
SIAM J. COMPUT. c© 2014 Society for Industrial and Applied Mathematics
Vol. 43, No. 4, pp. 1239–1262

VERTEX SPARSIFIERS: NEW RESULTS FROM OLD TECHNIQUES∗

MATTHIAS ENGLERT† , ANUPAM GUPTA‡ , ROBERT KRAUTHGAMER§ , HARALD

RÄCKE¶, INBAL TALGAM-COHEN‖, AND KUNAL TALWAR#

Abstract. Given a capacitated graph G = (V, E) and a set of terminals K ⊆ V , how should
we produce a graph H only on the terminals K so that every (multicommodity) flow between the
terminals in G could be supported in H with low congestion, and vice versa? (Such a graph H is
called a flow sparsifier for G.) What if we want H to be a “simple” graph? What if we allow H to
be a convex combination of simple graphs? Improving on results of Moitra [Proceedings of the 50th
IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, Los Alamitos, CA,
2009, pp. 3–12] and Leighton and Moitra [Proceedings of the 42nd ACM Symposium on Theory of
Computing, ACM, New York, 2010, pp. 47–56], we give efficient algorithms for constructing (a) a
flow sparsifier H that maintains congestion up to a factor of O(log k

log log k
), where k = |K|; (b) a convex

combination of trees over the terminals K that maintains congestion up to a factor of O(log k); (c) for
a planar graph G, a convex combination of planar graphs that maintains congestion up to a constant
factor. This requires us to give a new algorithm for the 0-extension problem, the first one in which
the preimages of each terminal are connected in G. Moreover, this result extends to minor-closed
families of graphs. Our bounds immediately imply improved approximation guarantees for several
terminal-based cut and ordering problems.

Key words. approximation algorithms, vertex sparsifier, 0-extensions, planar graphs, graph
minors, flow sparsifier, multicommodity flow, metric decomposition

AMS subject classifications. 68W25, 68W40, 68W20

DOI. 10.1137/130908440

1. Introduction. Given an undirected capacitated graph G = (V,E) and a set
of terminal nodesK ⊆ V , we consider the question of producing a graphH only on the
terminals K so that the congestion incurred on G and H for any multicommodity flow
routed between terminal nodes is similar. Often, we will want the graphH to be struc-
turally “simpler” than G as well. Such a graph H will be called a flow sparsifier for G;
the loss (also known as quality) of the flow sparsifier is the factor by which the conges-
tions in the graphsG andH differ. For instance, whenK = V , the results of Räcke [31]
give a convex combination of trees H with a loss of O(log n). We call this a tree-based

∗Received by the editors February 4, 2013; accepted for publication (in revised form) April 14,
2014; published electronically July 3, 2014. A preliminary version appeared in the Proceedings of the
13th Workshop on Approximation Algorithms for Combinatorial Optimization Problems, Springer-
Verlag, Berlin, 2010, pp. 152–165. A version of this work can also be found under http://arxiv.org/
abs/1006.4586, 2010.

http://www.siam.org/journals/sicomp/43-4/90844.html
†Department of Computer Science and DIMAP, University of Warwick, Coventry, UK (englert@

dcs.warwick.ac.uk). Supported by EPSRC grant EP/F043333/1 and DIMAP (the Centre for Discrete
Mathematics and its Applications).

‡Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213 (anupamg@cs.
cmu.edu). Research was partly supported by the NSF award CCF-0729022, and an Alfred P. Sloan
Fellowship. This research was done when visiting Microsoft Research SVC, La Avenida, Mountain
View CA.

§Weizmann Institute of Science, Rehovot, Israel (robert.krauthgamer@weizmann.ac.il). This work
was supported in part by The Israel Science Foundation (grant 452/08), and by a Minerva grant.

¶Institut für Informatik, Technische Universität München, Munich, Germany (raecke@in.tum.de).
‖Computer Science Department, Stanford University, Stanford, CA 94350 (inbaltalgam@yahoo.

com).
#Microsoft Research Silicon Valley, 1065 La Avenida, Mountain View, CA (kunal@microsoft.com).

1239

http://arxiv.org/abs/1006.4586
http://arxiv.org/abs/1006.4586
http://www.siam.org/journals/sicomp/43-4/90844.html
mailto:englert@dcs.warwick.ac.uk
mailto:englert@dcs.warwick.ac.uk
mailto:anupamg@cs.cmu.edu
mailto:anupamg@cs.cmu.edu
mailto:robert.krauthgamer@weizmann.ac.il
mailto:raecke@in.tum.de
mailto:inbaltalgam@yahoo.com
mailto:inbaltalgam@yahoo.com
mailto:kunal@microsoft.com

1240 ENGLERT ET AL.

flow sparsifier, meaning that it is a convex combination of trees.1 Here and through-
out, k = |K| denotes the number of terminals, and n = |V | the size of the graph.

For the case where K �= V , it was shown by Moitra [29] and by Leighton and
Moitra [26] that for every G and K, there exists a flow sparsifier H = (K,EH) whose

loss is O(log k
log log k), and moreover, one can efficiently (which means in polynomial time)

find an H ′ = (K,EH′) whose loss is O(log2 k
log log k). They used these to give approxima-

tion algorithms for several terminal-based problems, where the approximation factor
depended polylogarithmically on the number of terminals k, and not on n. We note
that they construct an arbitrary graph on K, and do not attempt to directly obtain
“simple” graphs; e.g., to get tree-based flow sparsifiers on K, they apply to H ′ Räcke’s
method [31], and increase the loss by an O(log k) factor.

In this paper, we simplify and unify some of these results: we show that using
the general framework of interchanging distance-preserving mappings and capacity-
preserving mappings from [31], which was reinterpreted in an abstract setting by An-
dersen and Feige [1], we obtain the following improvements over the results of [29, 26].

1. We show that using the 0-extension results of [5, 12] in the framework of [31, 1]
almost immediately gives us efficent constructions of flow sparsifiers with
loss O(log k

log log k). While the existential result of [26] also used the connection

between 0-extensions and flow sparsifiers, the algorithmically efficient version
of the result was done ab initio, increasing the loss by another O(log k) factor.
We use existing machinery, thereby simplifying the exposition somewhat, and
avoiding the increased loss. See Theorem 10.

2. We next use a randomized tree embedding due to [17], which is a variant
of the so-called FRT tree embedding [13], where the expected stretch is re-
duced to O(log k) by requiring the noncontraction condition only for terminal
pairs. Using this refined embedding in the framework of [31, 1], we obtain
in Theorem 9 efficient constructions of tree-based flow sparsifiers with loss
O(log k).

3. We then turn to special families of graphs. For planar graphs, we give a
new 0-extension algorithm that outputs a convex combination of 0-extensions
f : V → K (with f(x) = x for all x ∈ K), such that all the corresponding
0-extension graphs Hf = (K,Ef) (namely, Ef = {(f(u), f(v)) : (u, v) ∈ E})
are planar graphs, and its expected stretch maxu,v∈V E[dHf

(f(u),f(v))]/dG(u,v) =
O(1). In particular, the planar graphs Hf produced are graph-theoretic mi-
nors of G. These results are shown in section 4. We remark that the known
0-extension algorithms [5, 3, 24] do not ensure planarity of Hf .
It follows that planar graphs admit a planar-based flow sparsifier (i.e., it is a
convex combination of capacitated planar graphs on vertex set K) with loss
O(1), and that we can find these efficiently. The fact that flow sparsifiers with
this loss exist was shown by [26], but their sparsifiers are not planar based.
Moreover, the 0-extension algorithm itself can be viewed as a randomized
version of Steiner point removal in metrics; previously, it was only known how
to remove Steiner points from tree metrics with O(1) distortion [16, 6]. We
believe this randomized procedure is of independent interest; e.g., combined
with an embedding of [18], this gives an alternate proof of the fact that

1More generally, for a class F of graphs, we define an F-flow sparsifier to be a sparsifier that
uses a single graph from F , and an F-based flow sparsifier to be a sparsifier that uses a convex
combination of graphs from F .

VERTEX SPARSIFIERS 1241

Table 1

Summary of our results. Previous results marked with † from [31], all others from [29, 26].

Previous best result Our result
Best result when

k = n

Flow sparsifiers (efficient) O
(log2 k
log log k

)
O
(log k
log log k

)
—

Tree based flow sparsifiers
O(logn)†,
O
(log3 k
log log k

) O(log k) Θ(logn)

Minor-based flow sparsifiers — O(βG log βG) —

Steiner oblivious routing Õ(log2 k) O(log k) Θ(logn)

�-Multicut Õ(log3 k) O(log k) O(logn)

Steiner minimum linear
arrangement (SMLA)

Õ(log2.5 k) O(log k log log k) O(
√
logn log logn)

SMLA in planar graphs Õ(log1.5 k) O(log log k) O(log logn)

Steiner min cut linear
arrangement

Õ(log4 k) O(log2 k) O(log1.5 n)

Steiner graph bisection
O(logn)†,
O
(log3 k
log log k

) O(log k) O(logn)

the metric induced on the vertices of a single face of a planar graph can be
embedded into a distribution over trees [25].

4. The results for planar graphs are in fact much more general. Suppose G is a
βG-decomposable graph (see definition in section 1.3). Then we can efficiently
output a distribution over graphsHf = (K,Ef) such that these are all minors
of G, and the expected stretch is

max
u,v∈V

E[dHf
(f(u), f(v))]

dG(u, v)
= O(βG log βG).

Now applying the same ideas of interchanging distance and capacity preser-
vation, given any G and K, we construct in Corollary 13 minor-based flow
sparsifiers with loss O(βG log βG).

5. Finally, section 5 shows some lower bounds on flow sparsifiers; we show that
flow sparsifiers that are 0-extensions of the original graph must have loss at
least Ω(

√
log k) in the worst case. For this class of possible flow sparsifiers,

this improves on the Ω(log log k) lower bound for sparsifiers proved in [26].
We also show that any flow sparsifier that only uses edge capacities which are
bounded from below by a constant, must suffer a loss of Ω(

√
log k/ log log k)

in the worst case.
We can use these results to improve the approximation ratios of several application

problems (see section 6). In many cases, constructions based on trees allow us to use
better algorithms. Our results are summarized in Table 1. Note that apart from
the two linear-arrangement problems, our results smoothly approach the best known
results for the case k = n.

