
Vertex Sparsifiers: New Results from Old Techniques?

Matthias Englert1??, Anupam Gupta2? ? ?, Robert Krauthgamer3†, Harald Räcke1‡,
Inbal Talgam-Cohen3, and Kunal Talwar4

1 Department of Computer Science and DIMAP, University of Warwick, Coventry, UK.
2 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA.

3 Weizmann Institute of Science, Rehovot, Israel.
4 Microsoft Research Silicon Valley. Mountain View, CA, USA.

Abstract. Given a capacitated graph G = (V, E) and a set of terminals K ⊆
V , how should we produce a graph H only on the terminals K so that every
(multicommodity) flow between the terminals in G could be supported in H with
low congestion, and vice versa? (Such a graph H is called a flow-sparsifier for G.)
What if we want H to be a “simple” graph? What if we allow H to be a convex
combination of simple graphs?

Improving on results of Moitra [FOCS 2009] and Leighton and Moitra [STOC
2010], we give efficient algorithms for constructing: (a) a flow-sparsifier H that
maintains congestion up to a factor of O(log k

log log k), where k = |K|. (b) a convex
combination of trees over the terminals K that maintains congestion up to a factor
of O(log k). (c) for a planar graph G, a convex combination of planar graphs
that maintains congestion up to a constant factor. This requires us to give a new
algorithm for the 0-extension problem, the first one in which the preimages of
each terminal are connected in G. Moreover, this result extends to minor-closed
families of graphs.

Our bounds immediately imply improved approximation guarantees for several
terminal-based cut and ordering problems.

1 Introduction

Given an undirected capacitated graph G = (V, E) and a set of terminal nodes K ⊆ V ,
we consider the question of producing a graph H only on the terminals K so that the
congestion incurred on G and H for any multicommodity flow routed between terminal
nodes is similar. Often, we will want the graph H to be structurally “simpler” than G
as well. Such a graph H will be called a flow-sparsifier for G; the loss (also known as
quality) of the flow-sparsifier is the factor by which the congestions in the graphs G and
H differ. For instance, when K = V , the results of [Räc08] give a convex combination of

? A full version appears at http://arxiv.org/abs/1006.4586
?? Supported by EPSRC grant EP/F043333/1 and DIMAP (the Centre for Discrete Mathematics

and its Applications).
? ? ? Research was partly supported by the NSF award CCF-0729022, and an Alfred P. Sloan

Fellowship. Research done when visiting Microsoft Research SVC.
† Supported in part by The Israel Science Foundation (grant #452/08), and by a Minerva grant.
‡ Supported by DIMAP (the Centre for Discrete Mathematics and its Applications).

http://arxiv.org/abs/1006.4586

trees H with a loss of O(log n). We call this a tree-based flow-sparsifier—it uses a convex
combination of trees.5 Here and throughout, k = |K| denotes the number of terminals,
and n = |V | the size of the graph.

For the case where K , V , it was shown by Moitra [Moi09] and by Leighton and
Moitra [LM10] that for every G and K, there exists a flow-sparsifier H = (K, EH) whose
loss is O(log k

log log k), and moreover, one can efficiently find an H′ = (K, EH′) whose loss is
O(log2 k

log log k). They used these to give approximation algorithms for several terminal-based
problems, where the approximation factor depended poly-logarithmically on the number
of terminals k, and not on n. We note that they construct an arbitrary graph on K, and do
not attempt to directly obtain “simple” graphs; e.g., to get tree-based flow-sparsifiers on
K, they apply [Räc08] to H′, and increase the loss by an O(log k) factor.

In this paper, we simplify and unify some of these results: we show that using
the general framework of interchanging distance-preserving mappings and capacity-
preserving mappings from [Räc08] (which was reinterpreted in an abstract setting by
Andersen and Feige [AF09]), we obtain the following improvements over the results
of [Moi09, LM10].6

1. We show that using the 0-extension results [CKR04, FHRT03] in the framework
of [Räc08, AF09] almost immediately gives us efficent constructions of flow-
sparsifiers with loss O(log k

log log k). While the existential result of [LM10] also used the
connection between 0-extensions and flow sparsifiers, the algorithmically-efficient
version of the result was done ab initio, increasing the loss by another O(log k) fac-
tor. We use existing machinery, thereby simplifying the exposition somewhat, and
avoiding the increased loss.

2. We then use a randomized tree-embedding due to [GNR10], which is a variant of
the so-called FRT tree-embedding [FRT04] where the expected stretch is reduced to
O(log k) by requiring the non-contraction condition only for terminal pairs. Using
this refined embedding in the framework of [Räc08, AF09], we obtain efficient
constructions of tree-based flow-sparsifiers with loss O(log k).

3. We then turn to special families of graphs. For planar graphs, we give a new 0-
extension algorithm that outputs a convex combination of 0-extensions f : V → K
(with f (x) = x for all x ∈ K), such that all the corresponding 0-extension graphs
H f = (K, E f) (namely, E f = {(f (u), f (v)) : (u, v) ∈ E}) are planar graphs, and
its expected stretch maxu,v∈V E[dH f (f (u), f (v))]/dG(u,v) ≤ O(1). In particular, the planar
graphs H f produced are graph-theoretic minors of G. We remark that the known
0-extension algorithms [CKR04, AFH+04, LN05] do not ensure planarity of H f .
It follows that planar graphs admit a planar-based flow-sparsifier (i.e., which is a
convex combination of capacitated planar graphs on vertex-set K) with loss O(1),
and that we can find these efficiently. The fact that flow-sparsifiers with this loss
exist was shown by [LM10], but their sparsifiers are not planar-based.

