
Directed Spanners via Flow-Based Linear Programs∗

Michael Dinitz
Weizmann Institute of Science

michael.dinitz@weizmann.ac.il

Robert Krauthgamer
Weizmann Institute of Science

robert.krauthgamer@weizmann.ac.il

ABSTRACT
We examine directed spanners through flow-based linear pro-
gramming relaxations. We design an Õ(n2/3)-approximation
algorithm for the directed k-spanner problem that works for
all k ≥ 1, which is the first sublinear approximation for ar-
bitrary edge-lengths. Even in the more restricted setting of
unit edge-lengths, our algorithm improves over the previ-
ous Õ(n1−1/k) approximation [BGJ+09] when k ≥ 4. For
the special case of k = 3 we design a different algorithm
achieving an Õ(

√
n)-approximation, improving the previous

Õ(n2/3) [EP05, BGJ+09] (independently of our work, an

Õ(n1−1/dk/2e) was recently devised [BRR10]). Both of our
algorithms easily extend to the fault-tolerant setting, which
has recently attracted attention but not from an approxima-
tion viewpoint. We also prove a nearly matching integrality
gap of Ω̃(n1/3−ε) for every constant ε > 0.

A virtue of all our algorithms is that they are relatively
simple. Technically, we introduce a new yet natural flow-
based relaxation, and show how to approximately solve it
even when its size is not polynomial. The main challenge is
to design a rounding scheme that “coordinates” the choices
of flow-paths between the many demand pairs while using
few edges overall. We achieve this, roughly speaking, by
randomization at the level of vertices.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory

General Terms
Algorithms, Theory

Keywords
Approximation Algorithms, Spanners, Linear Programming

∗A full version appears at http://arxiv.org/abs/1011.
3701. Work supported in part by The Israel Science Foun-
dation (grant #452/08), and by a Minerva grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’11, June 6–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0691-1/11/06 ...$10.00.

1. INTRODUCTION
We examine several directed spanner problems from the

perspective of approximation via a linear programming (LP)
relaxation. In particular, we design flow-based LP relax-
ations for these classical NP-hard problems, and then in-
vestigate how well these relaxations approximate the opti-
mal spanner, providing nearly matching upper and lower
bounds. We begin by introducing the spanner problems
that we consider, focusing throughout on directed graphs;
we briefly compare to undirected graphs in Section 1.4.

1.1 Spanner Problems
Let G = (V,E) be a a strongly connected directed graph.1

A k-spanner of G, for k ≥ 1, is a subgraph G′ = (V,E′),
that preserves all pairwise distances within factor k, i.e. for
all u, v ∈ V ,

dG′(u, v) ≤ k · dG(u, v). (1)

Here and throughout, dH denotes the shortest-path distance
in a graph H. It is easy to see that requiring (1) only for
edges (u, v) ∈ E suffices.

In the directed k-spanner problem with unit edge-lengths,
the input is the graph G and the goal is to find a k-spanner
G′ having the minimum number of edges. We allow the
stretch k to be a function of n = |V |, e.g. k = O(logn), and
in fact some of our results are most interesting when k =
Ω(logn). This definition was introduced by Peleg and Schäf-
fer [PS89] (in particular, they showed the problem is NP-
hard), and since then it has been studied extensively, with
applications ranging from routing in networks (e.g. [AP95,
TZ05]) to solving linear systems (e.g. [ST04, EEST08]).

The above definition has several natural generalizations.
An obvious one is to let G have nonnegative edge-lengths,
leading to more complicated distances. This is the directed
k-spanner problem with arbitrary edge-lengths. Another gen-
eralization, introduced in [CLPR09], incorporates fault tol-
erance: a k-spanner G′ is r-vertex-tolerant if for all F ⊆ V
with |F | ≤ r we have that G′ \ F is a k-spanner of G \ F .
The definition of r-edge-tolerant is the same, except that F
is a subset of E rather than of V . Clearly, the special case
r = 0 is just the standard notion defined above. This paper
address both of these generalizations.

Yet another generalization of the problem is the client-
server model [EP01]: the input contains also a set C ⊆ E
of so-called client edges and a set S ⊆ E of server edges,

1The assumption of strong connectivity is for notational con-
venience, although the definitions and all our results extend
easily to all digraphs.

http://arxiv.org/abs/1011.3701
http://arxiv.org/abs/1011.3701

the requirement (1) is only needed for edges in C, while
the spanner is only allowed to use edges in S (i.e. E′ ⊆
S). Obviously, the case C = S = E is just the standard
notion defined above. Our results extend to this model in
a straightforward manner, but for the sake of exposition we
shall not address it directly.

1.2 Results
We first present a flow-based LP relaxation for spanner

problems (Section 2). This relaxation is quite natural but
appears to be new, and in particular it differs from the ones
used in [DK99, BGJ+09]. We then use this LP relaxation to
obtain the approximation algorithms described below (see
also Table 1).

General stretch k.
Our first algorithmic result is an Õ(n2/3)-approximation

for the directed k-spanner problem that works for all k ≥ 1,
even with arbitrary edge-lengths (Section 3). This is the first
approximation algorithm that handles the more general case
of arbitrary edge-lengths. Furthermore, using the reduction
of [BGJ+09] from Transitive-Closure k-spanner to directed

k-spanner we obtain for the former problem an Õ(n2/3)-

approximation, improving over their Õ(min{n1−1/k, n/k2})-
approximation for all k � n1/6.

Previous upper bounds for this problem worked only in
the case when all edge lengths are unit. The most relevant
result is due to Bhattacharyya, Grigorescu, Jung, Raskhod-
nikova, and Woodruff [BGJ+09], who gave an Õ(n1−1/k)-
approximation. When k ≥ 4 our result gives a polynomial
improvement. Recently, and independently of our work,
Berman, Raskhodnikova, and Ruan [BRR10] improved the
result of [BGJ+09] by designing an algorithm with approx-

imation ratio Õ(n1−1/dk/2e). For all k ≥ 7 our result gives
an improvement over this new bound. Perhaps more impor-
tantly, we show that the approximation need not increase
with k and provide the first sublinear (in n) approximation
ratio for k ≥ logn, as well as providing the first nontrivial
upper bound for arbitrary edge lengths.

We complement the above algorithmic result by showing
that our (rather natural) LP relaxation has an integrality

gap of Ω̃(1
k
n1/3−ε) for every constant ε > 0, even in the

unit-length case (Section 3.2). Previously, Elkin and Pe-
leg [EP07] proved that for every fixed 0 < ε, δ < 1 and
3 ≤ k = o(nδ), approximating the directed k-spanner with

unit edge-lengths problem within ratio 2log1−ε n is quasi-
NP-hard (similar hardness results were already known for
smaller ranges of k [Kor01]). We conclude that a polyno-
mial approximation (independent of k) is probably the best
one can hope for, and specifically the best possible exponent
appears to be in the range [1/3, 2/3].