Many of these applications further improve when the graph comes from a minor-
closed family (and hence has good β-decompositions), e.g., for the Steiner minimum
linear arrangement (SMLA) problem on planar graphs, we can get an O(log log k)-
approximation by using our minor-based flow sparsifiers to reduce the problem to
planar instances on the k terminals. Finally, in section 7 we show how to get better
approximations for the Steiner linear arrangement problems above using direct linear
programming (LP)/semidefinite programming (SDP) approaches.

1242 ENGLERT ET AL.

1.1. Concurrent work. Concurrently and independently from our work,
Charikar et al. [7] and independently Makarychev and Makarychev [28] gave an effi-
cient construction for O(log k/ log log k)-quality flow sparsifiers. This is the same as
our first result. Furthermore, Charikar et al. [7] give O(log k)-quality tree-based flow
sparsifiers, which is the same as our second result.

Makarychev and Makarychev [28] also consider the case of graphs that exclude a
fixed minor. They make the existential result of Leighton and Moitra [26] constructive
and provide O(1)-quality flow sparsifiers for these graphs. This is related to our third
result. However, our construction has the additional advantage that the resulting flow
sparsifiers are guaranteed to be graph-theoretic minors of the original graph. This, for
instance, results in improved approximation guarantees for SMLA for planar graphs.

For cut sparsifiers, a weaker notion than flow sparsifiers [26], lower bounds of
Ω(4
√
log k/ log log k) and Ω(4

√
log k), were given by [28] and [7], respectively. (The

former bound was improved to Ω(
√
log k/ log log k) in a later version.) Makarychev

and Makarychev [28] show an additional lower bound of Ω(
√
log k/ log log k) for flow

sparsifiers, and also establish an interesting connection between flow and cut sparsifiers
and Lipschitz extendability of maps in Banach spaces. Charikar et al. [7] also exhibit
a family of graphs for which the (best possible) quality of cut sparsifiers with the
restriction to 0-extensions is asymptotically larger than without such restriction.

1.2. Subsequent work. Subsequent to our work and using different techniques,
Chuzhoy [9] shows that if the sparsifier H is allowed to contain a (relatively small)
number of nonterminal vertices, it is possible to construct O(1)-quality cut sparsifiers
of size O(C3) in time nO(1) · 2C , and O(1)-quality flow sparsifiers of size CO(log logC)

in time nO(logC) ·2C , where C is an upper bound on the sum of capacities of all edges
incident to any single terminal. Andoni, Gupta, and Krauthgamer [2] obtained a flow
sparsifier, of quality 1 + ε, which in effect is a trade-off between quality and size, for
a restricted family that includes bipartite graphs.

Our results and techniques have proved useful in obtaining or simplifying other re-
sults. Lee, Mendel, and Moharrami [23] use our results to show an approximate version
of the Okamura–Seymour theorem for node-capacitated graphs. Chekuri, Shepherd,
and Weibel [8] study a problem similar to the Okamura–Seymour theorem, but with
fewer restrictions on the demands. More specifically, they consider an undirected pla-
nar graph G and a set of demand pairs such that at least one vertex of each of the
pairs lies in one of the outer k layers of G. They show that if, for any cut in G, the
size of the cut is at least as large as the number of demand pairs that have exactly
one vertex on each side of the cut, then the demands are integrally routable in G
with congestion ck for some universal constant c. Their proof also uses our results
(unpublished note referenced in [8]).

Chuzhoy et al. [10] study the edge-connectivity k-route cut problem. In this
problem an undirected edge-weighted graph, a set of demands consisting of pairs of
vertices, and a number k are given. The goal is to compute a minimum-weight subset
of edges such that removing these edges lets the edge connectivity of every demand
pair drop below k. They give a polynomial-time bicriteria approximation of this
problem which uses our algorithm for the �-multicut problem as a building block to
handle large values of k.

Recently, Kamma, Krauthgamer, and Nguyen [20] showed how to remove Steiner
points from arbitrary graphical metrics (following the results of [16, 6] for tree metrics),
and obtain a single minor of the input graph that achieves a polylogarithmic stretch
(distortion) for all terminal-terminal distances. This result is not comparable to our

VERTEX SPARSIFIERS 1243

result of O(βG log βG) expected stretch—our bound on the stretch is better, but our
guarantee is only for the expected stretch for any fixed pair of terminals.

1.3. Notation. Our graphs will have edge lengths or capacities; all edge lengths
will be denoted by � : E → R≥0, and edge costs/capacities will be denoted by c : E →
R≥0. When we refer to a graph (G, �), we mean a graph G with edge lengths �(·);
similarly (H, c) denotes one with capacities c(·). When there is potential for confusion,
we will add subscripts (e.g., cH(·) or �G(·)) for disambiguation. Given a graph (G, �),
the shortest-path distances under the edge lengths � is denoted by dG : V ×V → R≥0.

Given a graph G = (V,E) and a subset of vertices K ⊆ V designated as terminals,
a retraction is a map f : V → K such that f(x) = x for all x ∈ K. For (G, c) and termi-
nals K ⊆ V , a K-flow in G is a multicommodity flow whose sources and sinks lie in K.

Decomposition of Metrics. Let (X, d) be a metric space. A partition (i.e., a set
of disjoint “clusters”) P of X is called Δ-bounded if every cluster S ∈ P satisfies
maxu,v∈S d(u, v) ≤ Δ. The metric (X, d) is called β-decomposable if for every Δ > 0
there is a polynomial-time algorithm to sample from a probability distribution μ over
partitions of X , with the following properties.

• Diameter bound: Every partition P ∈ supp(μ) is Δ-bounded.
• Separation event: For all u, v ∈ X , PrP∈μ[∃S ∈ P such that u ∈ S but v /∈ S]
≤ β · d(u, v)/Δ.

β-decompositions of metrics have become standard tools with many applications; for
more information see, e.g., [24].

When the metric arises as the shortest-path distances dG in a graph G with
nonnegative edge lengths �, we may assume that each cluster S in every partition P
in the support of μ induces a connected subgraph of G; if not, break such a cluster into
its connected components. The diameter bound and separation probabilities for edges
remain unchanged by this operation; indeed, the diameter bound is obvious, and the
separation probability for a nonadjacent pair (u, v) (and similarly when dG(u, v) <
�G(u, v)) can be bounded by β · dG(u, v)/Δ by fixing a u-v shortest path and noting
that for (u, v) to be separated, some shortest-path edge must be separated, and then
applying the union bound.

We say that a graph G = (V,E) is β-decomposable if for every assignment
of nonnegative lengths � to the edges, the resulting shortest-path metric dG is β-
decomposable.

2. 0-extensions. In this section we provide a definition of 0-extension which is
somewhat different than the standard definition, and review some known results for
0-extensions. In Corollary 4, we also derive a variation of a known result on tree
embeddings, which will be applied in section 3.2.

A 0-extension of graph (G = (V,E), �G) with terminals K ⊆ V is usually defined
as a retraction f : V → K. We define a 0-extension to be a retraction f : V → K along
with another graph (H = (K,EH), �H); here, the length function �H : EH → R+ is
defined as �H(x, y) = dG(x, y) for every edge (x, y) ∈ EH . Note that this immediately
implies dH(x, y) ≥ dG(x, y) for all x, y ∈ K. Note also that Hf defined in section 1
is a special case of H in which EH = {(f(u), f(v)) : (u, v) ∈ E}, whereas, in general,
H is allowed more flexibility (e.g., H can be a tree). This flexibility is precisely the
reason we are interested both in the retraction f and in the graph H—we will often
want H to be structurally simpler than G (just like we want a flow sparsifier to be
simpler than the original graph).

For a (randomized) algorithm A that takes as input (G, �G) and outputs a (ran-
dom) 0-extension (H, �H), the stretch factor of algorithm A is the minimum α ≥ 1

1244 ENGLERT ET AL.

such that

EH [dH(f(x), f(y))] ≤ αdG(x, y) for all x, y ∈ V.

The following are well-known results for 0-extension.
Theorem 1 (see [12]). There is an algorithm AFHRT for 0-extension with

stretch factor αFHRT = O(log k
log log k).

Theorem 2 ([5]; see also [24]). For graphs G that are β-decomposable, there is
an algorithm ACKR for 0-extension with stretch factor αCKR = O(β).

In particular, if the graph G belongs to a nontrivial family of graphs that is minor
closed, it follows from [22, 14] that α = O(1).

2.1. 0-extension with trees. The following result is an extension of the tree-
embedding theorem of Fakcharoenphol, Rao, and Talwar [13], where the difference is
that the following result ensures the noncontracting property (property (a) of Theo-
rem 3) only for terminal-terminal pairs, but replaces the O(log n) by O(log k) in the
expected stretch between any pair of nodes. In what follows, a c-HST (abbreviation
for hierarchically separated tree) is a rooted tree with edge lengths, that satisfies the
following for some D > 0: the distance between every leaf and its ancestor at level
j ≥ 0 is exactly D/cj . (As usual, level means hop distance from the root.)

Theorem 3 (tree embedding [17]). There is a randomized polynomial-time al-
gorithm that takes as input a graph G = (V,E) with terminals K ⊆ V and outputs a
(random) edge-weighted 2-HST T = (I ∪ L,ET) with internal nodes I and leaves L,
and a map f : V → L, such that

(a) dT (f(x), f(y)) ≥ dG(x, y) for all x, y ∈ K (with probability 1),
(b) ET [dT (f(x), f(y))] ≤ O(log k) dG(x, y) for all x, y ∈ V , and
(c) for each nonterminal v ∈ V \K, either there exists a terminal xv sharing the

leaf node with it (i.e., f(v) = f(xv)), or another descendent of f(v)’s parent
in T contains a terminal xv.

Corollary 4 (tree 0-extension). There is a randomized polynomial-time algo-
rithm AGNR for 0-extension that has stretch factor αGNR = O(log k); furthermore,
the graphs output by the algorithm are trees on the vertex set K.

Proof. We need to give an algorithm that takes as input a graph G = (V,E)
with terminals K ⊆ V and outputs a (random) edge-weighted tree T = (K,E) and a
retraction f : V → K such that

(a′) dT (x, y) ≥ dG(x, y) for all x, y ∈ K (with probability 1),
(b′) ET [dT (f(x), f(y))] ≤ O(log k) dG(x, y) for all x, y ∈ V .

We may assume that in G, all terminals are at nonzero distance from each other;
otherwise, we can remove some terminals (from K, without changing G), apply the
proof below, and add the terminals back in at the end.