5 Given a class F of graphs, we define an F -flow-sparsifier to be a sparsifier that uses a single
graph from F and an F -based flow sparsifier to be a sparsifier that uses a convex combination
of graphs from F .

6 Recently, it has come to our attention that, independent of and concurrent to our work, Charikar,
Leighton, Li, and Moitra, and independently Makarychev and Makarychev, obtained results
similar to the first two below, as well as related lower bounds.

Moreover, the 0-extension algorithm itself can be viewed as a randomized version
of Steiner point removal in metrics: previously, it was only known how to remove
Steiner points from tree metrics with O(1) distortion [Gup01]. We believe this
randomized procedure is of independent interest; e.g., combined with an embedding
of [GNRS04], this gives an alternate proof of the fact that the metric induced on the
vertices of a single face of a planar graph can be embedded into a distribution over
trees [LS09].

4. The results for planar graphs are in fact much more general. Suppose G is a βG-
decomposable graph (see definition in Section 1.1). Then we can efficiently output
a distribution over graphs H f = (K, E f) such that these are all minors of G, and
the expected stretch maxu,v∈V E[dH f (f (u), f (v))]/dG(u,v) is bounded by O(βG log βG). Now
applying the same ideas of interchanging distance and capacity preservation, given
any G and K, we can find minor-based flow sparsifiers with loss O(βG log βG).

5. Finally, we show lower bounds on flow-sparsifiers: we show that flow-sparsifiers that
are 0-extensions of the original graph must have loss at least Ω(

√
log k) in the worst-

case. For this class of possible flow sparsifiers, this improves on the Ω(log log k)
lower bound for sparsifiers proved in [LM10]. We also show that any flow-sparsifier
that only uses edge capacities which are bounded from below by a constant, must
suffer a loss of Ω(

√
log k/ log log k) in the worst-case.

We can use these results to improve the approximation ratios of several application
problems. In many cases, constructions based on trees allow us to use better algorithms.
Our results are summarized in Table 1. Note that apart from the two linear-arrangement
problems, our results smoothly approach the best known results for the case k = n.

Previous Best Result Our Result
Best Result when

k = n

Flow Sparsifiers (efficient) O(log2 k
log log k) O(log k

log log k) —

Tree-Based Flow Sparsifiers O(log n)†, O(log3 k
log log k) O(log k) Θ(log n)

Minor-based Flow Sparsifiers — O(βG log βG) —

Steiner Oblivious Routing Õ(log2 k) O(log k) Θ(log n)
`-Multicut Õ(log3 k) O(log k) O(log n)
Steiner Minimum Linear
Arrangement (SMLA) Õ(log2.5 k) O(log k log log k) O(

√
log n log log n)

SMLA in planar graphs Õ(log1.5 k) O(log log k) O(log log n)
Steiner Min-Cut Linear
Arrangement Õ(log4 k) O(log2 k) O(log1.5 n)

Steiner Graph Bisection O(log n)†,O(log3 k
log log k) O(log k) O(log n)

Table 1. Summary of our results. Previous results marked with † from [Räc08], all others
from [Moi09, LM10].

Many of these applications further improve when the graph comes from a minor-
closed family (and hence has good β-decompositions): e.g., for the Steiner Minimum

Linear Arrangement problem on planar graphs, we can get an O(log log k)-approximation
by using our minor-based flow-sparsifiers to reduce the problem to planar instances on
the k terminals. Finally, in the full version we show how to get better approximations
for the Steiner linear arrangement problems above using direct LP/SDP approaches.

1.1 Notation

Our graphs will have edge lengths or capacities; all edge-lengths will be denoted by
` : E → R≥0, and edge costs/capacities will be denoted by c : E → R≥0. When we refer
to a graph (G, `), we mean a graph G with edge-lengths `(·); similarly (H, c) denotes
one with capacities c(·). When there is potential for confusion, we will add subscripts
(e.g., cH(·) or `G(·)) for disambiguation. Given a graph (G, `), the shortest-path distances
under the edge lengths ` is denoted by dG : V × V → R≥0.

Given a graph G = (V, E) and a subset of vertices K ⊆ V designated as terminals, a
retraction is a map f : V → K such that f (x) = x for all x ∈ K. For (G, c) and terminals
K ⊆ V , a K-flow in G is a multicommodity flow whose sources and sinks lie in K.

Decomposition of Metrics. Let (X, d) be a metric space with terminals K ⊂ X. A partition
(i.e., a set of disjoint “clusters”) P of X is called ∆-bounded if every cluster S ∈ P satisfies
maxu,v∈S d(u, v) ≤ ∆. The metric (X, d) with terminals K is called β-decomposable if for
every ∆ > 0 there is polynomial time algorithm to sample from a probability distribution
µ over partitions of X, with the following properties:

• Diameter bound: Every partition P ∈ supp(µ) is ∆-bounded.
• Separation event: For all u, v ∈ X, PrP∈µ[∃S ∈ P such that u ∈ S but v < S] ≤ β ·

d(u, v)/∆.