Stretch k = 3.
For directed 3-spanner with unit edge-lengths we achieve

an even better Õ(
√
n)-approximation (Section 4). Notice

that this approximation factor matches, up to lower or-
der factors, the O(

√
n)-approximation known for undirected

graphs (an immediate consequence of the absolute guarantee
of [ADD+93] that every undirected graph has a k-spanner

with O(n1+2/(k+1)) edges). The previous approximation

known for this case is Õ(n2/3), first proved by Elkin and

Peleg [EP05]. A similar Õ(n2/3)-approximation can be ob-

tained by the aforementioned algorithm of [BGJ+09], as well
as by our algorithm for general k. As mentioned above, an
Õ(
√
n)-approximation for this case (as well as for the case

of k = 4) was recently provided by Berman, Raskhodnikova,
and Ruan [BRR10] independently of our work. However,
since our techniques are based on rounding a linear program
(as opposed to the combinatorial techniques of [BRR10])
our algorithm extends easily to the setting where each edge
e has some nonnegative cost ce and the goal is to find a
minimum cost 3-spanner. Moreover, our performance guar-
antee is relative to the value of the linear programming relax-
ation rather than the integral optimum, which is a slightly
stronger guarantee.

Stretch k = 2.
This case (directed 2-spanner with unit-length edges) is

rather exceptional and is known to have tight approximation
bounds: O(logn) approximation [KP94, EP01] and Ω(logn)
NP-hardness [Kor01].2 We show similar bounds on the in-
tegrality gap of our LP relaxation (in Section 5), a finding
that is not very surprising but affirms the strong connection
between our LP relaxation and the approximability thresh-
old.

Fault-tolerant spanners.
We also adapt our algorithms to the fault-tolerant setting,

albeit restricted to unit edge-lengths (see Sections 3.1 and
4.1). The fault-tolerant setting is significantly more compli-
cated: the LP relaxation might have an exponential number
of both variables and constraints (see Section 2.1), and we
must resort to bicriteria approximations when the number
of faults r is not constant. Generally speaking, the approx-
imation factors we obtain grow with r like kr in the first
algorithm (for general k), and linearly in r in the second
algorithm (for k = 3 with unit-length edges). These are the
first results for fault-tolerant spanners in directed graphs.
For undirected graphs, absolute bounds (i.e. not as approx-
imation factors) are known [CLPR09, DK11].

1.3 Techniques
All of our approximation algorithms rely on solving the LP

relaxation and rounding the resulting “fractional” solution.
In some cases the LP relaxation does not have polynomial
size, but we can solve it within a reasonable approximation
in polynomial time by reducing it (via duality and the el-
lipsoid algorithm) to a problem known in the literature as
Restricted Shortest Path (Theorems 2.1 and 2.2). A virtue
of all our algorithms is that they are relatively simple, and
thus can be extended to more complicated scenarios with
little effort, as is evident in the fault-tolerance case.

Our main technical contribution is to design new rounding
procedures which use few edges but are effective in creat-
ing many suitable paths. Two very natural and well-known
rounding techniques fail miserably: (1) rounding separately
each edge proportional to its LP value (deterministically or
randomly) is unlikely to form suitable paths, and (2) round-
ing separately each flow-path (say randomly à la Raghavan
and Thompson [RT87]) will use far too many edges. The
challenge is thus to “coordinate” the selection of edges so
that they tend to create suitable paths. Put differently, each

2It is possible to refine the approximation in terms of the
graph’s average/maximum degree.

Directed k-Spanner with unit edge-lengths
Stretch Our Approximation Previous/Independent Approximations Integrality gap

k ≥ 4 Õ(n2/3) Thm 3.3 Õ(n1−1/k) [BGJ+09] / Õ(n1−1/dk/2e) [BRR10] Ω(1
k
· n1/3−ε) Thm 3.6

k = 3 Õ(n1/2) Thm 4.3 Õ(n2/3) [EP05, BGJ+09] / Õ(n1/2) [BRR10] Ω(n1/3−ε) Thm 3.6
k = 2 O(logn) Thm 5.2 O(logn) [KP94, EP01] Ω(logn) Thm 5.1

Similarly but with r (vertex/edge) fault-tolerance
Stretch Our Approximation Previous Approximation

k ≥ 4 (1
k(1+ε)

, O(((1+ε)r(k+r)k+rn lnn

εrrkk
)2/3)) Thm 3.4 —

k = 3 (1
3(1+ε)

, Õ(rn1/2)) Thm 4.4 —

k = 2 O(r logn) Thm 5.3 —

Table 1: Summary of our approximation results for the case of unit edge-lengths

(u, v) ∈ E can be seen as a demand pair with its own flow,
and we need to select one flow-path for each pair in a way
that is “biased” towards using the same edges. Ideally, we
would like to select both the edges and the flow-paths pro-
portionally to their LP value.

Our first algorithm, for general k, is based on classify-
ing demand pairs according to whether they have “few” or
“many” low-stretch paths. The key insight is to make this
classification rely on counting vertices participating in low-
stretch paths. The algorithm is then almost straightforward:
applying a threshold rounding of the LP handles pairs of the
first type, and building shortest-path arborescences from a
small number of randomly chosen vertices handles pairs of
the second type. This algorithm is described in Section 3.
This basic idea of trading off an LP with random arbores-
cences was used in previous algorithms [BGJ+09], but with
a weaker linear program that limited the achievable approx-
imation and required unit edge lengths.

To extend this algorithm to the fault-tolerant case we use
the appropriate LP relaxation and apply the above round-
ing technique to several“perturbations”of the instance, each
obtained by deleting from the graph a random subset of
vertices/edges. This algorithm is described in Section 3.1.
We believe that this perturbation technique, which we call
failure sampling, is of independent interest, and may find
future applications in related fault-tolerant problems. For
example, it was recently shown [DK11] that a simple appli-
cation of failure sampling combined with existing undirected
spanner constructions gives a fault-tolerant undirected span-
ner construction with an absolute bound on its size that
is only Õ(r2) larger than for a non-fault-tolerant spanner
(where r is the number of faults), while the best previous

construction [CLPR09] has size Õ(kr) larger than a non-
fault-tolerant spanner.

Our second algorithm, for directed 3-spanner with unit
edge-lengths, uses randomized rounding but at the level of
vertices rather than edges or flow-paths. For every v ∈ V
we choose a random threshold Tv ∈ [0, 1], and include in
the solution every edge (u, v) ∈ E for which, compared
to the edge’s LP value, either min{Tu, Tv} is “small” or
max{Tu, Tv} is “moderate”. The probability of including an
edge in this solution is proportional to the edge’s LP value,
but our conditions encourage positive correlation along a
path (e.g. for edges sharing an endpoint). The proof boils
down to considering a given demand pair, and analyzing the
possibly many different flow-paths between them. In some

cases, we control the correlation between these flow-paths
using Janson’s inequality (see e.g. [AS00, DP09]). But in
other cases such correlation analysis is not effective, so we
structurally “decompose” the paths into their first, second
and third hops and then use standard concentration bounds
separately for each hop plus some global arguments based on
flow conservation. This rounding procedure extends to the
fault-tolerant case very easily; we just repeat the rounding
procedure several times with fresh coins. These algorithms
are described in Section 4.