We start with sampling from the distribution of Theorem 3 a random tree T ′ =
(I ∪ L,E′) and an associated map f . We can take any leaf l ∈ L whose preimage set
only contains nonterminals, remove the leaf, and remap all v ∈ f−1(l) to some other
leaf that is a descendent of l’s parent node and also contains a terminal. (Such a leaf is
guaranteed to exist by property (c) of Theorem 3.) While both the tree and the map
change, we continue to call the modified tree T ′ and the map f . We repeat this process
until all leaves in the modified tree T ′ contain at least one terminal. Now property (a)
implies (recall that in G, the distances between all terminals were nonzero) that each
leaf contains at most one terminal. Hence f |K is a 1-1 correspondence between the
terminal set K and the remaining leaves in the tree T ′. Since the tree T ′ is a 2-HST,

VERTEX SPARSIFIERS 1245

the distances in the tree between a remapped nonterminal and any other node in T ′

(apart from the one it was identified with) do not change.
We can now remove all internal nodes in the modified version of T ′ (using, say, [16])

to get a tree T ′′ = (L,E′′) on just the (erstwhile) leaves such that none of the f(u)-
f(v) distances are shrunk, and they are stretched by a factor of at most 8. The
bijection between the set L and terminals K allows us to view the tree T ′′ as being on
the node set K, and the map f as being a retraction from V → K. Finally, shrinking
the edges of the tree T ′′ only makes the expected stretch smaller, so we can reduce
the length of any tree edge e = (x, y) in T ′′ and set it equal to dG(x, y). Call this
final tree T ; it is immediate from properties (a) and (b) that this random T and the
associated retraction f : V → K satisfy properties (a′) and (b′) above, where the
O term in property (b′) hides an extra stretch of 8 due to this postprocessing.

As an aside, a weaker version of Corollary 4 with O(log2 k
log log k) can be proved as

follows. First use Theorem 1 to obtain a random 0-extension H from G such that
EH [dH(x, y)] ≤ O(log k

log log k) dG(x, y) for all x, y ∈ K. Then use the result of [13] to

get a random tree H ′ = (K,EH′) such that EH′ [dH′ (x, y)] ≤ O(log k) dH(x, y) for all
x, y ∈ V (H). Combining these two results proves the weaker claim.

3. Flow sparsifiers via 0-extensions. In this section we first present the gen-
eral framework of interchanging distance-preserving mappings and capacity-preserving
mappings from [31], and its more abstract interpretation by Andersen and Feige [1],
and then discuss an algorithmically efficient implementation of it. We then apply
this framework, and “transfer” the results of section 2, which are aimed at preserving
distances, to results about preserving capacities, which are essentially constructions
of flow sparsifiers.

Recall that given an edge-capacitated graph (G, c) and a set K ⊆ V of terminals,
a flow sparsifier with quality ρ ≥ 1 is another capacitated graph (H = (K,EH), cH)
such that (a) any feasibleK-flow in G can be feasibly routed in H , and (b) any feasible
K-flow in H can be routed in G with congestion ρ.

3.1. Interchanging distance and capacity. 3We now use the framework of
Räcke [31], as interpreted by Andersen and Feige [1]. Given a graph G = (V,E), let
P be a collection of multisets of E, which will henceforth be called paths. A mapping
M : E → P maps each edge e to a path M(e) in P . Such a map can be represented
as a matrix M in Z

E×E , where Me,e′ is the number of times the edge e′ appears
in the path (multiset) M(e). Given a collection M of mappings (which we call the
admissible mappings), a probabilistic mapping is a probability distribution over (or,
convex combination of) admissible mappings; i.e., define λM ≥ 0 for each M ∈ M
such that

∑
M∈M λM = 1.

Distance mappings. Given a graph G = (V,E) with edge lengths � : E → R>0,
• the stretch of an edge e ∈ E under a mapping M is

∑
e′ Me,e′�(e

′)/�(e);
• the average stretch of e under a probabilistic mapping {λM} is

∑
M

λM

(∑
e′

Me,e′�(e
′)/�(e)

)
;

• the stretch of a probabilistic mapping is the maximum over all edges of their
average stretch.

Capacity mappings. Given a graph G = (V,E) with edge capacities c : E → R>0,
• the load of an edge e′ ∈ E under a mapping M is

∑
eMe,e′c(e)/c(e

′);

1246 ENGLERT ET AL.

• the expected load of e′ under a probabilistic mapping {λM} is

∑
M

λM

(∑
e

Me,e′c(e)/c(e
′)

)
;

• the congestion of a probabilistic mapping is the maximum over all edges of
their expected loads.

The transfer theorem. Andersen and Feige [1] distilled ideas from Räcke [31] to
state the following theorem.

Theorem 5 (see [1, Theorem 6]). Fix a graph G = (V,E) and a collection M
of admissible mappings. For every ρ ≥ 1, the following are equivalent:

1. For every collection of edge lengths �(·), there is a probabilistic mapping with
stretch at most ρ;

2. for every collection of edge capacities c(·), there is a probabilistic mapping
with congestion at most ρ.

Andersen and Feige [1] also outline how to make this result algorithmic: if one
can efficiently sample from the probabilistic distance mapping with stretch ρ (which
is true for the settings in this paper), one can efficiently sample from a probabilistic
capacity mapping with congestion O(ρ) (and vice versa). In fact, one can obtain an
explicit distribution on polynomially many admissible mappings. The techniques of
Räcke [31] can also be used to obtain this algorithmic version of the transfer theorem.
Merely for completeness, in the following we show how to derive the algorithmic result
from a special case of a theorem by Khandekar [21].

Theorem 6 (see [21, Theorem 5.1.6]). Let P ⊆ R
d be a nonempty convex set for

some d, and for each e ∈ E, let fe : P → R≥0 be a nonnegative continuous convex
function. Suppose we have an oracle that, given a vector x ∈ R

E
≥0 with

∑
e∈E xe = 1,

finds λ ∈ P such that
∑

e∈E xefe(λ) ≤ ρ. Then there exists an algorithm that given
an error parameter ω ∈ (0, 1) computes λ ∈ P such that maxe∈E fe(λ) ≤ eωρ, while
making O(ω−2m logm) calls to the oracle and an equal number of evaluations of fe(·),
where m = |E|.

This theorem can be used to show the following algorithmic version of the transfer
theorem.

Corollary 7. Fix a graph G = (V,E) and a collection M of admissible map-
pings. For every ρ ≥ 1 and constant ω ∈ (0, 1) we have the following.

(a) Suppose that for every collection of edge lengths �(·) (edge capacities c(·))
there is an efficient algorithm to compute a probabilistic mapping with stretch
(congestion) at most ρ. Then for every collection of edge capacities c(·) (edge
lengths �(·)) there exists an efficient algorithm to compute a probabilistic map-
ping with congestion (stretch) at most eωρ.

(b) Suppose that for every collection of edge lengths �(·) (edge capacities c(·))
there is an efficient algorithm to sample from a probabilistic mapping with
stretch (congestion) at most ρ. Then for every collection of edge capacities
c(·) (edge lengths �(·)) there exists an efficient algorithm to compute a prob-
abilistic mapping whose congestion (stretch) is, with high probability and in
expectation, at most e2ωρ+ 1.

Proof. We will show how to obtain a low-congestion probabilistic mapping if we
can, for every collection of edge lengths �(·), efficiently compute (or sample from)
a probabilistic mapping with low stretch. The other direction, i.e., obtaining low
stretch when we have a method to obtain low-congestion probabilistic mappings, is
symmetric.

VERTEX SPARSIFIERS 1247

(a) We define fe′(λ) :=
∑

M λM (
∑

e Me,e′c(e)/c(e
′)) to be the expected load of

an edge e′ ∈ E under probabilistic mapping {λM} and we choose P to be
the set of all nonnegative |M|-dimensional vectors λ with

∑
M∈M λM = 1.

Now Theorem 6 immediately implies the claim if we can implement the oracle
efficiently.
Define edge lengths �(e) := xe/c(e). Due to our assumption, we can efficiently
find a probabilistic mapping {λM} such that the maximum average stretch,
with respect to these edge lengths, is at most ρ, i.e., such that

max
e

∑
M

λM

(∑
e′

Me,e′
�(e′)
�(e)

)
≤ ρ .

Plugging in �(·), we obtain

max
e

∑
M

λM

(∑
e′

Me,e′
�(e′)
�(e)

)
= max

e

1

xe

∑
M

(
λM

∑
e′

xe′ ·Me,e′
c(e)

c(e′)

)
≤ ρ .

Therefore, we can find {λM} such that, for every e,

∑
M

λM

(∑
e′

xe′ ·Me,e′c(e)/c(e
′)

)
≤ ρ · xe.

Summing up over all e gives
∑

e

∑
M λM (

∑
e′ xe′Me,e′c(e)/c(e

′)) ≤ ρ
∑

e xe =
ρ and hence, by rearranging the sums,

∑
e′

xe′

(∑
M

λM

(∑
e

Me,e′
c(e)

c(e′)

))
=
∑
e′

xe′fe′(λ) ≤ ρ .

This completes the implementation of the oracle.
(b) Above we assumed that we can efficiently compute an explicit distribution

on polynomially many admissible mappings that results in a probabilistic
mapping with low stretch. If we can only efficiently sample from such a
distribution {λM}, we can still obtain a similar result. Let C be an upper
bound on the worst load of any edge under any admissible mapping (e.g., the
maximum sum of all entries of an M ∈ M multiplied by the largest ratio of
capacities of two different edges). Then, for a sufficiently large constant κ
we take T = ln(mC/ω) · κ/ω independent samples from {λM} and pick the
sampled M ′ ∈ M that minimizes

∑
e′ xe′(

∑
e M

′
e,e′c(e)/c(e

′)). Our oracle
then returns λ′ with λ′

M ′ = 1 (and λ′
M ′′ = 0 for all M ′′ �= M ′).

For a single sample, the probability that
∑

e′ xe′fe′(λ
′) > eωρ is at most

1/eω due to Markov’s inequality. The probability that this is the case for
all T independent samples is at most 1/eωT = (mC/ω)−κ. By taking a
union bound over all O(ω−2m logm) oracle calls we conclude that the prob-
ability that any of them returns λ′ with

∑
e′ xe′fe′(λ

′) > eωρ is bounded by
O((mC)2−κ). Therefore, Theorem 6 guarantees that with high probability,
namely, with probability at least 1 − O((mC)2−κ), we obtain a γ ∈ P with
maxe fe(γ) ≤ e2ωρ. With the remaining probability O((mC)2−κ), maxe fe(γ)
may be much larger, but even in the worst case it will be bounded by C.
Therefore, by choosing κ sufficiently large, the expectation of maxe fe(γ) is
bounded by e2ωρ+ C · O((mC)2−κ) ≤ e2ωρ+ 1.