β-decompositions of metrics have become standard tools with many applications; for
more information see, e.g., [LN05].

We say that a graph G = (V, E) is β-decomposable if for every nonnegative edge-
lengths `G, the resulting shortest-path metric dG is β-decomposable. Additionally, we
assume that each cluster S in any partition P induces a connected subgraph of G; if not,
break such a cluster into its connected components. The diameter bound and separation
probabilities for edges remain unchanged by this operation; the separation probability for
non-adjacent pairs (u, v) can be bounded by β·d(u, v)/∆ by noting that some edge on the u-
v shortest path must be separated for (u, v) to be separated, and applying the union bound.

2 0-Extensions

In this section we provide a definition of 0-extension which is somewhat different than
the standard definition, and review some known results for 0-extensions. We also derive
in Corollary 1 a variation of a known result on tree embeddings, which will be applied
in Section 3.

A 0-extension of graph (G = (V, E), `G) with terminals K ⊆ V is usually defined as a
retraction f : V → K. We define a 0-extension to be a retraction f : V → K along with
another graph (H = (K, EH), `H); here, the length function `H : EH → R+ is defined

as `H(x, y) = dG(x, y) for every edge (x, y) ∈ EH . Note that this immediately implies
dH(x, y) ≥ dG(x, y) for all x, y ∈ K. Note also that H f defined in Section 1 is a special case
of H in which EH = {(f (u), f (v)) : (u, v) ∈ E}, whereas, in general, H is allowed more
flexibility (e.g., H can be a tree). This flexibility is precisely the reason we are interested
both in the retraction f and in the graph H—we will often want H to be structurally
simpler than G (just like we want a flow-sparsifier to be simpler than the original graph).

For a (randomized) algorithmA that takes as input (G, `G) and outputs a (random)
0-extension (H, `H), the stretch factor of algorithmA is the minimum α ≥ 1 such that

EH[dH(f (x), f (y))] ≤ α dG(x, y) for all x, y ∈ V.

The following are well-known results for 0-extension.

Theorem 1 ([FHRT03]). There is an algorithm AFHRT for 0-extension with stretch
α = αFHRT := O(log k

log log k).

Theorem 2 ([CKR04], see also [LN05]). If the graph is β-decomposable, there is an
algorithmACKR for 0-extensions with stretch α = αCKR := O(β).

In particular, if the graph G belongs to a non-trivial family of graphs that is minor-closed,
it follows from [KPR93, FT03] that α = O(1).

2.1 0-Extension With Trees

The following result is a direct corollary of [GNR10, Theorem 7] (which in turn is an
extension of the tree-embedding theorem of [FRT04]). Details omitted from this version.

Corollary 1 (Tree 0-extension). There is a randomized polynomial-time algorithm
AGNR for 0-extension that has αGNR = O(log k); furthermore, the graphs output by the
algorithm are trees on the vertex set K.

As an aside, a weaker version of Corollary 1 with O(log2 k
log log k) can be proved as

follows. First use Theorem 1 to obtain a random 0-extension H from G such that
EH[dH(x, y)] ≤ O(log k

log log k) dG(x, y) for all x, y ∈ K. Then use the result of [FRT04] to
get a random tree H′ = (K, EH′) such that EH′[dH′(x, y)] ≤ O(log k) dH(x, y) for all
x, y ∈ V(H). Combining these two results proves the weaker claim.

3 Flow-Sparsifiers

Recall that given an edge-capacitated graph (G, c) and a set K ⊆ V of terminals, a flow-
sparsifier with quality ρ is another capacitated graph (H = (K, EH), cH) such that (a) any
feasible K-flow in G can be feasibly routed in H, and (b) any feasible K-flow in H can
be routed in G with congestion ρ.

3.1 Interchanging distance and capacity

We use the framework of Räcke [Räc08], as interpreted by Andersen and Feige [AF09].
Given a graph G = (V, E), let P be a collection of multisets of E, which will henceforth
be called paths. A mapping M : E → P maps each edge e to a path M(e) in P. Such a
map can be represented as a matrix M in Z|E|×|E| where Me,e′ is the number of times the
edge e′ appears in the path (multiset) M(e). Given a collectionM of mappings (which
we call the admissible mappings), a probabilistic mapping is a probability distribution
over (or, convex combination of) admissible mappings; i.e., define λM ≥ 0 for each
M ∈ M such that

∑
M∈M λM = 1.

Distance Mappings. Given G = (V, E) and lengths ` : E → R>0,
• The stretch of an edge e ∈ E under a mapping M is

∑
e′ Me,e′`(e′)/`(e).

• The average stretch of e under a probabilistic mapping {λ} is
∑

M λM(
∑

e′ Me,e′
`(e′)
`(e)).

• The stretch of a probabilistic mapping is the maximum over all edges of their average
stretch.

Capacity Mappings. Given a graph G with edge capacities c : E → R>0,
• The load of an edge e′ ∈ E under a mapping M is

∑
e Me,e′c(e)/c(e′).