1.4 Concluding Remarks and Future Work
Our results for directed k-spanner with unit edge-lengths

address what Elkin and Peleg [EP05] highlighted as two
“challenging directions”: obtaining sublinear approximations
for general k and improving over their Õ(n2/3) approxima-
tion for k = 3. LP-based approaches are quite generic yet
often times optimal, and thus it would not be surprising
if the integrality gap of our LP relaxation gives away the
problem’s true approximability threshold, which appears to
be polynomial with exponent in the range [1/3, 2/3] for all
k ≥ 3.

A bolder conjecture would be that this LP relaxation
also exposes the approximability threshold for other spanner
problems. One such family of problems is the undirected set-
ting, whose consideration we defer to future work but briefly
discuss some preliminary results. For k = 3 the known ap-
proximation (and thus integrality gap) isO(

√
n) by the abso-

lute guarantee of [ADD+93] (or our Theorem 4.3), while our

best integrality gap is Ω̃(n1/8), which we prove by a some-
what tricky analysis of the random graphGn,p for p ≈ 1/

√
n.

For larger k, the known approximation (and thus integrality

gap) is O(n2/(k+1)) via [ADD+93], while our best integral-

ity gap is nΩ(1/k), using the reduction designed by [EP07]
from Min-Rep with large girth (which they conjecture to be
NP-hard). Compared to [EP07], our integrality gap may
be viewed as yet another indication of the inapproximabil-
ity of the basic k-spanner problem (namely, undirected and
with unit edge lengths), but with a factor much closer to
the known approximation algorithm. One intriguing possi-
bility, which is not ruled out by our integrality gaps or by
the known hardness results, is that new rounding techniques
for the linear program could give new bicriteria approxima-
tions for various spanner problems. It might be possible to
lose a little on the required stretch, but gain enormously in
the approximation of the size.

2. FLOW-BASED LP RELAXATION
We begin by describing the linear programming relaxation

of the directed k-spanner problem that we will use. Consider
an instance of the directed k-spanner problem: a directed
graph G = (V,E) and an assignment of lengths to the edges
d : E → R+. It is obviously sufficient to require stretch k
only for edges in G, as this will imply a stretch of at most k
for all other pairs. For (u, v) ∈ E, let Pu,v denote the set of
all stretch k paths (in G) from u to v, i.e. valid paths whose
length is within factor k of the shortest. It is easy to see that
the following LP is a relaxation of the k-spanner problem.
The variables are xe, representing whether edge e ∈ E is
included in G′, and fP , representing flow along path P .

min
∑
e∈E

xe

s.t.
∑

P∈Pu,v :e∈P

fP ≤ xe ∀(u, v) ∈ E, ∀e ∈ E∑
P∈Pu,v

fP ≥ 1 ∀(u, v) ∈ E

xe ≥ 0 ∀e ∈ E
fP ≥ 0 ∀(u, v) ∈ E, ∀P ∈ Pu,v

(2)
In general LP (2) has exponential size. If the number of

paths in Pu,v is at most polynomial for all (u, v) ∈ E (for
example if all edge lengths are unit and k is a constant)
then the LP obviously has only a polynomial number of
variables and constraints, so can be solved optimally. But
in general we will need a different approach. We will work
with the dual, which has a polynomial number of variables
and an exponential number of constraints. So it is suffi-
cient to find a separation oracle for the dual. It turns out
that the separation problem for the dual is the Restricted
Shortest Path problem, sometimes also called the Length
Constrained Lightest Path problem. A PTAS is known for
this problem [LR01, Has92], so we can approximately sepa-
rate for the dual. This is enough to approximately solve the
primal.

Theorem 2.1. For every ε > 0 there is an algorithm that
in polynomial time computes a (1 + ε) approximation to the
optimal solution of LP (2).

Proof. The dual of LP (2) is LP (3), which has a variable
for every edge and a variable for every pair of edges. The
intuition is that the yeu,v variables must form a “fractional
cut” of (u, v) relative to stretch-k paths.

max
∑

(u,v)∈E

zu,v

s.t.
∑

(u,v)∈E

yeu,v ≤ 1 ∀e ∈ E

zu,v −
∑
e∈P

yeu,v ≤ 0 ∀(u, v) ∈ E, ∀P ∈ Pu,v

zu,v ≥ 0 ∀(u, v) ∈ E
yeu,v ≥ 0 ∀(u, v) ∈ E, ∀e ∈ E

(3)
To construct a separation oracle for this LP, note there

are only a polynomial number (|E|) of constraints of the first
type, so we can just check them one by one. For constraints
of the second type, note that for every u, v ∈ V the values
{yeu,v}e∈E are just a non-negative edge-weighting, and the
constraint just requires all of the original stretch k paths

to have total length (under this new weighting) of at least
zu,v. So we get the following problem: given two weightings
of the same graph, find the shortest path under the second
weighting subject to having length at most T > 0 under the
first weighting (for some threshold T). If we could solve this
we would have a separation oracle for the dual. Note that in
the unit edge-length case stretch-k paths correspond exactly
to paths with k or fewer hops, so we can solve this problem
exactly using Bellman-Ford.

For the general lengths setting, this problem has been
considered in the literature under the names “Length Con-
strained Lightest Path” and “Restricted Shortest Path”. An
FPTAS is known to exist [LR01, Has92], which gives us an
approximate separation oracle. So by using Ellipsoid with
this oracle we find a polynomial number of constraints such
that the optimal solution violates all of the other constraints
(which we did not include) by at most 1− ε, i.e. there might
be paths where (1 − ε)zu,v ≤

∑
e∈P y

e
u,v. So if we simply

let z′u,v = (1 − ε)zu,v we have a feasible solution for LP (3)
that is within 1 − ε of optimal. So the optimum of LP (3)
is at least 1 − ε times the optimum of the compact dual
(informally, changing to only a polynomial number of con-
straints did not affect the value of the optimal solution very
much). Thus by strong duality if we solve a compact version
of LP (2) that has only the variables corresponding to the
constraints found by Ellipsoid on the dual (of which there
are only a polynomial number) we get a solution of value
equal to the optimum of the compact dual, which is at most
1/(1− ε) times the value of the actual dual (LP (3)).

2.1 Fault Tolerant Relaxation
There are two versions of the r-fault tolerant k-spanner

problem, depending on whether we protect against edge
faults or vertex faults. The idea in both cases is the same,
so we shall focus on vertex faults: construct a subgraph H
of G such that for every set F of at most r faulting ver-
tices, H \ F is a k-spanner of G \ F . We can change LP (2)
to support this version by allowing a different set of flows
{fFP } for every such F , but using the same capacity vari-
ables {xe}. More formally, let PFu,v be the set of stretch-k
paths from u to v in G \ F . For F ⊆ V , let EF ⊆ E be
the set of edges with neither endpoint in F (i.e. EF is the
set of edges which survive when the vertices in F are re-
moved). Let F = {F ⊆ V : |F | ≤ r} be the collection of
possible fault sets. We will use the following relaxation for
the vertex version (the edge version is analogous):

min
∑
e∈E

xe

s.t.
∑

P∈PFu,v : e∈P

fFP ≤ xe ∀F ∈ F , ∀(u, v) ∈ EF ,
∀e ∈ EF∑

P∈PFu,v

fFP ≥ 1 ∀F ∈ F , ∀(u, v) ∈ EF

xe ≥ 0 ∀e ∈ E

fFP ≥ 0
∀F ∈ F , ∀(u, v) ∈ EF ,
∀P ∈ PFu,v

(4)

It is easy to see that LP (4) has nO(r) constraints. Each
possible fault set acts like an instance of the original span-
ner LP (2), except for the sharing of the capacity variables
{xe}e∈E . So when we take the dual we get a program with

nO(r) variables, and if r is constant the separation oracle we
designed for the non-fault-tolerant version suffices to sepa-
rate this LP as well. When r is not constant this technique
does not work as the dual will have a super-polynomial num-
ber of variables. Instead we will give a bicriteria algorithm,
which in the unit-length case will find a fractional assign-
ment to the xe variables of cost at most 1+ε

ε
times larger

than the cost of the best fractional solution, and that sup-
ports flows that satisfy the constraints for all F of size at
most r/((1 + ε)k).