1248 ENGLERT ET AL.

3.2. Constructing sparsifiers. The following theorem gives the formal connec-
tion between 0-extensions and flow sparsifiers.

Theorem 8. Suppose there is a (randomized) algorithm A that, given a graph G
and edge lengths �G : E(G) → R

+, computes a 0-extension ((H, �H), f) with stretch
factor at most α such that H is a graph from class H.

Then there is an algorithm that, given any capacity assignment cG : E(G) →
R

+, computes for the graph (G, cG) an O(α)-loss flow sparsifier that is a convex
combination of edge-capacitated graphs from class H.

Proof. Suppose we have a 0-extension (H, f), where H = (K,EH) and f : V → K
is a retraction. For every pair of terminals u, v ∈ K we fix a canonical shortest path
SH
u,v between u and v in H and a canonical shortest path SG

u,v between u and v in
G (observe that for the important case that H is the set of trees the paths in H are
unique). We define a mapping MH,f : E(G)→ P corresponding to 0-extension (H, f)
by

MH,f((x, y)) =
⊎

(u,v)∈SH
f(x)f(y)

SG
uv .

In other words an edge (x, y) is first mapped to SH
f(x)f(y) in H and then the edges (u, v)

on this path are mapped to path SG
uv in G. Recall that MH,f((x, y)) is a multi-set.

In the corresponding matrix representation, Me,e′ is the multiplicity of e′ in the set
�(u,v)∈SH

f(x)f(y)
SG
uv.

For a graph class H (for example the set of trees) we define the set of admissible
mappings by {MH,f | H ∈ H}. Note that in MH,f an edge (x, y) ∈ E(G) is mapped to
a path of length dH(f(x), f(y)). This means the stretch of the edge in the mapping
is the same as the stretch of an edge in the definition of 0-extensions. Therefore,
the existence of a probability distribution over 0-extensions with (expected) stretch
α gives rise to a probability distribution over admissible mappings with (expected)
stretch α.

Applying the constructive version of the transfer theorem gives that for any assign-
ment cG : E(G)→ R

+ of edge capacities to edges in G, we can compute a probability
distribution over admissible mappings with congestion at most O(α). In the following
we show that we can interpret this probability distribution as a flow sparsifier.

With every mapping MH,f we associate the graph H with the following edge
capacities

cH,f (e) =
∑

(u,v)∈E(G):e∈SH
f(u),f(v)

cG((u, v)) .

This means the capacity of an edge e ∈ E(H) is the total capacity of all graph edges
(u, v) ∈ G for which the canonical path between u and v in H contains e. The flow
sparsifier F is now the convex combination {λH,f} over graphs (H, cH,f). To see that
F has quality O(α) we prove two facts:

(a) Any K-flow that can be feasibly routed in G, can also be feasibly routed in
F ; and

(b) any K-flow that can be feasibly routed in F , can be routed with congestion
O(α) in G.

Proving these facts is essentially a matter of unraveling the definitions. For (a), the
definition of edge capacities cH,f ensures that (H, cH,f) can feasibly route all edges of

VERTEX SPARSIFIERS 1249

G concurrently. Hence, it can also route any K-flow that is feasible in G. Since this
is true for any graph (H, cH,f) it also holds for the convex combination F .

To prove (b), we want to route edges of F in G. As F is a convex combination
this means we want to concurrently route all graphs (H, cH,f), where the capacities
are scaled down by the convex multiplier λH,f . We simply route an edge (u, v) ∈ H
along the canonical path SG

uv. This results in the following load on an edge e′ ∈ E(G):

1

c(e′)

∑
H,f

λH,f

∑
eH=(u,v)∈E(H):e′∈SG

u,v

cH,f (eH) .

Plugging in the definition for the edge capacities cH,f and changing the order of
summation gives that this is equal to

1

c(e′)

∑
H,f

λH,f

∑
eH=(u,v)∈E(H):e′∈SG

uv

∑
(x,y)∈E(G):eH∈SH

f(x),f(y)

c(xy)

=
1

c(e′)

∑
H,f

λH,f

∑
(x,y)∈E

c(xy) · (multiplicity of e′ in �(u,v)∈SH
f(x),f(y)

SG
uv) .

However, this is exactly the expected load for e′ under the notion of admissible maps
defined in (3.2); hence this is bounded by the congestion (the maximum expected
load over all edges), which is at most O(α). This proves condition (b) above, that
the congestion to route any K-flow in the convex combination F in the graph G is at
most O(α).

Combining Theorem 8 with Corollary 4 gives the following.
Theorem 9 (tree-based flow sparsifiers). There is a randomized polynomial-time

algorithm that, given a graph G and terminals K, outputs a flow sparsifier H which
is a convex combination of trees and has loss O(log k).

Combining Theorem 8 with Theorem 1 gives the following.
Theorem 10 (flow sparsifiers). There is a randomized polynomial-time algo-

rithm that, given a graph G with terminals K, outputs a flow sparsifier H with loss
O(log k

log log k).

The same idea using 0-extension results for β-decomposable graphs (Theorem 2)
gives us the following.

Theorem 11 (flow sparsifiers for minor-closed families). There is a randomized
polynomial-time algorithm that, given a β-decomposable graph G with terminals K,
constructs a flow sparsifier with loss O(β).

Note that the decomposability holds if G belongs to a nontrivial minor-closed-
family G (e.g., if G is planar). However, Theorem 11 does not claim that the flow
sparsifier for G also belongs to the family G; this is the question we resolve in the next
section.

4. Connected 0-extensions and minor-based flow sparsifiers. The results
in this section apply to β-decomposable graphs. A prominent example of such graphs
are planar graphs, which (along with every family of graphs excluding a fixed minor)
are O(1)-decomposable [22, 14]. Thus, Theorem 12, Corollary 13, and Theorem 14
below all apply to planar graphs (and more generally to excluded-minor graphs) with
β = O(1). We now state our results for β-decomposable graphs in general. In sec-
tion 4.2 we define a related notion called terminal decomposability, and show analogous
results for β̂-terminal-decomposable graphs.

1250 ENGLERT ET AL.

In what follows we use the definition of 0-extension from section 2 with H = Hf ,
i.e., EH = {(f(u), f(v)) : (u, v) ∈ E}, hence the 0-extension is completely defined
by the retraction f . We say that a 0-extension f is connected if for every x, f−1(x)
induces a connected component in G. Our main result shows that we get connected
0-extensions with stretch O(β log β) for β-decomposable metrics.

Theorem 12 (connected 0-extension). There is a randomized polynomial-time al-
gorithm that, given (G = (V,E), �G) with terminals K such that dG is β-decomposable,
produces a connected 0-extension f : V → K such that for all u, v ∈ V , we have

E[dH(f(u), f(v))] ≤ O(β log β) · dG(u, v).

Note that if f is a connected 0-extension, the graph Hf is a minor of G. Applying
Theorem 5 to interchange the distance preservation with capacity preservation, we get
the following analogue of Theorem 9.

Corollary 13 (minor-based flow sparsifiers). For every β-decomposable graph
G = (V,E) with edge capacities cG and a subset K ⊂ V of k terminals, there is
a minor-based flow sparsifier with quality O(β log β). Moreover, a minor-based flow
sparsifier for G, cG,K can be computed efficiently in randomized polynomial-time.

Since planar graphs are O(1)-decomposable and since their minors are planar, by
Corollary 13 they have an efficiently constructable planar-based flow sparsifier with
quality O(1). By Theorem 12, they always have a connected 0-extension with stretch
at most O(1). An interesting consequence of the latter result is that given any planar
graph (G, �G), and a set K of terminals, we can “remove” the nonterminals and get
a related planar graph on K while preserving interterminal distances in expectation.
Moreover, this extends to every family of graphs excluding a fixed minor. These
results generalize a result from [16] showing a similar result for trees.2

Theorem 14 (Steiner points removal). There is a randomized polynomial-time
algorithm that, given (G = (V,E), �G) and K such that dG is β-decomposable, outputs

minors H = (K,EH) of G such that 1 ≤ E[dH(x,y)]
dG(x,y) ≤ O(β log β) for all x, y ∈ K.

Note that, since general graphs are only Θ(logn)-decomposable, these results only
give us an O(log n log logn)-approximation for connected 0-extension on arbitrary
graphs (or an O(log2 k log log k)-approximation using results of section 4.2). We can
improve that to O(log k); the details are in section 4.3.

Theorem 15 (connected Calinescu–Karloff–Rabani (CKR)). There is a random-
ized polynomial-time algorithm that on input (G = (V,E), �G) and K, produces a
connected 0-extension f with E[dH(f(u), f(v))] ≤ O(log k) · dG(u, v) for all u, v ∈ V .

Using the semimetric relaxation for 0-extension, we get a connected 0-extension
whose cost is at most O(log k) times the optimal (possibly disconnected) 0-extension.
To our knowledge, this is the first approximation algorithm for connected 0-extension,
and in fact shows that the gap between the optimum connected 0-extension and the
optimum 0-extension is bounded by O(log k). The same is true with an O(1) bound
for planar graphs. We remark that the connected 0-extension problem is a special
case of the connected metric labeling problem, which has recently received attention
in the vision community [33, 30].

4.1. The algorithm for decomposable metrics. We now give the algorithm
behind Theorem 12. Assume that edge lengths �G are integral and scaled such that

2One difference from the result in [16] is the following: that result deterministically produced a
single tree after removing the nonterminals, and hence the distances were preserved deterministically,
and not just in expectation. Getting such a result for planar graphs remains an open problem.

VERTEX SPARSIFIERS 1251

the shortest edge is of length 1. Let the diameter of the metric be at most 2δ. For
each vertex v ∈ V , define Av = minx∈K dG(v, x) to be the distance to the closest
terminal. The algorithm maintains a partial mapping f at each point in time—some
of the f(v)’s may be undefined (denoted by f(v) = ⊥) during the run, but f is a
well-defined 0-extension when the algorithm terminates. We say a vertex v ∈ V is
mapped if f(v) �= ⊥. The algorithm appears as Algorithm 1.