• The expected load of e′ under a probabilistic mapping {λ} is
∑

M λM(
∑

e Me,e′
c(e)
c(e′)).

• The congestion of a probabilistic mapping is the maximum over all edges of their
expected loads.

The Transfer Theorem. Andersen and Feige [AF09] distilled ideas from Räcke [Räc08]
to state:

Theorem 3 (Theorem 6 in [AF09]). Fix a graph G and a collectionM of admissible
mappings. For every ρ ≥ 1, the following are equivalent:

1. For every collection of edge lengths `e, there is a probabilistic mapping with stretch
at most ρ.

2. For every collection of edge capacities ce, there is a probabilistic mapping with
congestion at most ρ.

In our settings, the techniques of Räcke [Räc08] can be used to make the result algorith-
mic: if one can efficiently sample from the probabilistic mapping with stretch ρ (which
is true for the settings in this paper), one can efficiently sample from a probabilistic
mapping with congestion O(ρ) (and vice versa). In fact, one can obtain an explicit dis-
tribution on polynomially many admissible mappings. We defer further discussion of
efficiency issues to the full version of the paper.

3.2 Tree-Based Flow Sparsifiers

The distance mappings we will consider will be similar to Räcke’s application. Let us
first fix for each u, v ∈ K a canonical shortest-path S uv between u, v in G. Now, consider
a tree 0-extension (T, f) where T = (K, ET) and f : V → K is a retraction. For each

edge e = (w, x) ∈ E(G), consider the (unique) f (w)- f (x)-path PT (f (w), f (x)) in the tree
T . Define the mapping MT : E → P corresponding to the 0-extension (T, f) by

MT ((w, x)) =](u,v)∈PT (f (w), f (x))S uv. (3.1)

In other words, this maps each tree edge (w, x) to its canonical path; for each non-tree
edge (w, x), it considers the edges on the tree-path between the images of w and x in the
tree, and maps (w, x) to the disjoint union of the canonical paths of these edges. Recall
that MT ((w, x)) is a multiset. In the corresponding matrix representation, Me,e′ is the
multiplicity of e′ in the set](u,v)∈PT (f (w), f (x))S uv. Corollary 1 now implies the following:

Theorem 4. Given a graph (G, `) with terminals K ⊆ V(G), there is a polynomial-time
procedure to sample from a probabilistic mapping (which is a distribution over tree
0-extensions) with stretch ρdist = O(log k). Moreover, ρdist ≥ 1 if K , ∅.

Now we can apply the Transfer Theorem. Recall that in a K-flow, all source-sink pairs
belong to set K.

Theorem 5 (Tree-Based Flow-Sparsifiers). Given an edge-capacitated graph (G, c),
and a set of terminals K ⊆ V, there is a polynomial-time algorithm that outputs a graph
H = (K, EH) that is a convex combination of edge capacitated trees such that:

(a) every K-flow that can be routed in G, can also be routed in H; and
(b) every K-flow that can be feasibly routed in H, can be routed with congestion

O(log k) in G.

In other words, if we were to scale up the capacities in G to route all feasible flows in H,
then the factor by which we would have to scale up capacities would only be O(log k).

Proof. We apply Theorem 3 and Theorem 4 to G = (V, E) to get a convex combination
{λT, f } of maps (T = (K, ET), f) such that each edge in E has an average load of O(ρdist).
Let us see how this implies (a) and (b) above: this is essentially a matter of unraveling
the definitions. For each such (T, f), we define capacities on the edges eT ∈ ET thus: let
(A, B) be node sets of the two connected components of T formed by deleting the edge
eT , where A ∪ B = K. Let A′ = {v ∈ V | f (v) ∈ A}, and B′ = V \ A′. Define

cT, f (eT) :=
∑

e∈E∩(A′×B′)

c(e). (3.2)

We claim that this convex combination {λT, f } of capacitated trees satisfies (a) and (b).
For (a), the definition of the capacities cT, f ensures that each edge of G can be concur-
rently routed feasibly in each T using capacities cT, f (·), hence so can any K-flow feasible
in G. Since this holds for each (T, f) pair, it holds for the convex combination.

To prove (b), we want to route edges in the convex combination of trees in the
graph G, where we scale the capacities cT, f of edges from (T, f) by its convex multiplier
λT, f . Consider any edge eT = (u, v) ∈ ET with capacity cT, f (eT) defined in (3.2): we
can use the canonical shortest path S uv to route this flow. Hence the load on any edge
e′ = (w′, x′) ∈ E due to the convex combination of trees is at most

1
c(e′)

∑
T, f

λT, f

∑
eT∈ET :e′∈S uv

cT, f (eT). (3.3)

Since cT, f (eT) is the sum of the capacity of all edges e = (w, x) such that eT lies on the
unique tree-path between f (w), f (x), we rewrite (3.3) as

1
c(e′)

∑
T, f

λT, f

∑
eT =(u,v)∈ET :e′∈S uv

∑
(w,x)∈E:eT∈PT (f (w), f (x))

c(wx) (3.4)

=
1

c(e′)

∑
T, f

λT, f

∑
(w,x)∈E

c(wx) × (multiplicity of e′ in](u,v)∈PT (f (w), f (x)) S uv). (3.5)

However, this is exactly the expected load for e′ under the notion of admissible maps
defined in (3.1); hence this is bounded by the congestion (the maximum expected load
over all edges), which is at most ρdist by Theorem 3. This proves condition (b) above,
that the congestion to route any K-flow in the convex combination H in the graph G is at
most ρdist. ut

3.3 General Flow Sparsifiers

Theorem 6 (Flow-Sparsifiers). Given any graph G and terminals K, there is a ran-
domized polynomial-time algorithm to output a flow-sparsifier H with loss O(log k

log log k).