Theorem 2.2. For every ε > 0 there is a polynomial time
algorithm that, given an instance of the unit edge-length di-
rected r-fault-tolerant k-spanner problem, finds a set of frac-
tional capacities {xe}e∈E with the following two properties:
1) there exist flow variables that satisfy the flow and capac-
ity constraints of LP (4) for all fault sets of size at most

r
(1+ε)k

, and 2)
∑
e∈E xe is at most 1+ε

ε
times larger than the

optimal solution to LP (4).

Proof. When r is super-constant the number of con-
straints in the LP is super-polynomial, so we cannot solve
it using earlier methods (when we transform to the dual we
get a super-polynomial number of variables). Instead of go-
ing through the dual we will stick with the primal and give
a separation oracle. However, since ellipsoid with a separa-
tion oracle takes time polynomial in the dimension (i.e. the
number of variables) we need to transform the problem into
one with a polynomial number of variables. We do this in
a simple way: we simply project the polytope down on the
capacity variables xe, of which there are only O(m). The
objective function of LP (4) uses only the xe variables, so
optimizing over this projection is sufficient to optimize over
the full LP. And since this is a projection of a convex set it
is itself convex, so if we can design a separation oracle the
ellipsoid algorithm will run in polynomial time.

So what would a separation oracle for this projected poly-
tope be? Simply examining LP (4) shows that a setting
of the capacity variables {xe}e∈E is not a valid solution if
and only if there is some set of at most r faults such that
it is impossible to send 1 unit of flow between all demands.
Slightly more formally, {xe}e∈E is not a valid solution if and
only if there is some fault set F (of size at most r) and edge
(u, v) ∈ E such that:

1. (u, v) 6∈ F for the edge-fault case, or u, v 6∈ F for the
vertex-fault case, and

2. There is no way of sending one unit of flow along
stretch-k paths from u to v in G \ F while respect-
ing capacities {xe}.

By strong duality, the maximum flow that can be sent
along u− v paths of stretch at most k is equal to the small-
est fractional cut, where a fractional cut is an assignment
of values ye to the edges such that

∑
e∈P ye ≥ 1 for all

P ∈ PFu,v. The size of such a cut for a particular fault set
F is

∑
e∈E xeye. So for every fault set F of size at most

r, for every remaining demand (u, v), for every fractional
cut {ye}e∈E relative to F and to (u, v), any feasible solution
{xe}e∈E has

∑
e∈E yexe ≥ 1. These are the violated con-

straints that our separation oracle will find (or at least will
approximately find).

So to construct a separation oracle, we want to find a set
of faults F and demand (u, v) with the smallest fractional

cut. If the size of this cut is less than 1, then we have found
a separating hyperplane, and if there is no such set F and
demand (u, v) then the current capacities are feasible. In
order to solve this problem, which we will call Stretch-k
Interdiction, we first write it as a mixed-integer program.
Since there are only a polynomial number of (u, v) demands
we can simply try them all, so our formulation is for some
given (u, v). This formulation is for the vertex-fault version;
the edge-fault version follows the same basic idea. Recall
that the xe’s are the capacity variables in the original prob-
lem, so in this context they are fixed constants and thus the
objective function and the constraints are linear. The inten-
tion of MIP (5) is for zw to represent whether vertex w is
part of the fault set and for the {ye} variables to represent
a fractional cut of the remaining paths.

min
∑
e∈E

xeye

s.t.
∑

(a,b)∈P

(y(a,b) +
1

2
za +

1

2
zb) ≥ 1 ∀P ∈ Pu,v∑

w∈V

zw ≤ r

zu = zv = 0
zw ∈ {0, 1} ∀w ∈ V
ye ≥ 0 ∀e ∈ E

(5)

Claim 2.3. MIP (5) is an exact formulation of Stretch-
k Interdiction.

Proof. Note that there is a one-to-one correspondence
between settings of the zw variables and possible fault sets.
For every setting of the zw’s, the objective value is the min-
imum cost fractional cut (where we have to cut stretch-k
paths that do not hit any faults), which is exactly what we
are trying to optimize.

Lemma 2.4. There is a bicriteria approximation for the
Stretch-k Interdiction problem that uses at most (1 +
ε)kr faults (instead of r) and has cost at most 1+ε

ε
times the

best r-fault solution.

Proof. In order to solve MIP (5) we relax the integral-
ity constraints on the zw variables to 0 ≤ zw ≤ 1, giving
us a linear program. We can solve the resulting LP by con-
structing its own separation oracle: if we define the length
of an edge (a, b) to be y(a,b) + 1

2
za + 1

2
zb, is there a stretch-k

path with length less than 1? Since we only consider the
fault-tolerant setting for the unit-length case we can actu-
ally solve this problem exactly using Bellman-Ford (since in
this case stretch-k is equivalent to k-hop). So we can solve
this LP in polynomial time.

Now we need to round the zw variables to integers. We
will use a very simple threshold rounding: if zw ≥ 1

(1+ε)k

then set z′w = 1; otherwise set z′w = 0. Furthermore, set
y′e = 1+ε

ε
ye. Since any stretch-k path has at most k hops, if∑

w∈P zw ≥
1

1+ε
then zw ≥ 1

(1+ε)k
for some w ∈ V , and thus

z′w covers P . On the other hand, if
∑
w∈P zw < 1

1+ε
then∑

e∈P ye >
ε

1+ε
, so

∑
e∈P y

′
e = 1+ε

ε

∑
e∈P ye ≥ 1 and the

y′ variables cover P . Thus (z′, y′) is a valid solution to the
MIP except that

∑
w∈V z

′
w ≤ (1 + ε)kr instead of being at

most r. In other words, we have designed a ((1 + ε)k, 1+ε
ε

)-
bicriteria approximation algorithm for MIP (5) and thus for
Stretch-k Interdiction.

By using this bicriteria approximation with original fault
budget r/(1 + ε)k instead of r, we will find a separating
hyperplane (whose coefficients are the {y′e} variables) as long
as there is some fault set F of size at most r/(1 + ε)k and
demand (u, v) for which the maximum stretch-k flow (or
equivalently the minimum fractional cut) is at most ε/(1+ε).
So using this separation oracle with the Ellipsoid algorithm
and then rounding the capacities we find up by 1+ε

ε
gives us

a bicriteria algorithm for LP (4), yielding the theorem.