Algorithm 1. Algorithm for connected 0-extension.
1: input: (G, �G),K.
2: let i← 0, f(x) = x for all x ∈ K, f(v) = ⊥ for all v ∈ V \K.
3: while there is a v such that f(v) = ⊥ do
4: let i← i+ 1, ri ← 2i

5: sample a β-decomposition of dG with diameter bound ri to get a partition P
6: for all clusters Cs in the partition P that contains both mapped and unmapped

vertices do
7: delete all vertices u in Cs with f(u) �= ⊥
8: for each connected component C from Cs do
9: choose a vertex wC ∈ Cs that was deleted and had an edge to C

10: reset f(u) = f(wC) for all u ∈ C.
11: end for
12: end for
13: end while

We can assume that in round δ = log diam(G), the partitioning algorithm returns
a single cluster, in which case all vertices are mapped and the algorithm terminates.
Let fi be the mapping at the end of iteration i. For x ∈ K, let V x

i denote f−1
i (x),

the set of nodes mapped to x. The following claim follows inductively:
Lemma 16. For every iteration i and x ∈ K, the set V x

i induces a connected
component in G.

Proof. We prove the claim inductively. For i = 0, there is nothing to prove since
V x
i = {x}. Suppose that in iteration i, we map vertex u to x so that u ∈ V x

i . Thus for
some component C containing u, the mapped neighbor wC chosen by the algorithm
was in V x

i−1. Since we map all of C to x, there is a path connecting v to wC in V x
i .

Inductively, wC is connected to x in V x
i−1 ⊆ V x

i , and the claim follows.
The following lemma will be useful in the analysis of the stretch; it says that any

node mapped in iteration i is mapped to a terminal at distance O(2i).
Lemma 17. For every iteration i and x ∈ K, and every u ∈ V x

i , dG(x, u) ≤ 2ri.
Proof. The proof is inductive. For i = 0, the claim is immediate. Suppose that

in iteration i, we map vertex u to x so that u ∈ V x
i . Thus for some component C

containing u, the mapped neighbor wC chosen by the algorithm was in V x
i−1. More-

over, u and wC were in the same cluster in the decomposition so that d(u,wC) ≤ ri.
Inductively, d(wC , x) ≤ 2ri−1 and the claim follows by triangle inequality.

In the remainder of the section, we bound the stretch of the 0-extension; for every
edge e = (u, v) of G, we show that

E[dG(f(u), f(v))] ≤ O(β log β) dG(u, v).

Note that for e = (u, v), dG((f(u), f(v)) = dH((f(u), f(v)). Therefore it is sufficient
to prove the claim for dG. The analogous claim for nonadjacent pairs will follow by
triangle inequality, but here with dH . We say that the edge e = (u, v) is settled in
round j if the latter of its endpoints gets mapped in this round; e is untouched after

1252 ENGLERT ET AL.

round j if both u and v are unmapped at the end of round j. Let dG(u,K) ≤ dG(v,K)
and let Ae denote the distance dG(u,K). Let je := �log(Ae)� − 1.

Lemma 18. For edge e = (u, v),
(a) edge e is untouched after round je − 1,
(b) if edge e is settled in round j then dG(f(u), f(v)) = O(2j + dG(u, v)).
Proof. For (a), if one of the endpoints of e is mapped before round je, then 2·2je ≤

Ae = dG(e,K), which contradicts Lemma 17. For (b), both dG(u, f(u)), dG(v, f(v)) ≤
2j+1 by Lemma 17; the triangle inequality completes the proof.

Let Bj denote the “bad” event that the edge is settled in round j and that both
endpoints are mapped to different terminals. Let z := max{Ae, dG(u, v)}. We want
to use

E[d(f(u), f(v))] =
∑
j

Pr[Bj] · E[d(f(u), f(v)) | Bj].

Claim 19. Pr[Bj] ≤ min{4β z
2j , 1} · 5β dG(u,v)

2j .
Proof. Recall that an edge is untouched after round j′ if neither of its endpoints

is mapped at the end of this round. For this to happen, u must be separated from
its closest terminal in the clustering in round j′, which happens with probability at
most min{β Ae

2j′ , 1}. Also recall that the probability that an edge e = (u, v) is cut in a

round j′ is at most β dG(u,v)

2j′ . Let i denote the round in which the edge is first touched.
We upper bound the probability of the event Bj separately depending on how i and
j compare. Note that for j ≤ 2, the right-hand side is at least 1 so the claim holds
trivially.

• i ≤ j−2. For Bj to occur, the edge e must be cut in round j−2 and j−1, as
otherwise it would already be settled in one of these rounds. The probability

of this is at most min{β dG(u,v)
2j−2 , 1} · β dG(u,v)

2j−1 ≤ min{4β z
2j , 1} · 2β dG(u,v)

2j .
• i = j − 1. For Bj to occur, the edge e must be cut in round j − 1 and
must be untouched after round j − 2. The probability of this is at most

min{β Ae

2j−2 , 1} · β dG(u,v)
2j−1 ≤ min{4β z

2j , 1} · 2β dG(u,v)
2j .

• i = j. For Bj to occur, e must be cut in round j and must be untouched after

round j − 1. The probability of this is at most min{β Ae

2j−1 , 1} · β dG(u,v)
2j ≤

min{4β z
2j , 1} · β dG(u,v)

2j .
Since Pr[Bj] = Pr[Bj ∧ (i ≤ j − 2)] + Pr[Bj ∧ (i = j − 1)] + Pr[Bj ∧ (i = j)], the claim
follows.

Lemma 18(b) implies that if the edge is settled before round jd := �log(dG(u, v))�,
the conditional expectation E[dG(f(u), f(v)) | Bj] is O(dG(u, v)). Moreover the edge
e cannot be settled before round je = �log(Ae)� − 1 by Lemma 18(a). Let jm :=
max{jd, je}. It therefore suffices to show that∑

j≥jm

Pr[Bj] ·O(2j) ≤ O(β log β) dG(u, v).

Plugging in the upper bound for Pr[Bj] into the left-hand side, we get∑
j≥jm

Pr[Bj] · O(2j) ≤
∑
j≥jm

min{4β z
2j , 1} · 5β dG(u,v)

2j · O(2j)

≤
∑
j≥jm

min{4β z
2j , 1} · β ·O(dG(u, v))

≤ O(β log β) dG(u, v).

VERTEX SPARSIFIERS 1253

In the last step, we used that z = max{Ae, dG(u, v)} ≤ max{2je+2, 2jd+1} ≤ 2jm+2,
so the first O(log β) terms contribute O(β dG(u, v)), while the remaining terms form
a geometric series and sum to O(dG(u, v)). This completes the proof of Theorem 12.

4.2. Terminal decompositions. The general theorem for connected 0-exten-
sions gives a guarantee in terms of its decomposition parameter β, and in general
this quantity may depend on n. This seems wasteful, since we decompose the entire
metric while we mostly care about separating the terminals.

To this end, we define terminal decompositions (the reader might find it useful to
contrast it with the definition of decompositions in section 1.3). A partial partition
of a set X is a collection of disjoint subsets (called “clusters” of X). A metric (X, d)
with terminals K is called β̂-terminal decomposable if for every Δ > 0 there is a
probability distribution μ over partial partitions of X , with the following properties.

• Diameter bound: Every partial partition P̂ ∈ supp(μ) is connected and Δ-
bounded.
• Separation event: For all u, v ∈ X , PrP̂∈μ[∃S ∈ P̂ such that u ∈ S but v /∈ S]

≤ β̂ · d(u, v)/Δ.

• Terminal partition: For all x ∈ K, every partial partition P̂ ∈ supp(μ) has a
cluster containing x.
• Terminal-centered clusters: For every partial partition P̂ ∈ supp(μ), every

cluster S ∈ P̂ contains a terminal.
A graph G = (V,E) with terminals K is β̂-terminal decomposable if for every non-
negative length �G assigned to its edges, the resulting shortest-path metric dG with
terminals K is β̂-terminal decomposable. Throughout, we assume that there is a
polynomial-time algorithm that, given the metric, terminals, and Δ as input, samples
a partial partition P̂ ∈ μ. Note that if K = V , the above definitions coincide with
the definitions of β-decomposable metrics and graphs.

Our main theorem for terminal decomposable metrics is the following.
Theorem 20. Given (G = (V,E), �G), suppose dG is β̂-terminal decomposable

with respect to terminals K. There is a randomized polynomial-time algorithm that
produces a connected 0-extension f : V → K such that for all u, v ∈ V , we have
E[dG(f(u), f(v))] ≤ O(β̂2 log β̂) · dG(u, v).

This theorem is interesting when β̂ is much less than β, the decomposability of
the metric itself; e.g., one can alter the CKR decomposition scheme to get β̂(k, n) =
O(log k), while β = O(log n).

4.2.1. The modified algorithm. Algorithm 2 for the terminal-decomposable
case is very similar to Algorithm 1: the main difference is that in each iteration we
only obtain a partial partition of the vertices; we map only the nodes that lie in
clusters of this partial partition.

A few words about the algorithm: Recall that a partial partition returns a set
of connected diameter-bounded clusters such that each cluster contains at least one
terminal, and each terminal is in exactly one cluster—we use V x to denote the cluster
containing x ∈ K. (Hence either V x = V y or V x ∩ V y = ∅.) Now when we delete all
the vertices in some cluster V x that are already mapped, this includes the terminal
x—and hence there is at least one candidate for wC in line 9. Eventually, there will be
only one cluster, in which case all vertices are mapped and the algorithm terminates.

The analysis for Theorem 20 is almost the same as for Theorem 12; the only
difference is that Claim 19 is replaced by the following weaker claim which immediately
gives the O(β̂2 log β̂) bound.

1254 ENGLERT ET AL.

Algorithm 2 . Algorithm for connected 0-extension: The terminal-

decomposable case.

1: input: (G, �G),K.
2: let i← 0, f(x) = x for all x ∈ K, f(v) = ⊥ for all v ∈ V \K.
3: while there is a v such that f(v) = ⊥ do
4: let i← i+ 1, ri ← 2i

5: find a β̂-terminal decomposition of dG with diameter bound ri; let V x be the
cluster containing terminal x.