Proof. Suppose we use Theorem 1 instead of using the tree 0-extension result (Corol-
lary 1), we use the constructive version of the Transfer Theorem to get a polynomial
number of graphs H1,H2, . . . on the vertex set K such that a convex combination of these
graphs is a flow-sparsifier for the original graph G where the load is O(log k

log log k). We can
then construct a single graph H by setting the capacity of an edge to be the appropriate
weighted combination of capacities of those edges in Hi; all feasible K-flows in G can be
routed in H, and all feasible K-flows in H can be routed in G with congestion O(log k

log log k).
ut

The same idea using 0-extension results for β-decomposable graphs (Theorem 2) gives
us the following:

Theorem 7 (Flow-Sparsifiers for Minor-Closed Families). For any graph G that is β-
decomposable and any K, there is a randomized polynomial-time algorithm to construct
a flow-sparsifier with loss O(β).

Note that the decomposability holds if G belongs to a non-trivial minor-closed-family G
(e.g., if G is planar). However, Theorem 7 does not claim that the flow-sparsifier for G
also belongs to the family G; this is the question we resolve in the next section.

4 Connected 0-Extensions and Minor-Based Flow-Sparsifiers

The results in this section apply to β-decomposable graphs. A prominent example of
such graphs are planar graphs, which (along with every family of graphs excluding a
fixed minor) are O(1)-decomposable [KPR93, FT03]. Thus, Theorem 8, Corollary 5
and Theorem 9 below all apply to planar graphs (and more generally to excluded-minor
graphs) with β = O(1). We now state our results for β-decomposable graphs in general.

In Section 4.2 we define a related notion called terminal-decomposability, and show
analogous results for β̂-terminal-decomposable graphs.

In what follows we use the definition of 0-extension from Section 2 with H = H f ,
i.e., EH = {(f (u), f (v)) : (u, v) ∈ E}, hence the 0-extension is completely defined by the
retraction f . We say that a 0-extension f is connected if for every x, f −1(x) induces a
connected component in G. Our main result shows that we get connected 0-extensions
with stretch O(β log β) for β-decomposable metrics.

Theorem 8 (Connected 0-Extension). There is a randomized polynomial-time algo-
rithm that, given (G = (V, E), `G) with terminals K such that dG is β-decomposable,
produces a connected 0-extension f : V → K such that for all u, v ∈ V, we have

E[dH(f (u), f (v))] ≤ O(β log β) · dG(u, v).

Note that if f is a connected 0-extension, the graph H f is a minor of G. Applying
Theorem 3 to interchange the distance preservation with capacity preservation, we get
the following analogue of Theorem 5.

Corollary 2 (Minor-Based Flow-Sparsifiers). For every β-decomposable graph G =

(V, E) with edge capacities cG and a subset K ⊂ V of k terminals, there is a minor-
based flow-sparsifier with quality O(β log β) . Moreover, a minor-based flow-sparsifier
for G, cG,K can be computed efficiently in randomized poly-time.

Since planar graphs are O(1)-decomposable and since their minors are planar, by
Corollary 2 they have an efficiently constructable planar-based flow-sparsifier with
quality O(1). By Theorem 8, they always have a connected 0-extension with stretch
at most O(1). An interesting consequence of the latter result is that given any planar
graph (G, `G), and a set K of terminals, we can "remove" the non-terminals and get a
related planar graph on K while preserving inter-terminal distances in expectation. This
generalizes a result of Gupta [Gup01] who showed a similar result for trees. (Obviously,
this extends to every family of graphs excluding a fixed minor.)

Theorem 9 (Steiner Points Removal). There is a randomized polynomial-time algo-
rithm that, given (G = (V, E), `G) and K such that dG is β-decomposable, outputs minors
H = (K, EH) of G such that 1 ≤ E[dH (x,y)]

dG(x,y) ≤ O(β log β) for all x, y ∈ K.

Note that these results only give us an O(log n log log n)-approximation for connected
0-extension on arbitrary graphs (or an O(log2 k log log k)-approximation using results of
Section 4.2). We can improve that to O(log k); details in the full version.

Theorem 10 (Connected CKR). There is a randomized polynomial-time algorithm
that on input (G = (V, E), `G) and K, produces a connected 0-extension f with stretch
factor E[dH(f (u), f (v))] ≤ O(log k) · dG(u, v) for all u, v ∈ V.

Using the semi-metric relaxation for 0-extension, we get a connected 0-extension
whose cost is at most O(log k) times the optimal (possibly disconnected) 0-extension.
To our knowledge, this is the first approximation algorithm for connected 0-extension,
and in fact shows that the gap between the optimum connected 0-extension and the

optimum 0-extension is bounded by O(log k). The same is true with an O(1) bound for
planar graphs. We remark that the connected 0-extension problem is a special case of the
connected metric labeling problem, which has recently received attention in the vision
community [VKR08, NL09].