3. APPROXIMATIONS FOR DIRECTED K-
SPANNER

We will now design a Õ(n2/3)-approximation algorithm
for the directed k-spanner problem. We first solve LP (2) as
detailed in Theorem 2.1 to get a fractional solution (x, f).
We then round this solution using Algorithm 1, which has
two main components: a simple threshold rounding scheme
together with a collection of shortest path arborescences.
This technique of combining LP rounding with shortest-
path arborescences has been used before, notably by Bhat-
tacharyya et al. [BGJ+09], so our main contribution is the
new LP and rounding scheme.

Algorithm 1: Rounding Algorithm for Directed k-
Spanner

1 E′ ← {e ∈ E : xe ≥ 1/(3n lnn)2/3}
2 for i← 1 to (3n lnn)2/3 do
3 Choose v ∈ V uniformly at random

4 T ini ← shortest path in-arborescence rooted at v

5 T outi ← shortest path out-arborescence rooted at v

6 Output E′
⋃(
∪(3n lnn)2/3

i=1 (T ini ∪ T outi)
)

To show that this algorithm gives a valid k-spanner, we
begin with a lemma that characterizes edges that are satis-
fied by the thresholding. For every (u, v) in E, let Nu,v ⊆ V
be the set of vertices that lie on a path of stretch at most k
from u to v (i.e. the set of vertices that are used by at least
one path in Pu,v).

Lemma 3.1. For every (u, v) ∈ E there is a path P ∈ Pu,v
with the property that every edge e ∈ P has xe ≥ 1

|Nu,v|2
.

Proof. Suppose this is false for some (u, v). Let B ⊆
Nu,v ×Nu,v be the set of edges with xe < 1/|Nu,v|2. Then
every path P ∈ Pu,v goes through at least one edge in B, so
these edges form a cut between u and v relative to the paths
in Pu,v. Since we have a valid LP solution, we know that at
least one unit of flow is sent from u to v using paths in Pu,v.
This means that the number of edges in B must be at least
|Nu,v|2. But this is a contradiction: every edge inB has both

endpoints in Nu,v, so there are at most
(|Nu,v|

2

)
< |Nu,v|2 of

them.

So if |Nu,v| is small, Lemma 3.1 implies that there is some
stretch k path with the property that every edge is assigned
a large capacity. On the other hand, if |Nu,v| is large then

there are many nodes that are on stretch k paths, so we
should be able to find such a path by picking nodes ran-
domly. This is formalized in the following lemma:

Lemma 3.2. If we sample at least 3n lnn
|Nu,v| vertices inde-

pendently and uniformly at random, then with probability at
least 1− 1/n3 at least one sampled vertex will be in Nu,v.

Proof. The probability that no sampled vertex is in Nu,v

is at most
(

1− |Nu,v|
n

) 3n lnn
|Nu,v| ≤ e−3 lnn = 1/n3 and thus the

probability that at least one sampled vertex is in Nu,v is at
least 1− 1/n3.

Theorem 3.3. There is a polynomial time algorithm that
is given a directed graph G with nonnegative edge lengths and
k ≥ 1 and with high probability returns a directed k-spanner
of size at most O((n lnn)2/3) times the smallest directed k-
spanner.

Proof. The algorithm is simply to solve LP (2) using
Theorem 2.1, and then round the solution using Algorithm 1.
We first prove that it results in a valid spanner with high
probability. Consider some edge (u, v) ∈ E. If |Nu,v| ≤
(3n lnn)1/3, then Lemma 3.1 implies that there is some
stretch k path from u to v using edges contained in E′

and thus in the spanner. On the other hand, if |Nu,v| >
(3n lnn)1/3 then Lemma 3.2 implies that with probability
at least 1− 1/n3 we will have sampled some vertex in Nu,v.
Suppose we sample w ∈ Nu,v on the ith iteration. By the
definition of Nu,v we know that w is on some path from u to
v with stretch at most k, and thus the length of the shortest
path from u to w plus the length of the shortest path from
w to v is at most k · dG(u, v). These paths are contained in
T ini ∪T outi , so the spanner will include both of these shortest
paths and thus will include a path from u to v with stretch
at most k. Taking a union bound over all (u, v) completes
the proof that the returned subgraph is a k-spanner.

To prove that it is a O((n lnn)2/3)-approximation we will

show that each of the two steps costs at mostO((n lnn)2/3)×
OPT . This is obvious for the LP rounding step: an edge
e is in E′ only if xe ≥ 1/(3n lnn)2/3, so |E′| is at most

O((n lnn)2/3) times the LP cost. To show that the second
step does not add many edges, note that every iteration
adds at most 2(n−1) edges, and that n−1 is a trivial lower
bound on OPT (since we are assuming the underlying graph
is connected; if it is not connected then it is easy to modify
this analysis to still hold). Thus the total cost of all the

arborescences is at most 2(3n lnn)2/3 ×OPT .

3.1 Extension to Fault-Tolerant Version
In order to adapt the rounding scheme of Algorithm 1

to the fault-tolerant case we need to show how to modify
the threshold rounding and the arborescence sampling. It is
simple to see that Lemma 3.1 still holds for every fault set,
so the threshold rounding will still work (although we will
change the threshold). But the arborescence rounding must
be changed to allow for faults. The intuition behind the
change comes from the technique of color-coding [AYZ95]:
before randomly sampling the root of an arborescence, in-
dependently fail each element (either edges in the edge-
tolerant version or vertices in the vertex-tolerant version)
with some probability p. We call this technique failure sam-
pling. We then randomly sample a root and include its

shortest-path in- and out-arborescences in the resulting sub-
graph. By setting p, the number of arborescences sampled,
and the threshold of the rounding appropriately, we get the
following theorem. We say that an algorithm is an (α, β)-
approximation for the r-fault-tolerant directed k-spanner
problem if it returns a αr-fault-tolerant k-spanner of size
at most β times the smallest k-spanner, and an algorithm is
a true β-approximation if it is a (1, β)-approximation.

Theorem 3.4. For every constant ε > 0 there is a poly-
nomial time algorithm that is a(

1

(1 + ε)k
,O

((
(1 + ε)r(k + r)k+rn lnn

εrrkk

)2/3
))

approximation for r-fault-tolerant directed k-spanner with
unit edge-lengths. There is also a true approximation al-
gorithm with the same approximation ratio that takes nO(r)

time.

Proof. Suppose that we have a feasible solution for the
fault-tolerant relaxation LP (4) (or at least an approximate
solution from Theorem 2.2). We show how to round a frac-
tional solution to an integer solution, assuming unit edge
lengths. Our rounding is basically the same as for the non-
fault tolerant version. In particular, Lemma 3.1 still holds
for every fault set. So we can, as before, set a threshold
value t and round up any edge with xe ≥ 1/t. The only
difference comes in the random sampling step: in the non-
fault-tolerant version, it sufficed to randomly pick centers of
shortest path in- and out-arborescences. But in the fault-
tolerant setting that is no longer sufficient; the paths we con-
struct must suffice even after failures, which simple shortest
paths obviously will not. So we will add an extra step in-
spired by color-coding [AYZ95]: before randomly sampling
the root of an arborescence, independently fail each element
(either edges in the edge-tolerant version or vertices in the
vertex-tolerant version) with some probability p. We call
this technique failure sampling. We then randomly sample
the root of shortest-path in- and out-arborescences in the
resulting subgraph.