6: for all clusters V x in the partial partition do
7: delete all vertices u in V x with f(u) �= ⊥
8: for each connected component C from V x thus formed do
9: choose a vertex wC ∈ V x that was deleted and had a neighbor in C

10: reset f(u) = f(wC) for all u ∈ C.
11: end for
12: end for
13: end while

Claim 21. Pr[Bj] ≤ min{8β̂ z
2j , 1} · 23β̂2 d(u,v)

2j .
Proof. Recall that an edge is untouched after round j′ if neither of its endpoints

is mapped at the end of this round. For this to happen, u must be separated from
its closest terminal in the clustering in round j′, which happens with probability at
most min{β̂ Ae

2j′ , 1}. Also recall that the probability that an edge e = (u, v) is cut in a

round j′ is at most β̂ d(u,v)

2j′ . Let i denote the round in which the edge is first touched.
We upper bound the probability of the event Bj separately depending on how i and
j compare. Note that for j ≤ 3, the right-hand side is at least 1 so the claim holds
trivially.

• i ≤ j − 3. For Bj to occur, it must happen that the edge is cut in round i
and it is either untouched or cut in rounds j − 1 and j − 2. The probabil-

ity for this to happen is at most min{β̂ d(u,v)
2i , 1} · min{β̂(Ae

2j−2 + d(u,v)
2j−2), 1} ·

β̂(Ae

2j−1 + d(u,v)
2j−1) ≤ min{ d(u,v)2i , 1}min{8β̂ z

2j , 1} · 4β̂2 z
2j . If d(u, v) ≥ Ae this

is at most min{8β̂ z
2j , 1} · 16β̂2 d(u,v)

2j as z = d(u, v). Otherwise, observe that
i ≥ je as the edge cannot be touched before. Hence 2i ≥ Ae/4, and plugging

this in gives a bound of min{8β̂ z
2j , 1} · 16β̂2 d(u,v)

2j , as well.
• i = j − 2. For Bj to occur, the edge e must be cut in round j − 2 and it
must be cut or untouched in round j − 1, as otherwise it would already be

settled in one of these rounds. The probability of this is at most β̂ d(u,v)
2j−2 ·

min{β̂(d(u,v)2j−1 + Ae

2j−1), 1} ≤ min{4β̂ z
2j , 1} · 4β̂ d(u,v)

2j .
• i = j− 1. For Bj to occur, the edge e must be cut in round j− 1 and must be
untouched in round j − 2. The probability of this is at most min{β̂ Ae

2j−2 , 1} ·
β̂ d(u,v)

2j−1 ≤ min{4β̂ z
2j , 1} · 2β̂ d(u,v)

2j .
• i = j. For Bj to occur, e must be cut in round j and must be untouched

in round j − 1. The probability of this is at most min{β̂ Ae

2j−1 , 1} · β̂ d(u,v)
2j ≤

min{4β̂ z
2j , 1} · β̂ d(u,v)

2j .
Since Pr[Bi] = Pr[Bi ∧ (i ≤ j − 3)] + Pr[Bi ∧ (i = j − 2)] + Pr[Bi ∧ (i = j − 1)] +
Pr[Bi ∧ (i = j)], the claim follows.

4.3. Connected 0-extension on general graphs. Finally, we show that for
general metrics, we can do better than the O(log2 k log log k) guarantee implied by
Theorem 20. In particular, we now prove Theorem 15, which gives a O(log k) guaran-

VERTEX SPARSIFIERS 1255

tee. We still use Algorithm 1 from the previous section, but use a specific decomposi-
tion algorithm. The following result follows from Fakcharoenpol et al. [12], who built
upon the work of Calinescu, Karloff, and Rabani [5].

Theorem 22 (see [12]). Let (G = (V,E), �G) with a terminal set K = {x1, . . . , xk}
⊆ V . There is a (randomized) polynomial-time algorithm that produces, for each
i = 0, 1, . . . , �log diam(G)�, a collection of k + 1 clusters {Ci

0, C
i
1, . . . , C

i
k}, such that

(a) (diameter) for any j �= 0, Ci
j contains the terminal xj, and d(xj , v) ≤ 2i for

any v ∈ Ci
j ;

(b) (separation) for any u, v ∈ X, Pr[∃j such that u ∈ Ci
j but v �∈ Ci

j] ≤ O(βuv
i) ·

d(u, v)/2i, where the probability is taken over the internal coin tosses of the
algorithm, and

(c) (amortization) for any u, v ∈ X,
∑

i β
uv
i ≤ β = O(log k);

(d) (coverage) ∪j �=0C
i
j contains ∪kj=1Bd(xj , 2

i−1).
We remark that we do not need each cluster to induce a connected component.

Observe that the (diameter) and (coverage) properties imply
(e) (laminarity) for any i, ∪j �=0C

i+1
j ⊇ ∪j �=0C

i
j with probability 1. Hence also

Ci
0 ⊇ Ci+1

0 with probability 1.
We run Algorithm 1 with this decomposition; the only worry is that since the

clusters are not connected, it may be the case that in step 9 we may not find a node
wC as desired. In this case, we expel C from Cs, and do not map the vertices in C
in this iteration. This ensures the connectivity property of the f−1

i (x)’s. Moreover,
the laminarity property inductively ensures that we never map any vertex from Ci

0 by
the end of round i. Since the diameter property bounds the diameter of every other
cluster, Lemma 17 continues to hold.

Now, by its very definition, any expulsion operation only removes components
that are disconnected from the rest of Cs, and hence does not increase the separation
probability for any edge. Moreover, it is still the case that if u is mapped before round
j and an edge (u, v) is not cut in round j, then the node v gets mapped in round j
as well. Indeed by laminarity, u is in one of the clusters containing a terminal, and
if (u, v) is not cut, then v is in that cluster too. Since u is mapped, the component
containing v cannot be expelled. Thus Claim 19 continues to hold and bounds the
probability of Bj , implying that

E[d(f(u), f(v))] =
∑

j Pr[Bj] · E[d(f(u), f(v)) | Bj]
≤ O(dG(u, v)) +

∑
j≥j′ Pr[Bj] ·O(2j)

≤ O(dG(u, v)) +
∑

j≥j′ min{4β z
2j , 1} · 5βuv

i
dG(u,v)

2j · O(2j)

≤ O(β dG(u, v)).

Since β = O(log k), this gives us connected 0-extensions where the stretch is O(log k),
and hence finishes the proof of Theorem 15.

5. Lower bounds. In this section, we show two kinds of lower bounds. The
first shows that any flow sparsifier that is a convex combination of 0-extensions must
suffer a loss of Ω(

√
log k)—for such an extension, this improves on the Ω(log logn)

lower bound for (arbitrary) flow sparsifiers [26]. The second shows that any flow
sparsifier that only uses edge capacities which are bounded from below by a constant,
must suffer a loss of Ω(

√
log k/ log log k).

5.1. Lower bounds for 0-extension-based sparsifiers. The following result
can be viewed as following from the duality between 0-extensions and 0-extension-

1256 ENGLERT ET AL.

based flow sparsifiers (Theorem 5); by that theorem, not only do good 0-extension
algorithms give good 0-extension-based flow sparsifiers, but the converse would also
be true—and hence one can use a lower bound of Calinescu, Karloff, and Rabani [5]
to infer lower bounds on 0-extension-based flow sparsifiers. The following theorem
gives the explicit construction obtained thus.

Theorem 23. For infinitely many values of k, there is a graph G′ = (V (G′), E(G′))
and a set K ⊆ V of size k for which any flow sparsifier that is a convex combination
of 0-extension graphs has quality at least Ω(

√
log k).

Proof. We use the lower bound of Ω(
√
log k) on the 0-extension integrality ratio by

Calinescu, Karloff, and Rabani [5]. For completeness we describe their construction:
Let G be an expander with n vertices, maximum degree Δ, and expansion at least
α, where Δ and α are fixed parameters. Define l =

⌈√
logn

⌉
and k =

⌈
n
l

⌉
. Choose

any k distinct vertices h1,hk ∈ V (G) and add k new paths of length l starting at
these vertices and ending at new vertices labeled 1, . . . , k. Denote the resulting graph
by G′ (note that |V (G′)| = O (n) and |E (G′)| = O (n)), and let the terminals K be
the new vertices {1, . . . , k}. Set the costs and lengths of the edges to 1. The distance
dG′ (u, v) is set to be the shortest path distance in G′ between u, v. For the described
instance G′,K of the 0-extension problem, Calinescu, Karloff, and Rabani show that∑

e=(u,v)∈E(G′)

c(e)dG′(u, v) = |E (G′)| = O(n),

while there exists a universal γ > 0 such that for any 0-extension function f : V (G′)→
K, ∑

e=(u,v)∈E(G′)

c(e)dG′(f(u), f(v)) ≥ γn
√
logn = Ω

(
n
√
log k

)
.

We now use the instance G′,K as follows. By [26, proof of Theorem 1] it is known
that for any convex combination of 0-extensions H =

∑
λiHi, the quality of H is

sup
dG′ s.t.

∑
e c(e)dG′ (e)=1

⎧⎨⎩ ∑
s,t∈K

cH(s, t)dG′(s, t)

⎫⎬⎭
= sup

dG′ s.t.
∑

e c(e)dG′(e)=1

⎧⎨⎩∑
fi

λi

∑
(u,v)∈E(G′)

c(e)dG′(fi(u), fi(v))

⎫⎬⎭ .

(The proof of this uses strong duality for the maximum concurrent flow problem.) We
now show that there exists a semimetric dG′ such that

∑
e c(e)dG′(e) = 1, and for

every 0-extension function f : V (G′)→ K,∑
(u,v)∈E(G′)

c(e)dG′(f(u), f(v)) = Ω
(√

log k
)
.(1)

We set dG′(e) to be 1/|E(G′)| for every e ∈ E(G′). Thus,
∑

e∈E(G′) c(e)dG′(e) = 1.

We set dG′(u, v) to be the shortest path distance between u, v in G′ with respect to
edge lengths dG′(e). From the above it follows that for every 0-extension function f ,∑

(u,v)∈E(G′)

c(e)dG′(f(u), f(v)) ≥ γn
√
logn

|E (G′)| = Ω
(√

logn
)
= Ω

(√
log k

)
.

This proves (1), completing the proof.

VERTEX SPARSIFIERS 1257

5.2. Lower bounds for sparsifiers having no small edges.
Theorem 24. For infinitely many values of k, there is a graph G = (V,E) and

a terminal set K ⊂ V of size k for which any flow sparsifier with edge capacities at
least ε > 0 has quality at least Ω(ε

√
log k/ log log k).

Proof. Let n be a sufficiently large prime. Let G = (V,E) be a graph whose
nodes correspond to the elements of Zn and that contains an edge {u, v} if v = u+1,
v = u− 1, or v = u−1 (all operations are w.r.t. Zn and we define 0−1 as 0). In other
words the graph consists of a Hamiltonian cycle plus some additional edges. This
graph G is a 3-regular expander (see, e.g., [19]).