4.1 The Algorithm for Decomposable Metrics

We now give the algorithm behind Theorem 8. Assume that edge lengths `G are integral
and scaled such that the shortest edge is of length 1. Let the diameter of the metric be
at most 2δ. For each vertex v ∈ V , define Av = minx∈K dG(v, x) to be the distance to the
closest terminal. The algorithm maintains a partial mapping f at each point in time—
some of the f (v)’s may be undefined (denoted by f (v) = ⊥) during the run, but f is
a well-defined 0-extension when the algorithm terminates. We say a vertex v ∈ V is
mapped if f (v) , ⊥. The algorithm appears as Algorithm 1.

Algorithm 1 Algorithm for Connected 0-extension
1: input: (G, `G),K.
2: let i← 0, f (x) = x for all x ∈ K, f (v) = ⊥ for all v ∈ V \ K.
3: while there is a v such that f (v) = ⊥ do
4: let i← i + 1, ri ← 2i

5: sample a β-decomposition of dG with diameter bound ri to get a partition P
6: for all clusters Cs in the partition P that contains both mapped and unmapped vertices do
7: delete all vertices u in Cs with f (u) , ⊥
8: for each connected component C from Cs do
9: choose a vertex wC ∈ Cs that was deleted and had an edge to C

10: reset f (u) = f (wC) for all u ∈ C.
11: end for
12: end for
13: end while

We can assume that in round δ = log diam(G), the partitioning algorithm returns a single
cluster, in which case all vertices are mapped and the algorithm terminates. Let fi be
the mapping at the end of iteration i. For x ∈ K, let V x

i denote f −1
i (x), the set of nodes

colored x. The following claim follows inductively:

Lemma 1. For every i and x ∈ K, the set V x
i induces a connected component in G.

Proof. We prove the claim inductively. For i = 0, there is nothing to prove since V x
i = {x}.

Suppose that in iteration i, we map vertex u to x so that u ∈ V x
i . Thus for some component

C containing u, the mapped neighbor wC chosen by the algorithm was in V x
i−1. Since we

map all of C to x, there is a path connecting v to wC in V x
i . Inductively, wC is connected

to x in V x
i−1 ⊆ V x

i , and the claim follows. ut

The following lemma will be useful in the analysis of the stretch; it says that any
node mapped in iteration i is mapped to a terminal at distance O(2i).

Lemma 2. For every iteration i and x ∈ K, and every u ∈ V x
i , dG(x, u) ≤ 2ri.

Proof. The proof is inductive. For i = 0, the claim is immediate. Suppose that in iteration
i, we map vertex u to x so that u ∈ V x

i . Thus for some component C containing u, the
mapped neighbor wC chosen by the algorithm was in V x

i−1. Moreover, u and wC were in
the same cluster in the decomposition so that d(u,wC) ≤ ri. Inductively, d(wC , x) ≤ 2ri−1
and the claim follows by triangle inequality. ut

In the rest of the section, we bound the stretch of the 0-extension; for every edge
e = (u, v) of G, we show that

E[dG(f (u), f (v)] ≤ O(β log β) dG(u, v).

Note that for e = (u, v), dG((f (u), f (v)) = dH((f (u), f (v)), and so it’s enough to prove
the claim for dG. The analogous claim for non-adjacent pairs will follow by triangle
inequality, but here with dH . We say that the edge e = (u, v) is settled in round j if the
later of its endpoints gets mapped in this round; e is untouched after round j if both u
and v are unmapped at the end of round j. Let dG(u,K) ≤ dG(v,K) and let Ae denote the
distance dG(u,K). Let je := blog(Ae)c − 1.

Lemma 3. For edge e = (u, v),
(a) edge e is untouched after round je − 1,
(b) if edge e is settled in round j then dG(f (u), f (v)) = O(2 j + dG(u, v)).

Proof. For (a), if one of the end points of e is mapped before round je, then 2 · 2 je ≤

Ae = dG(e,K), which contradicts Lemma 2. For (b), both dG(u, f (u)), dG(v, f (v)) ≤ 2 j+1

by Lemma 2; the triangle inequality completes the proof. ut

Let B j denote the “bad” event that the edge is settled in round j and that both end-
points are mapped to different terminals. Let z := max{Ae, dG(u, v)}. We want to use

E[d(f (u), f (v))] =
∑

j

Pr[B j] · E[d(f (u), f (v)) | B j].

Claim. Pr[B j] ≤ min{4β z
2 j , 1} · 5β

dG(u,v)
2 j .

Proof. Recall that an edge is untouched after round j′ if neither of its endpoints is
mapped at the end of this round. For this to happen, u must be separated from its
closest terminal in the clustering in round j′, which happens with probability at most
min{β Ae

2 j′ , 1}. Also recall that the probability that an edge e = (u, v) is cut in a round j′

is at most β dG(u,v)
2 j′ . Let i denote the round in which the edge is first touched. We upper

bound the probability of the event B j separately depending on how i and j compare.
Note that for j ≤ 2, the right hand side is at least 1 so the claim holds trivially.