Consider some fault set F and some edge (u, v) that still
survives in G\F . Define NF (u, v) as in the no-fault setting:
a vertex x is in NF (u, v) if x is on some stretch-k u− v path
in G\F . Since Lemma 3.1 still holds, if |NF (u, v)| ≤

√
t then

the threshold rounding satisfies the demand. So we assume
that |NF (u, v)| >

√
t and analyze the probability that a

single round of the random sampling will satisfy the demand.
We will then perform the number of rounds necessary to be
able to take a union bound over all possible F and (u, v).

Since we are assuming all edge lengths are 1, a stretch-k
path is the same as a path with at most k hops. A sufficient
condition for the sampling to succeed for F and (u, v) is for
the arborescence root to be a vertex in NF (u, v), everything
in F to be killed by the failure sampling, and nothing from
the k-hop path containing the root to be killed (note that
such a path must exist by the definition of NF (u, v)). Given
that the the root is selected to be inNF (u, v), the probability
that the particular k-hop u − v path containing the root
is all preserved by the failure sampling is (1 − p)k. And
clearly the probability that everything from F is killed by
the failure sampling is pr, and is independent of the other
two events. So the probability that all three events happen

is pr × |NF (u,v)|
n

× (1− p)k ≥ pr(1− p)k
√
t
n

. The number of

possible failure sets F and demands (u, v) is at most
(
m
r

)
×(

n
2

)
≤ n2r+2 in the edge-failure setting; for vertex failures it

is at most nr+2. Let ` be the number of rounds for which
we repeat the random sampling. Then in order to succeed
on all constraints with probability at least 1/2, we want(

1− pr(1− p)k
√
t

n

)`
≤ 1

2n2r+2

Setting p = r
k+r

and solving for `, we get that it is suffi-
cient to set

` =
2(2r + 2)(k + r)k+rn lnn

rrkk
√
t

As in the non-fault-tolerant case, we balance out the cost
of the sampling (`) with the cost of the threshold rounding
(t) to get a total approximation of

O

((
r(k + r)k+rn lnn

rrkk

)2/3
)

If r is constant, then this rounding combined with our
ability to actually solve LP (4) gives us the theorem for the
r = O(1) case. If r is not constant then we need to use
Theorem 2.2 before the rounding procedure, giving us the
claimed bicriteria approximation.

3.2 Integrality Gap
We now want to complement our approximation algorithm

by proving a nearly matching integrality gap. We do this by
a reduction from the Min-Rep problem. In Min-Rep we are
given a bipartite graph G = (U, V,E) together with a parti-
tion of U and V into groups U1, U2 . . . , Up and V1, V2, . . . Vp.
We say that there is a superedge between two groups (Ui, Vj)
if there is some u ∈ Ui and some v ∈ Vj such that {u, v} ∈ E.
The goal is to find a subset X ⊆ U ∪ V of as few vertices
as possible such that for every pair of groups (Ui, Vj) with
a superedge there is some u ∈ Ui ∩X and v ∈ Vj ∩X such
that {u, v} ∈ E.

Elkin and Peleg [EP07] proved hardness of approximation
for directed k-spanner by using a reduction from Min-Rep,
and we will use their reduction to prove an integrality gap.
But instead of reducing from generic Min-Rep instances as
in a hardness proof, we will only apply the reduction to in-
stances of Min-Rep in which every superedge actually cor-
responds to a matching between vertices, i.e. if (Ui, Vj) is
a superedge then there is a matching between Ui and Vj .
The interested reader might note that these are basically
instances of the Unique Games Problem [Kho02].

We first give a lemma that is implicit in the integrality gap
for Label Cover recently proved by Charikar, Hajiaghayi,
and Karloff [CHK09]:

Lemma 3.5. For every constant ε > 0, there are instances
of Min-Rep with the following properties:

1. Every group has size n
2
3
−ε,

2. OPT ≥ n
2
3
−ε,

3. There is a matching between every Ui and Vj.

We now use this lemma to prove the main integrality gap
theorem by applying the Elkin and Peleg reduction [EP07]
to instances from Lemma 3.5 and showing there it has a
small fractional solution.

Theorem 3.6. The integrality gap of LP (2) on the unit-

length directed k-spanner problem is Ω(1
k
n

1
3
−ε) for every

constant ε > 0.

Proof. The instances that we use to prove this integral-
ity gap are the instances we obtain by applying the reduction
of Elkin and Peleg [EP07] to the instances from Lemma 3.5.
We explain the reduction in detail so as to analyze the best
fractional LP solution. Let r be the number of groups, so

in the instances from Lemma 3.5 we have that r = n
1
3

+ε.
For each group we will add x = n

2
3
−ε/((k − 1)/2) paths,

where each path has length (k− 1)/2 (for ease of exposition
we assume that k is odd, but it does not actually matter).
More formally, let (U ′, V ′, E′) be a Min-Rep instance from
Lemma 3.5, and let nMR = |U ′ ∪ V ′|. Then the vertex set
of our spanner problem is

V =
(
U ′ ∪ V ′

)⋃(
∪xp=1 ∪

r/2
i=1 ∪

(k−1)/2
j=1 spi,j

)
⋃(
∪xp=1 ∪

r/2
i=1 ∪

(k−1)/2
j=1 tpi,j

)
.

Note that n = |V | = nMR + x · r · (k − 1)/2 = nMR +

((n
2
3
−ε

MR /((k− 1)/2)) ·n
1
3

+ε

MR · ((k− 1)/2) = 2nMR, so we have
only doubled the number of vertices.

The edge set is divided into a few different components.
First, let E′′ = {(u, v) : u ∈ U ′, v ∈ V ′, {u, v} ∈ E′} be
the original Min-Rep edges but now directed from U to V .

Next we add a clique to every group: let EC = ∪r/2i=1((Ui ×
Ui)∪ (Vi × Vi)). We also want to turn the new vertices into
paths: let

EM =

x⋃
p=1

r/2⋃
i=1

(k−3)/2⋃
j=1

{(sxi,j , sxi,j+1), (txi,j , t
x
i,j+1)}

so for every fixed i and p, the EM edges form a directed
path from spi,1 to sxi,(k−1)/2, and similarly for the t vertices.
We also add edges to connect these paths to the original
vertices: let EU equal

x⋃
p=1

r/2⋃
i=1

(
{(spi,(k−1)/2, u) : u ∈ Ui} ∪ {(v, tpi,1) : v ∈ Vi}

)
.

Finally, we want to add edges to connect the endpoints of
paths corresponding to superedges (which in our case is all
(Ui, Vj): let

EI =

x⋃
p=1

r/2⋃
i=1

r/2⋃
j=1

{(spi,1, t
p
j,(k−1)/2)}.