Choose the set of terminalsK as {i·�√logn� | 0 ≤ i ≤ k−1}, with k = n/�√logn�.
To simplify notation, we will omit floor and ceiling operations in the following. For
i ∈ [0, k− 1], let Bi be the set of the

√
log n nodes on the Hamiltonian cycle between

terminal i and i+ 1, including i but excluding i+ 1.
Let H = (K,EH) be a flow sparsifier for G with edge capacities at least ε > 0.

Let d be the maximum weight degree of H , where the weighted degree of a node is
the sum over all capacities of incident edges.

Claim 25. The maximum weighted degree d of H is at least

c′ · ε ·
√
logn

log logn

for some constant c′.
Proof. Consider a demand of 1/k between all pairs of terminals.
Since the minimum edge capacity is at least ε, the unweighted degree of H is at

most d/ε. Due to this bounded degree, for sufficiently large k, there are at least k2/4
terminal pairs that have distance at least log k/(2 log(d/ε)) from each other (see, e.g.,
[5, Lemma 4.2]).

Each of these pairs induces a load of 1/k on at least log k/(2 log(d/ε)) edges.
Therefore, the total load in the network is at least k log k/(8 log(d/ε)). Since H has
at most k · d/(2ε) edges, the congestion in H is at least ε log k/(4d log(d/ε)).

The same demand can be routed with congestion at most (c+ 1)
√
logn in G, for

some constant c depending on the edge expansion of G. Say each terminal i sends a
total flow of 1. We can distribute this flow evenly between the nodes in Bi using only
edges inside of Bi and with congestion of at most 1. This can easily be done, since we
can send this flow along the Hamiltonian cycle to reach every node in Bi. Now, we
route a uniform multicommodity flow on the whole expander, where the flow leaving
each node is 1/

√
logn, i.e., the demand between every pair of nodes is 1/(n

√
logn).

This requires congestion at most c logn · (1/√logn) = c
√
logn [27]. Finally, the flow

in each Bi is routed inside Bi to the respective terminal. Again, this can easily be
done with congestion 1. In total, we sent a flow of 1/k between all pairs of terminals
and the congestion is bounded by c

√
logn+ 2 ≤ (c+ 1)

√
logn.

Hence, we identified a demand that requires congestion at least ε log k/(4d log(d/ε))
in H but can be routed with congestion at most (c + 1)

√
logn in G. Since H is a

flow sparsifier, its congestion has to be bounded by the congestion in G and, thus,
ε log k/(4d log(d/ε)) ≤ (c+ 1)

√
logn. It follows that

d

ε
log

(
d

ε

)
≥ log k

4(c+ 1)
√
logn

.

Using the fact that k = n/
√
logn, the claim follows.

1258 ENGLERT ET AL.

Now pick a node in H that has weighted degree at least c′ · ε · √logn/ log logn
(such a nodes exists due to Claim 25). Consider the situation in which the demand
between this node and every other node corresponds to the capacity of the edge
connecting them in H , and all other demands are 0. Clearly, in H this can be
routed with congestion 1. The terminal in G corresponding to node u, however, has
only degree 3. Therefore, routing this demand in G results in congestion at least
c′ · ε ·√logn/(3 log logn) ≥ c′ · ε ·√log k/(3 log log k), since that is the load on at least
one of the outgoing edges of u.

6. Applications. Most of these applications were considered by Moitra [29], and
Leighton and Moitra [26]; we show how our results above give improved approxima-
tions to the problems.

6.1. Steiner oblivious routing. Theorem 9 is an exact analogue of Räcke’s
theorem on general flows [31] for the special case of K-flows, and hence immediately
gives an O(log k)-oblivious routing scheme for K-flows.

6.2. Steiner minimum linear arrangement. Given G = (V,E) and K ⊆ V
with |K| = k, the goal in the SMLA problem is to find a mapping F : V → [k] such that
F |K : K → [k] is a bijection. The goal is to minimize

∑
(u,v)∈E cuv|F (u)−F (v)|. Note

that for the non-Steiner minimum linear arrangement (MLA) case, where K = V , Rao
and Richa [32] gave an O(log n)-approximation for general graphs and an O(log logn)-
approximation for graphs that admit O(1)-padded decompositions (which includes the
family of all trees).

For our algorithm, we take a random tree/retraction pair (T, f) from the distri-
bution of Theorem 3; this ensures that the cost of the optimal map F ∗ (viewed as a
solution to the MLA problem on T) increases by an expected O(log k)-factor. Now
solving the MLA problem on the tree to within an O(log log k) factor to get a map

F̂T : K → [k], and defining F̂ (x) = F̂T (f(x)) gives us an expected O(log k log log k)-
approximation. We show in section 7 that this can be improved slightly to O(log k)
using a more direct approach.

6.3. Steiner graph bisection. In this problem, we are given a value k′ and
want to find a bipartition (A, V \ A) of the graph such that |A ∩K| = k′, and that
minimizes the cost of edges cut by the bipartition. We use Theorem 9 to embed the
graph into a random tree losing an O(log k) factor. On this tree we use the approach
of Räcke [31] to find the best (k′, k−k′) bipartition on that. This gives us an O(log k)
algorithm for this partitioning problem.

6.4. Steiner �-multicut. In this problem, we are given terminal pairs {si, ti}i∈[k],
and a value k′ ≤ k, and we want to find a minimum cost set of edges whose deletion
separates at least k′ terminal pairs. Again, we can use Theorem 9 to embed the
graph into a random tree losing an O(log k) factor, and use the theorem of Golovin,
Nagarajan, and Singh [15] to get a 4/3 + ε-approximation on this tree; this gives us
the randomized O(log k)-approximation.

6.5. Steiner min cut linear arrangement. The Steiner min cut linear ar-
rangement (SMCLA) problem is defined as follows: Given G = (V,E) and K ⊆ V
with |K| = k, we want to find a mapping F : V → [k] such that F |K : K → [k] is a
bijection. The goal is to minimize maxi

∑
x∈F−1([i]),y �∈F−1([i]) cxy. For the non-Steiner

version of the problem, Leighton and Rao [27] show that given an α-approximation
to the balanced partitioning (or to the bisection) problem, one can get an O(α logn)-

VERTEX SPARSIFIERS 1259

approximation to the min cut linear arrangement (MCLA) problem. Using [4], this
gives an O(log1.5 n)-approximation to the MCLA problem.

We note that the reduction works immediately for the Steiner version of the prob-
lem: given an α-approximation to Steiner bisection, one gets an O(α log k)-approxima-
tion to SMCLA. Thus we get an O(log2 k)-approximation to the SMCLA problem.
We show in section 7 that this can be improved to O(log1.5 k) using a more direct
approach.

7. Better algorithms using a direct approach. The vertex sparsifiers give a
modular approach to solving the Steiner version of various problems. Not surprisingly,
for some of these problems, a direct attack will lead to better algorithms. In this
section, we show that applying known techniques for the MLA problem leads to a
better approximation ratio for SMLA, and for SMCLA.

7.1. Steiner minimum linear arrangement. Recall that the SMLA problems
is defined as follows: Given G = (V,E) and K ⊆ V with |K| = k, the goal is to find a
mapping F : V → [k] such that F |K : K → [k] is a bijection. The goal is to minimize∑

(u,v)∈E cuv|F (u)− F (v)|. Specifically, we show the following result.

Theorem 26. There is a polynomial time O(log k)-approximation algorithm for
the SMLA problem based on the natural LP relaxation.

Proof. The linear program for the SMLA problem is based on the spreading
metric LP relaxation for MLA introduced in [11]:

min
∑

(u,v)∈E

cuvduv

subject to

(triangle inequality) duw − duv − dvw ≤ 0 ∀u, v, w ∈ V,

(spreading)
∑
v∈S

duv ≥ |S|2
5 ∀S ⊆ K, |S| ≥ 2, u ∈ S,

duv ≥ 0 ∀u, v ∈ V.

It follows from [11] that the above is a valid LP relaxation to the SMLA problem,
and that one can efficiently separate for the spreading constraints so that the LP can
be solved in polynomial time using the Ellipsoid algorithm. Further, it is easy to
check that the spreading constraints imply that for any u ∈ K, |Bd(u, r) ∩K| ≤ 5r.
(Here, Bd(v, r) = {w | d(v, w) ≤ r} is the “ball” around v of radius r in the metric d.)

Let d be a solution to the above linear program. Since d is a metric on V , it follows
from Theorem 3 that we construct a (random) edge-weighted 2-HST T = (I ∪K,ET)
with internal nodes I and leaves K, and a retraction f : V → K such that

(a) dT (f(x), f(y)) ≥ d(x, y) for all x, y ∈ K (with probability 1),
(b) ET [dT (f(u), f(v))] ≤ O(log k) d(u, v) for all u, v ∈ V .
We argue that given this HST, we can construct a mapping FT : V → [k] such

that FT |K : K → [k] is a bijection. This mapping will have the property that
|FT (u)− FT (v)| ≤ 5dT (f(u), f(v)). The approximation ratio of O(log k) then follows
from property (b) above.

The mapping FT is defined by taking the natural left-to-right ordering on K
defined by T , and assigning every other vertex v ∈ V to the position f(v). Formally,
let π be a preorder traversal of T . For every terminal x ∈ K, set FT (x) to the number
of terminals in π that occur before x, i.e., FT (x) = |K ∩ {πi : i ≤ π−1(x)}|. For
every other vertex u ∈ V , set FT (u) = FT (f(u)). It is easy to check that FT |K is a
bijection.

1260 ENGLERT ET AL.

We next upper bound |FT (u) − FT (v)| for u, v ∈ V . Consider the terminals
tu = f(u), tv = f(v): If tu = tv, then FT (x) = FT (y) and there is nothing to prove;
else let Tuv be the smallest subtree of T containing tu and tv. By the properties of the
HST, we have dT (tu, tv) ≥ dT (tu, z) for all z ∈ Txy. Moreover, dT (u, v) = dT (tu, tv).
Now,

|FT (u)− FT (v)| = |FT (tu)− FT (tv)|
≤ |K ∩ Tuv|
≤ |K ∩BdT (tu, dT (tu, tv))|(since dT (tu, tv) ≥ dT (tu, z) for all z ∈ Tuv)

≤ |K ∩Bd(tu, dT (tu, tv))|(by property (a))

≤ 5dT (tu, tv)(by the spreading property)

= 5dT (u, v).

This proves Theorem 26.

