maximal set A∗ ⊆ A
such that M(v0∪A∗,B),Π = 1. Since M(A,B),Π = 0, we conclude that A∗ ⊂ A.
If A∗ = ∅, then since Π(v) = Π(v0), we conclude that there exists v′ ∈ B such
that Π(v′) = Π(v0). Then M(A′+v0,B),Π = 0 for all A′ ⊂ A, and L(Π) = 0.
Otherwise, |A∗| ≥ 1 , and therefore

L(Π) =M(A,B),Π+
∑
A′⊂A

M(v0∪A′,B),Π =
∑

A′⊆A∗
M(v0∪A′,B),Π = 2|A

∗| ≡ 0 mod(2)

ut

An argument similar to Lemma 2 shows that rows corresponding to demand
graphs with distinct values under mincut are linearly independent. Hence, we

have
∣∣∣ {mincut(KA,B) : |A| ≤ α, |B| ≤ β}

∣∣∣ ≤ rank(M) ≤ |R|, where the last

inequality follows since R spans the row space of M. We now obtain the final
bound

|R| =
∑

i≤α−1,j≤β

(
n−1
i

)
·
(
n−i−1
j

)
+

∑
j≤β−1,i≤α

(
n−1
j

)
·
(
n−j−1

i

)
=

∑
i≤α−1,j≤β

Oi,j(n
i+j) +

∑
j≤β−1,i≤α

Oi,j(n
i+j)

= Oα,β(nα+β−1)

2.3 Lower Bound on Number of Distinct Cuts for (α, β)-Group-Cut

We now turn to prove that the bound given in Theorem 2 is existentially
tight. To this end, we construct an infinite family Gα,βn of graphs satisfying
|{mincut(KA,B) : |A| = α, |B| = β}| ≥ Ωα,β(nα+β−1).
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Let n, α, β ∈ N be such that n is odd, and both α and β−1 divide (n−3)/2.
We define a graph Gα,βn on n vertices as follows. Gα,βn is composed of two graphs
that share a common vertex Hα

n and Jβn defined below.

– Hα
n has (n+1)/2 vertices, and is given by α parallel paths P1, . . . , Pα between

two designated vertices s, t, each path having (n − 3)/2α internal vertices.
The edge weights are given by distinct powers of 2, monotonically decreasing
from s to t. All edges in Hα

n incident on t have ∞ weight (see Figure 1).
– Jβn has (n+1)/2 vertices, and is given by (β−1) parallel paths Q1, . . . , Qβ−1,

between t and a designated vertex u, each having (n− 3)/2(β − 1) internal
vertices. As in Hα

n , edge weights are given by distinct powers of 2, monoton-
ically decreasing from t to u, and all of which are strictly smaller than the
weights of Hα

n . All edges in Jβn incident on u have ∞ weight.

The following proposition implies the desired lower bound.

Proposition 2. |{mincut(KA,B) : |A| = α, |B| = β}| ≥ Ωα,β(nα+β−1).

Proof. Pick one internal vertex from each Pi for i ∈ [α] to form A. Similarly for
β − 1 elements in B, we pick one internal vertex from each Qj for j ∈ [β]. In
addition, s ∈ B (as demonstrated in Figure 1). We claim that every such choice
of A,B gives a distinct value for the minimum (A,B)-cut.

Indeed, for i ∈ [α] let ai be the unique element in A∩Pi. In order to separate
A from B, we need to separate ai from s. This implies that at least one edge
on the segment of Pi between s and ai has to be in the cut. By monotonicity of
weights and minimality of the cut, this must be the edge incident to ai. Similarly,
for every b ∈ B \ {s}, the left edge incident to b must be cut. It is easy to see
(as demonstrated in Figure 1) that this set of edges also separates A and B.

By the choice of weights, each such cut has a unique value, and therefore
|{mincut(KA,B) : |A| = α, |B| = β}| ≥ ((n − 3)/2α)α((n − 3)/2(β − 1))β−1 =
Ωα,β(nα+β−1). ut

 𝑃1 

t 

u 

 𝑃𝛼 

 𝑄1 

 𝑄𝛽−1 

s ∞ ∞ 

∞ 

∞ 
∞ 

∞ 

∞ 

Fig. 1. The graph Gα,βn used in the lower bound of Section 2.3. The left part of the
graph is Hα

n , consisting of α parallel s - t paths. The right part of the graph is Jβn ,
consisting of (β− 1) parallel t -u paths. The gray vertices are in A, and the black ones
are in B. The red edges represent the minimum cut for this choice of A and B.

9



3 Multiway-Cut: The Case of Clique Demands

Our tight bounds for Multiway-Cut are described in Theorem 3. First we
show that for every graph G = (V,E,w) we have | {mincut(KS) : |S| = k}| =
Ok(nk−1). The proof technique for this upper bound is quite similar to that
from Section 2.2. We also show that this bound is tight for paths (with specially
chosen edge-weights). Hence, the redundancy factor is Ωk(n), since |{KS : |S| =
k}| =

(
n
k

)
= Θk(nk). We refer to the full version [6] for the technical details.

4 Multicut: The Case of Demands with Fixed Number
of Edges

Our tight bounds for Multicut are described in Theorem 4. First we show that
| {mincut(D) : D ⊆ V × V, |D| = k}| = Ok(nk). The proof technique for this
upper bound is quite similar to that from Section 2.1. We also show that this
bound is tight for graphs which are perfect matchings (with specially chosen

edge-weights). Since |{D : D ⊆ V × V, |D| = k}| =
((n

2)
k

)
= Θk(n2k), it follows

that the redundancy factor is Ωk(nk). We refer to the full version [6] for the
technical details.