• i ≤ j − 2. For B j to occur, the edge e must be cut in round j − 2 and j − 1, as
otherwise it would already be settled in one of these rounds. The probability of this
is at most min{β dG(u,v)

2 j−2 , 1} · β dG(u,v)
2 j−1 ≤ min{4β z

2 j , 1} · 2β
dG(u,v)

2 j .
• i = j − 1. For B j to occur, the edge e must be cut in round j − 1 and must be

untouched after round j−2. The probability of this is at most min{β Ae
2 j−2 , 1} ·β

dG(u,v)
2 j−1 ≤

min{4β z
2 j , 1} · 2β

dG(u,v)
2 j .

• i = j. For B j to occur, e must be cut in round j and must be untouched after round
j−1. The probability of this is at most min{β Ae

2 j−1 , 1} ·β
dG(u,v)

2 j ≤ min{4β z
2 j , 1} ·β

dG(u,v)
2 j .

Since Pr[B j] = Pr[B j ∧ (i ≤ j − 2)] + Pr[B j ∧ (i = j − 1)] + Pr[B j ∧ (i = j)], the claim
follows. ut

Lemma 3(b) implies that if the edge is settled before round jd := blog(dG(u, v))c, the
conditional expectation E[dG(f (u), f (v)) | B j] is O(dG(u, v)). Moreover the edge e cannot
be settled before round je = blog(Ae)c − 1 by Lemma 3(a). Let jm := max{ jd, je}. It
therefore suffices to to show that∑

j≥ jm

Pr[B j] · O(2 j) ≤ O(β log β) dG(u, v) .

Plugging in the upper bound for Pr[B j] into the left hand side, we get∑
j≥ jm Pr[B j] · O(2 j) ≤

∑
j≥ jm min{4β z

2 j , 1} · 5β
dG(u,v)

2 j · O(2 j)
≤
∑

j≥ jm min{4β z
2 j , 1} · β · O(dG(u, v)) ≤ O(β log β) dG(u, v) .

In the last step, we used that z = max{Ae, dG(u, v)} ≤ max{2 je+2, 2 jd+1} ≤ 2 jm+2, so the
first O(log β) terms contribute O(β dG(u, v)), while the remaining terms form a geometric
series and sum to O(dG(u, v)). This completes the proof of Theorem 8.

4.2 Terminal Decompositions

The general theorem for connected 0-extensions gives a guarantee in terms of its de-
composition parameter β, and in general this quantity may depend on n. This seems
wasteful, since we decompose the entire metric while we mostly care about separating
the terminals.

To this end, we define terminal decompositions (the reader might find it useful to
contrast it with definition of decompositions in Section 1.1). A partial partition of a
set X is a collection of disjoint subsets (called “clusters” of X). A metric (X, d) with
terminals K is called β̂-terminal-decomposable if for every ∆ > 0 there is probability
distribution µ over partial partitions of X, with the following properties:
• Diameter bound: Every partial partition P̂ ∈ supp(µ) is connected and ∆-bounded.
• Separation event: For all u, v ∈ X, PrP̂∈µ[∃S ∈ P̂ such that u ∈ S but v < S] ≤ β̂ ·

d(u, v)/∆.
• Terminal partition: For all x ∈ K, every partial partition P̂ ∈ supp(µ) has a cluster

containing x.
• Terminal-centered clusters: For every partial partition P̂ ∈ supp(µ), every cluster

S ∈ P̂ contains a terminal.
A graph G = (V, E) with terminals K is β̂-terminal-decomposable if for every nonnegative
lengths `G assigned to its edges, the resulting shortest-path metric dG with terminals K
is β̂-terminal-decomposable. Throughout, we assume that there is a polynomial time
algorithm that, given the metric, terminals and ∆ as input, samples a partial partition
P̂ ∈ µ. Note that if K = V , the above definitions coincide with the definitions of β-
decomposable metrics and graphs.

Our main theorem for terminal decomposable metrics is the following:

Theorem 11. Given (G = (V, E), `G), suppose dG is β̂-terminal-decomposable with
respect to terminals K. There is a randomized polynomial-time algorithm that produces a
connected 0-extension f : V → K such that for all u, v ∈ V, we have E[dG(f (u), f (v))] ≤
O(β̂2 log β̂) · dG(u, v).

This theorem is interesting when β̂ is much less than β, the decomposability of the metric
itself. E.g., one can alter the CKR decomposition scheme to get β̂(k, n) = O(log k), while
β = O(log n).

The Modified Algorithm. Algorithm 2 for the terminal-decomposable case is very
similar to Algorithm 1: the main difference is that in each iteration we only obtain a partial
partition of the vertices, we color only the nodes that lie in clusters of this partial partition.

A few words about the algorithm: recall that a partial partition returns a set of
connected diameter-bounded clusters such that each cluster contains at least one terminal,
and each terminal is in exactly one cluster— we use V x to denote the cluster containing
x ∈ K. (Hence either V x = Vy or V x ∩ Vy = ∅.) Now when we delete all the vertices in
some cluster V x that are already mapped, this includes the terminal x—and hence there
is at least one candidate for wC in Line 9. Eventually, there will be only one cluster, in
which case all vertices are mapped and the algorithm terminates.