.
So our final edge set is E = E′′ ∪ EC ∪ EM ∪ EU ∪ EI .
Elkin and Peleg [EP07] showed that the optimal spanner

has size at least Ω(x×OPTMR), where OPTMR is the size
of the smallest Min-Rep solution. So in our case, the best
spanner has size at least

Ω

 n
2
3
−ε

MR

(k − 1)/2
× n

2
3
−ε

MR

 = Ω

(
1

k
n

4
3
−2ε

)
.

On the other hand, we claim that the best fractional solu-
tion is small, namely O(n). To see this, consider the follow-
ing fractional assignment. All edges inside the tails, i.e. all
edges in EM , have fractional capacity 1. Let q = nMR/r =

n
2
3
−ε be the size of each group. We set the fractional capac-

ity of all edges in E′′∪EC∪EU to 2/q, and set the fractional
capacity of all edge in EI to 0. The cost of this solution is

|EM |+
2

q

(
|E′′|+ |EC |+ |EU |

)
≤ xr k − 3

2
+

2

q

(
r2q

4
+ q2r + xrq

)
≤ xr k − 3

2
+

2r2

4
+ 2qr + 2xr

≤ nMR + n
1
3

+ε

MR + 2nMR + 2nMR

= O(n).

So it remains to prove that it is a valid fractional solution.
We proceed by analyzing each type of edge. Obvious since
every edge in EM is included with capacity 1, we are able
to send one unit of flow. For some edge (u, v) ∈ E′′, we
can send q − 1 flows, each of size 1/q, first to the vertices
in the same group as u (via the EC edges), then across the
matching to the group containing v (via E′′ edges), and then
back to v (via EC edges). We can send the final 1/q flow
directly on the edge (u, v). These paths have length 3 ≤ k
and obviously satisfy capacity constraints. For some edge
(a, b) ∈ EC , we can do the same thing without crossing any
matching: send 1/(q − 1) ≤ 2/q flow to each of the group
mates of a, and then back into b. For an edge (spi,(k−1)/2, u) ∈
EU , we can send 1/q flow from si,(k−1)/2 to each of the
vertices in the group containing u (using EU edges) and the
from those vertices to u (using EC edges). Similarly, for an
edge (v, tpi,1) we can send 1/(q − 1) < 2/q flow to each of
the other vertices in Vi, and then from these vertices to tpi,q.
Finally, for an edge (spi,1, t

p
j,(k−1)/2) ∈ EI we can send one

unit along the spi,... path, then split it into q paths using the
EU edges, send each of those 1/q flows across the matching
using E′′ edges, recombine the flow at tpj,1 using EU edges,
and then send it down the path to tpj,(k−1)/2. Each of these

q paths has length k and satisfies the fractional capacities.
Thus this is a valid fractional solution.

The reason that we lose an extra 1
k

in the integrality gap
is that because we are in the unit-length case we need to
add many vertices in order to build long paths. It is easy to

modify the proof of Theorem 3.6 to give a gap of Ω(n
1
3
−ε)

in the arbitrary lengths setting.

4. DIRECTED UNIT-LENGTH 3-SPANNER
While our Õ(n2/3)-approximation is an improvement over

previous work for arbitrary edge lengths and for unit edge
lengths with k > 3, for unit edge lengths with k = 3 it
matches the previous bounds of Elkin and Peleg [EP05] and
Bhattacharyya et al. [BGJ+09]. So for the specific case of
unit-length directed 3-spanner we develop a different round-
ing algorithm for the flow-based LP (2) that gives an Õ(

√
n)-

approximation. Our algorithm first solves LP (2) and then
rounds it using Algorithm 2. Informally, this rounding works
by choosing a threshold value Tv ∈ [0, 1] for each vertex
v ∈ V . We then add all edges (u, v) where either Tu or Tv is
at most ρxu,v, where ρ = Θ(

√
n logn) is an inflation factor

to make the probabilities large enough. This turns out to
not be quite enough edges, so we also add all edges (u, v)
where both Tu and Tv are at most

√
ρxu,v. For technical rea-

sons we have to add an extra complication: every vertex will

actually choose another threshold, T ′v, and edges are added
as described for every combination of T and T ′ thresholds.

Algorithm 2: Rounding Algorithm for 3-spanner

1 Set ρ = C
√
n logn for a large constant C

2 For every v ∈ V choose independently two values
Tv, T

′
v ∈R [0, 1]

3 Let E1 = {(u, v) ∈ E : min{Tu, T ′u, Tv, T ′v} ≤ ρ · xu,v}
4 Let E2 = {(u, v) ∈ E :

max{min{Tu, T ′u},min{Tv, T ′v}} ≤
√
ρ · xu,v

5 Output E′ = E1 ∪ E2

Lemma 4.1. Algorithm 2 returns a set of edges E′ with
E[|E′|] ≤ O(ρ) times the size of the smallest 3-spanner.

Proof. See [DK10].

Lemma 4.2. For every edge (u, v) ∈ E, the probability
that there is no path of length at most 3 from u to v in E′

is at most 1/e.

Proof. We provide only a sketch; see [DK10] for details.
If a significant amount of flow is sent along paths of length
1 or 2, then the analysis is trivial. If most of the flow is sent
along paths of length 3, then we break the paths into classes
depending on whether it is better to use E1 or E2 when
analyzing each hop and then prove that at whichever class
has the most flow contributes at least one path with prob-
ability at least 1/e. In some cases we analyze the expected
number of paths of length 3 and then control correlations us-
ing concentration bounds such as Janson’s inequality [DP09,
Chapter 3]. But in other cases this type of analysis is not ef-
fective, so we “decompose” the paths into their first, second
and third hops and then use standard concentration bounds
separately for each hop plus some global arguments based
on flow conservation.

It is interesting to note that Lemmas 4.1 and 4.2 hold even
for a weighted version in which every edge has an arbitrary
nonnegative cost associated with it and our goal is to find the
minimum cost 3-spanner. So our approximation algorithm
actually generalizes to this weighted version.

Theorem 4.3. There is a polynomial time Õ(
√
n) ap-

proximation algorithm for the unit-length directed 3-spanner
problem, even with arbitrary costs on the edges.

Proof. The algorithm is simple: solve LP (2) (note that
this can be done exactly since in this setting the linear pro-
gram has only a polynomial number of variable) and then
repeat Algorithm 2 with fresh randomness O(logn) times.
Lemma 4.2 implies that this gives a valid solution with high
probability, and Lemma 4.1 implies that it is a Õ(

√
n)-

approximation.

4.1 Extension to Fault-Tolerant Version
It is easy to see that this algorithm can be trivially ex-

tended to the r-fault-tolerant setting. For each set F of
faults, the analysis works the same as in Lemma 4.2. We
just need to solve LP (4) instead of LP (2) and change
the parameters (ρ and the number of times Algorithm 2
is repeated) to make the probability of failure small enough
to apply a union bound to all possible failure sets F and

edges (u, v) instead of just over the edges. In particular,
for the vertex failure setting we need the probability of fail-
ure to be less than 1/nr+2 and for the edge failure setting
we need to probability of failure to be less than 1/n2r+2.
The main takeaway is that for directed 3-spanner we get
fault-tolerance at a cost of only Õ(r) instead of something
exponential in r, as for the k > 3 case and previous work on
absolute bounds [CLPR09].