5 Evaluation Schemes: Constructing Succinct Data
Structures

Gomory and Hu [9] showed that for every undirected edge-weighted graph G =
(V,E,w) there is a tree T = (V,E′, w′) that represents the minimum st-cuts
exactly both in terms of the cut-values and in terms of their vertex-partitions.
The common terminology, probably due to Benczúr [2], is to say that T is cut-
equivalent to G. A tree T is flow-equivalent to G if it satisfies only the first
property.1

Flow-equivalent and cut-equivalent trees can be viewed more generally as
succinct data structures that support certain queries, either just for the value
of an optimal cut, or also for its vertex-partition. Motivated by this view, we
define two data structures, which we call a flow-evaluation scheme and a cut-
evaluation scheme (analogously to the common terminology in the literature).
These schemes are arbitrary data structures (e.g., need not form a tree), and
address the terminals version of a certain cut problem. Both of these schemes,
first preprocess an input that consists of a graph G = (V,E,w), a terminals set
T ⊂ V , and a collection of demand graphs D. The preprocessed data can then
be used (without further access to G) to answer a cut query given by a demand

1 A tree T is flow-equivalent to G if for every s, t ∈ V the minimum st-cut value in T
is exactly the same as in G. We say T is cut-equivalent to G if, in addition, every
vertex partition that attains a minimum st-cut in T , also attains a minimum st-cut
in G.
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graph D ∈ D. The answer of a flow-evaluation scheme is the corresponding
minimum cut-value mincut(D). A cut-evaluation scheme will also give a vertex-
partition that attains this cut-value mincut(D).

A natural goal is to provide succinct constructions and lower bounds for the
storage and query time of flow-evaluation schemes and cut-equivalent schemes,
for the three cut problems studied in this paper, viz. Group-Cut, Multiway-
Cut and Multicut. In order to analyze the storage size (in terms of bits) of
such data structures, we henceforth assume that all edge weights are integers.
Our bounds on the number of distinct cut values naturally lead to the following
construction of cut-evaluation schemes for the aforementioned three problems.
We state below the result for Group-Cut (proof deferred to the full version [6]);
similar results also hold for the Multiway-Cut and Multicut problems.

Theorem 5. For every α, β ∈ N there is a cut-evaluation scheme such that for
every graph G = (V,E,w), and a set of terminals T ⊆ V , the scheme uses a
storage of Oα,β(|T |α+β−1 · (|T |+logW )) bits, where W =

∑
e∈E w(e), to answer

every (α, β)-Group-Cut query in time Oα,β(|T |α+β−1).

The result of Theorem 5 is especially meaningful for the case where |T | is
much smaller than n. For large |T |, say T = V , the graph G itself serves as a
cut-evaluation scheme of size O(n2 logW ).

We do not know whether the upper bound in Theorem 5 is tight, and proving
lower bounds for the storage size of such schemes is left as an interesting open
question. However, for (2, 1)-Group-Cut with V = T and edge weights bounded
by nO(1), we can prove that simply storing the graph G using O(n2 log n) bits is
essentially optimal, even for the weaker notion of flow-evaluation schemes.

5.1 Lower Bound on Flow-Evaluation Schemes for (2, 1)-Group-Cut

Using an information-theoretic argument, we can show the following lower bound
(proof deferred to [6]) on the storage required by any flow-evaluation scheme for
(2, 1)-Group-Cut. We remark that similar arguments give a lower bound of
Ω(n3 log n) by allowing weights which are exponential in n3.

Theorem 6. For every n ≥ 3, a flow-evaluation scheme for (2, 1)-Group-Cut
on graphs with n terminals (in which T = V ) and with edge-weights bounded by
a polynomial in n requires storage of Ω(n2 log n) bits.

6 Future Directions

A natural direction for future work is to construct better data structures for the
problems discussed in this paper. Our tight bounds on the number of distinct cut
values (redundancy factor) yield straightforward schemes with improved storage
requirement, as described in Section 5. But one may potentially improve these
schemes in several respects. First, our storage requirement is a factor |T | larger
than the number of distinct cut values. The latter number could possibly be
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the “right bound”, and it is important to prove it is a lower bound for required
storage; we only proved this for (2, 1)-Group-Cut. Second, it is desirable to
achieve fast query time, say sublinear in |T | or perhaps even constant. Third, one
may ask for a distributed version of the data structure (i.e., a labeling scheme)
that can report the same cut values; this would extend the known results [12] for
minimum st-cuts. All these improvements require better understanding of the
structure of the optimal partitions (those that attain minimum cut values). Such
structure is known for minimum st-cuts, where the Gomory-Hu tree essentially
shows the existence of a family of minimum st-cuts, one for each s, t ∈ V , which
is laminar.

Another very interesting question is to explore approximation to the min-
imum cut, i.e., versions of the above problems where we only seek for each
instance a cut within a small factor of the optimal. For instance, the cut val-
ues of (α, β)-Group-Cut can be easily approximated within factor α · β using
Gomory-Hu trees, which requires storage that is linear in |T |, much below the
aforementioned “right bound” of |T |α+β−1.
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