Algorithm 2 Algorithm for Connected 0-extension: the terminal-decomposable case
1: input: (G, `G),K.
2: let i← 0, f (x) = x for all x ∈ K, f (v) = ⊥ for all v ∈ V \ K.
3: while there is a v such that f (v) = ⊥ do
4: let i← i + 1, ri ← 2i

5: find a β̂-terminal-decomposition of dG with diameter bound ri; let V x be the cluster contain-
ing terminal x.

6: for all clusters V x in the partial partition do
7: delete all vertices u in V x with f (u) , ⊥
8: for each connected component C from V x thus formed do
9: choose a vertex wC ∈ V x that was deleted and had a neighbor in C

10: reset f (u) = f (wC) for all u ∈ C.
11: end for
12: end for
13: end while

The analysis for Theorem 11 is almost the same as for Theorem 8; the only difference
is that Claim 4.1 is replaced by the following weaker claim (proof omitted from this
version), which immediately gives the O(β̂2 log β̂) bound.

Claim. Pr[B j] ≤ min{8β̂ z
2 j , 1} · 23β̂2 d(u,v)

2 j .

5 Future Directions

We gave a set of results on and around the idea of flow-sparsifiers and 0-extensions.
Some of these results are not tight, and it would be interesting to obtain better bounds

for these problems. Another interesting direction for future work is this: define an `-
sparse-extension of graph G = (V, E) with terminals K to be any graph H = (Z, EH) with
|Z| = `, K ⊆ Z ⊆ V , along with a retraction f : V → Z that satisfies dH(x, y) ≥ dG(x, y)
for all x, y ∈ Z. (Note that a |K|-sparse-extension is just a 0-extension; one possible |V |-
sparse-extension is G itself.) What if we consider `-sparse-extensions (H, f) with

E[dH(f (x), f (y))] ≤ α dG(x, y) for all x, y ∈ V,

where ideally ` = poly(k), and α = O(1) (or just α � log k
log log k)? In other words, if we are

willing to retain a small number of non-terminals, can we achieve better stretch bounds?
Note that standard lower bounds for 0-extension have the property that |V | = poly(k)—
hence the entire graph G is a “good” solution (poly(k)-sparse-extension with α = 1).

References

[AF09] R. Andersen and U. Feige. Interchanging distance and capacity in probabilistic
mappings. CoRR, abs/0907.3631, 2009.

[AFH+04] A. Archer, J. Fakcharoenphol, C. Harrelson, R. Krauthgamer, K. Talwar, and É. Tardos.
Approximate classification via earthmover metrics. In Proc. 15th SODA, pages 1079–
1087, 2004.

[CKR04] G. Calinescu, H. J. Karloff, and Y. Rabani. Approximation algorithms for the 0-
extension problem. SIAM J. Comput., 34(2):358–372, 2004.

[FHRT03] J. Fakcharoenphol, C. Harrelson, S. Rao, and K. Talwar. An improved approximation
algorithm for the 0-extension problem. In Proc. 14th SODA, pages 257–265, 2003.

[FRT04] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. System Sci., 69(3):485–497, 2004.

[FT03] J. Fakcharoenphol and K. Talwar. Improved decompositions of graphs with forbidden
minors. In Proc. 6th APPROX, pages 36–46, 2003.

[GNR10] A. Gupta, V. Nagarajan, and R. Ravi. Improved approximation algorithms for require-
ment cut. Operations Research Letters, 38(4):322–325, 2010.

[GNRS04] A. Gupta, I. Newman, Y. Rabinovich, and A. Sinclair. Cuts, trees and `1-embeddings
of graphs. Combinatorica, 24(2):233–269, 2004.

[Gup01] A. Gupta. Steiner points in tree metrics don’t (really) help. In Proc. 12th SODA, pages
220–227, 2001.

[KPR93] P. Klein, S. A. Plotkin, and S. B. Rao. Excluded minors, network decomposition, and
multicommodity flow. In Proc. 25th STOC, pages 682–690, 1993.

[LM10] T. Leighton and A. Moitra. Extensions and limits to vertex sparsification. In Proc.
42th STOC, pages 47–56, 2010.

[LN05] J. R. Lee and A. Naor. Extending Lipschitz functions via random metric partitions.
Invent. Math., 160(1):59–95, 2005.

[LS09] J. R. Lee and A. Sidiropoulos. On the geometry of graphs with a forbidden minor. In
Proc. 41st STOC, pages 245–254, 2009.

[Moi09] A. Moitra. Approximation algorithms for multicommodity-type problems with guar-
antees independent of the graph size. In Proc. 50th FOCS, pages 3–12, 2009.

[NL09] S. Nowozin and C. H. Lampert. Global connectivity potentials for random field models.
In Proc. 22nd CVPR, pages 818–825, 2009.

[Räc08] H. Räcke. Optimal hierarchical decompositions for congestion minimization in net
works. In Proc. 40th STOC, pages 255–264, 2008.

[VKR08] S. Vicente, V. Kolmogorov, and C. Rother. Graph cut based image segmentation with
connectivity priors. In Proc. 21st CVPR, 2008.

	Vertex Sparsifiers: New Results from Old Techniques