7.2. Steiner min cut linear arrangement. Recall that the SMCLA problem
is defined as follows. Given G = (V,E) and K ⊆ V with |K| = k, the goal is to find a
mapping F : V → [k] such that F |K : K → [k] is a bijection. The goal is to minimize
maxi

∑
x∈F−1([i]),y �∈F−1([i]) cxy. Specifically, we show the following result.

Theorem 27. There is a polynomial-time O(log1.5 k)-approximation algorithm
for the SMCLA problem.

The algorithm and the proof are the natural generalization of the O(log1.5 n)
approximation to the MCLA problem. We sketch the argument here.

This algorithm is based on an SDP formulation and the sparsest cut algorithm
of [4], where the following theorem is shown.

Theorem 28. There exists a constant ε > 0 such that the following holds. For

any k-point �22 metric (S, d) satisfying
∑

x,y∈S dxy ≥ |S|2
8 , there are sets A,B ⊆ S

such that |A|, |B| ≥ εk and d(A,B) ≥ ε√
log k

. Moreover given vectors {vx : x ∈ S}
representing d, such sets A,B can be found in polynomial time.

Consider first the following linear program:

min
∑

(x,y)∈E

cxydxy

subject to

(triangle inequality) dxz − dxy − dyz ≤ 0 ∀x, y, z ∈ V,

(balance)
∑

x,y∈K

dxy ≥ |K|2
8 ,

dxy ≥ 0 ∀x, y ∈ V.

Let F : V → [k] be the optimum MCSLA with value OPT . Then the cut sepa-
rating F−1([�k2 �]) from its complement has value at most OPT, and gives a feasible
integral solution to above linear program. Thus the value of the relaxation above is
at most OPT .

Suppose in the above linear program, we additionally require that the distance
metric d be an �22 metric, i.e., there exists vectors vx ∈ R

n such that d(x, y) =
‖vx − vy‖22. This program can be naturally written as an SDP, and can be solved in
polynomial time to return vectors {vx}. Moreover, the optimum to this relaxation
has value at most OPT as well. Theorem 28 then implies that we can find sets

VERTEX SPARSIFIERS 1261

A,B ⊆ K such that |A|, |B| ≥ εk and where d(A,B) ≥ Δ = ε√
log k

. Consider the sets

Ar = {x ∈ V : d(A, x) ≤ r}. For 0 < r < Δ, it is immediate that A ⊆ Ar ⊆ V \B.
Picking r at random from (0,Δ), we observe that for any x, y ∈ V

Pr[x ∈ Ar, y �∈ Ar] ≤ (d(y,A)− d(x,A))/Δ,

so that by the triangle inequality, the expected cost of the cut (Ar, V \Ar) is at most
1
Δ

∑
(x,y)∈E cxydxy ≤ OPT/Δ. Thus we can find an r ∈ (0,Δ) such that

(a) |K ∩ Ar|, |K ∩ (V \Ar)| ≤ (1− ε)k;
(b)

∑
x∈Ar,y �∈Ar

cxy ≤ O(OPT
√
log k).

We can recursively compute Steiner linear arrangements for Ar and V \ Ar, and
by condition (a), the depth of the recursion is at most O(log k). For any i, we can
thus bound the total cost of edges from F−1([i]) to V \ F−1([i]). Indeed each level
of the recursion contributes at most O(OPT

√
log k) to this cost. Since there are at

most O(log k) levels, we get an O(log1.5 k) approximation.

REFERENCES

[1] R. Andersen and U. Feige, Interchanging distance and capacity in probabilistic mappings,
preprint, arXiv:0907.3631[cs.DS], 2009.

[2] A. Andoni, A. Gupta, and R. Krauthgamer, Towards (1 + ε)-approximate flow sparsifiers,
in Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
Philadelphia, 2014, pp. 279–293.

[3] A. Archer, J. Fakcharoenphol, C. Harrelson, R. Krauthgamer, K. Talwar, and É.

Tardos, Approximate classification via earthmover metrics, in Proceedings of the 15th
ACM-SIAM Symposium on Discrete Algorithms (SODA), ACM, New York, 2004, pp. 1079–
1087.

[4] S. Arora, S. Rao, and U. V. Vazirani, Expander flows, geometric embeddings and graph
partitioning, J. ACM, 56 (2009), 5.

[5] G. Calinescu, H. J. Karloff, and Y. Rabani, Approximation algorithms for the 0-extension
problem, SIAM J. Comput., 34 (2004), pp. 358–372.

[6] T.-H. Hubert Chan, D. Xia, G. Konjevod, and A. Richa, A tight lower bound for the Steiner
point removal problem on trees, in Approximation, Randomization, and Combinatorial
Optimization, Lecture Notes in Comput. Sci. 4110, Springer, Berlin, 2006, pp. 70–81.

[7] M. Charikar, T. Leighton, S. Li, and A. Moitra, Vertex sparsifiers and absract rounding
algorithms, in Proceedings of the 51st IEEE Symposium on Foundations of Computer
Science (FOCS), IEEE Computer Society, Los Alamitos, CA, 2010, pp. 265–274.

[8] C. Chekuri, F. B. Shepherd, and C. Weibel, Flow-cut gaps for integer and fractional mul-
tiflows, J. Combin. Theory Ser. B, 103 (2013), pp. 248–273.

[9] J. Chuzhoy, On vertex sparsifiers with Steiner nodes, in Proceedings of the 44th ACM Sym-
posium on Theory of Computing (STOC), ACM, New York, 2012, pp. 673–688.

[10] J. Chuzhoy, Y. Makarychev, A. Vijayaraghavan, and Y. Zhou, Approximation algorithms
and hardness of the k-route cut problem, in Proceedings of the 23rd ACM-SIAM Symposium
on Discrete Algorithms (SODA), ACM, New York, 2012, pp. 780–799.

[11] G. Even, J. Naor, S. Rao, and B. Schieber, Divide-and-conquer approximation algorithms
via spreading metrics, J. ACM, 47 (2000), pp. 585–616.

[12] J. Fakcharoenphol, C. Harrelson, S. Rao, and K. Talwar, An improved approximation
algorithm for the 0-extension problem, in Proceedings of the 14th ACM-SIAM Symposium
on Discrete Algorithms (SODA), SIAM, Philadelphia, ACM, New York, 2003, pp. 257–265.

[13] J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbitrary
metrics by tree metrics, J. Comput. System Sci., 69 (2004), pp. 485–497.

[14] J. Fakcharoenphol and K. Talwar, Improved decompositions of graphs with forbidden mi-
nors, in Proceedings of the 6th International Workshop on Approximation Algorithms for
Combinatorial Optimization, Springer-Verlag, Berlin, 2003, pp. 36–46.

[15] D. Golovin, V. Nagarajan, and M. Singh, Approximating the K-multicut problem, in Pro-
ceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM,
Philadelphia, 2006, pp. 621–630.

[16] A. Gupta, Steiner points in tree metrics don’t (really) help, in Proceedings of the 12th ACM-
SIAM Symposium on Discrete Algorithms (SODA), ACM, New York, 2001, pp. 220–227.

1262 ENGLERT ET AL.

[17] A. Gupta, V. Nagarajan, and R. Ravi, Improved approximation algorithms for requirement
cut, Oper. Res. Lett., 38 (2010), pp. 322–325.

[18] A. Gupta, I. Newman, Y. Rabinovich, and A. Sinclair, Cuts, trees and �1-embeddings of
graphs, Combinatorica, 24 (2004), pp. 233–269.

[19] S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applications, Bull. Amer.
Math. Soc. (N.S.), 43 (2006), pp. 439–561.

[20] L. Kamma, R. Krauthgamer, and H. Nguyen, Cutting corners cheaply, or how to remove
Steiner points, in Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, Philadelphia, 2014, pp. 1029–1040.

[21] R. Khandekar, Lagrangian Relaxation Based Algorithms for Convex Programming Problems,
Ph.D. thesis, Indian Institute of Technology Delhi, New Delhi, 2004.

[22] P. Klein, S. A. Plotkin, and S. B. Rao, Excluded minors, network decomposition, and
multicommodity flow, in Proceedings of the 25th ACM Symposium on Theory of Computing
(STOC), ACM, New York, 1993, pp. 682–690.

[23] J. R. Lee, M. Mendel, and M. Moharrami, A node-capacitated Okamura-Seymour theorem,
in Proceedings of the 45th ACM Symposium on Theory of Computing (STOC), ACM, New
York, 2013, pp. 495–504.

[24] J. R. Lee and A. Naor, Extending Lipschitz functions via random metric partitions, Invent.
Math., 160 (2005), pp. 59–95.

[25] J. R. Lee and A. Sidiropoulos, On the geometry of graphs with a forbidden minor, in Pro-
ceedings of the 41st ACM Symposium on Theory of Computing (STOC), ACM, New York,
2009, pp. 245–254.

[26] T. Leighton and A. Moitra, Extensions and limits to vertex sparsification, in Proceedings
of the 42nd ACM Symposium on Theory of Computing (STOC), ACM, New York, 2010,
pp. 47–56.

[27] T. Leighton and S. B. Rao, Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms, J. ACM, 46 (1999), pp. 787–832.

[28] K. Makarychev and Y. Makarychev, Metric extension operators, vertex sparsifiers and
Lipschitz extendability, in Proceedings of the 51st IEEE Symposium on Foundations of
Computer Science (FOCS), IEEE Computer Society, Los Alamitos, CA, 2010, pp. 255–
264.

[29] A. Moitra, Approximation algorithms for multicommodity-type problems with guarantees in-
dependent of the graph size, in Proceedings of the 50th IEEE Symposium on Foundations
of Computer Science (FOCS), IEEE Computer Society, Los Alamitos, CA, 2009, pp. 3–12.

[30] S. Nowozin and C. H. Lampert, Global connectivity potentials for random field models, in
Proceedings of the 22nd IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), IEEE, Piscataway, NJ, 2009, pp. 818–825.

[31] H. Räcke, Optimal hierarchical decompositions for congestion minimization in networks, in
Proceedings of the 40th ACM Symposium on Theory of Computing (STOC), ACM, New
York, 2008, pp. 255–264.

[32] S. Rao and A. W. Richa, New approximation techniques for some ordering problems, in
Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms (SODA), ACM,
New York, 1998, pp. 211–218.

[33] S. Vicente, V. Kolmogorov, and C. Rother, Graph cut based image segmentation with
connectivity priors, in Proceedings of the 21st IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE, Piscataway, NJ, 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