Theorem 4.4. For every constant ε > 0 there is a poly-

nomial time
(

1
3(1+ε)

, O(1+ε
ε
r
√
n log2 n)

)
-approximation al-

gorithm for the r-fault-tolerant directed 3-spanner problem
with unit lengths. There is also a true approximation al-
gorithm with approximation ratio O(r

√
n log2 n) that takes

nO(r) time.

Proof. See [DK10].

5. UNIT-LENGTH 2-SPANNER
The 2-spanner problem is qualitatively and quantitatively

different from k-spanner with k > 2: it is known [KP94,
EP01] that it can be approximated to O(logn) and that
this is tight [Kor01] (assuming P 6= NP). Note that this
approximation algorithm is only known to work for the unit-
length version, but does allow the edges to have arbitrary
costs with the goal of finding a 2-spanner of minimum cost.
We show that our LP relaxation (2) has integrality gap of
Θ(logn), and thus offers comparable approximation ratio.
We further show that our approach, namely the flow-based
LP relaxation and a direct rounding procedure, easily adapts
to bounded-degree case which was studied in the literature
[KP94, DK99, EP01], and also to the fault-tolerant case, for
which no approximation was previously known. All proofs
can be found in the full version [DK10].

To prove a lower bound on the integrality gap, we will
apply the hardness reduction from set cover to 2-spanner
to an instance of set cover that has a large integrality gap.
This gives the following theorem:

Theorem 5.1. The integrality gap of LP (2) for the 2-
spanner problem with unit edge-lengths is Ω(logn) even when
all edge costs are unit.

We give an upper bound on the integrality gap of the LP
by randomized rounding of the LP solution. A simplified
version of the rounding scheme for 3-spanner described in
Algorithm 2 suffices to give an O(logn)-approximation, even
for the case when the edges have costs. If the edges do not
have costs, then by using constructive versions of the Lovász
Local Lemma we can improve this to O(log ∆) (where ∆ is
the maximum degree in G). This gives the following theo-
rem:

Theorem 5.2. For the directed 2-spanner problem with
unit edge-lengths, LP (2) has integrality gap O(logn) with
edge costs and O(log ∆) if all edge costs are unit.

It is easy to extend these results to the r-fault-tolerant
version of the problem, with respect to the LP relaxation (4)
(which in this setting we can actually solve). We will have
to pay only an extra multiplicative r in the approximation.

Theorem 5.3. For the r fault-tolerant version of the di-
rected 2-spanner problem with unit edge-lengths, the LP re-
laxation (4) has integrality gap O(r logn) with edge costs
and O(r log ∆) if all edge costs are unit.

6. REFERENCES
[ADD+93] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and

J. Soares. On sparse spanners of weighted
graphs. Discrete Comput. Geom., 9(1):81–100,
1993.

[AP95] B. Awerbuch and D. Peleg. Online tracking of
mobile users. J. ACM, 42(5):1021–1058, 1995.

[AS00] N. Alon and J. H. Spencer. The probabilistic
method. Wiley-Interscience [John Wiley &
Sons], New York, second edition, 2000.

[AYZ95] N. Alon, R. Yuster, and U. Zwick.
Color-coding. J. ACM, 42(4):844–856, 1995.

[BGJ+09] A. Bhattacharyya, E. Grigorescu, K. Jung,
S. Raskhodnikova, and D. P. Woodruff.
Transitive-closure spanners. In Proceedings of
the 20th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 932–941, 2009.

[BRR10] P. Berman, S. Raskhodnikova, and G. Ruan.
Finding Sparser Directed Spanners. In FSTTCS
2010, volume 8 of Leibniz International
Proceedings in Informatics (LIPIcs), pages
424–435, 2010.

[CHK09] M. Charikar, M. Hajiaghayi, and H. J. Karloff.
Improved approximation algorithms for label
cover problems. In European Symposium on
Algorithms, pages 23–34, 2009.

[CLPR09] S. Chechik, M. Langberg, D. Peleg, and
L. Roditty. Fault-tolerant spanners for general
graphs. In 41st Annual ACM Symposium on
Theory of Computing, pages 435–444. ACM,
2009.

[DK99] Y. Dodis and S. Khanna. Design networks with
bounded pairwise distance. In 31st Annual
ACM Symposium on Theory of Computing,
pages 750–759. ACM, 1999.

[DK10] M. Dinitz and R. Krauthgamer. Directed
spanners via flow-based linear programs. CoRR,
abs/1011.3701, 2010.

[DK11] M. Dinitz and R. Krauthgamer. Fault-tolerant
spanners: Better and simpler. In PODC, 2011.

[DP09] D. Dubhashi and A. Panconesi. Concentration
of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press, New
York, NY, USA, 2009.

[EEST08] M. Elkin, Y. Emek, D. A. Spielman, and S.-H.
Teng. Lower-stretch spanning trees. SIAM J.
Comput., 38(2):608–628, 2008.

[EP01] M. Elkin and D. Peleg. The client-server
2-spanner problem with applications to network
design. In 8th International Colloquium on
Structural Information and Communication
Complexity (SIROCCO), pages 117–132, 2001.

[EP05] M. Elkin and D. Peleg. Approximating
k-spanner problems for k > 2. Theor. Comput.
Sci., 337(1-3):249–277, 2005.

[EP07] M. Elkin and D. Peleg. The hardness of
approximating spanner problems. Theor. Comp.
Sys., 41(4):691–729, 2007.

[Has92] R. Hassin. Approximation schemes for the
restricted shortest path problem. Math. Oper.
Res., 17(1):36–42, 1992.

[Kho02] S. Khot. On the power of unique 2-prover
1-round games. In 34th Annual ACM
Symposium on the Theory of Computing, pages
767–775, July 2002.

[Kor01] G. Kortsarz. On the hardness of approximating
spanners. Algorithmica, 30(3):432–450, 2001.

[KP94] G. Kortsarz and D. Peleg. Generating sparse
2-spanners. J. Algorithms, 17(2):222–236, 1994.

[LR01] D. H. Lorenz and D. Raz. A simple efficient
approximation scheme for the restricted
shortest path problem. Operations Research
Letters, 28(5):213 – 219, 2001.

[PS89] D. Peleg and A. A. Schäffer. Graph spanners. J.
Graph Theory, 13(1):99–116, 1989.

[RT87] P. Raghavan and C. D. Thompson.
Randomized rounding: a technique for provably
good algorithms and algorithmic proofs.
Combinatorica, 7(4):365–374, 1987.

[ST04] D. A. Spielman and S.-H. Teng. Nearly-linear
time algorithms for graph partitioning, graph
sparsification, and solving linear systems. In
36th Annual ACM Symposium on Theory of
Computing, pages 81–90. ACM, 2004.

[TZ05] M. Thorup and U. Zwick. Approximate
distance oracles. J. ACM, 52(1):1–24, 2005.

