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Abstract

Lovász and Schrijver [LS91] devised a lift-and-project method that produces a sequence of
convex relaxations for the problem of finding in a graph an independent set(or a clique) of
maximum size. Each relaxation in the sequence is tighter than the one before it, while the first
relaxation is already at least as strong as the Lovász theta function [Lov79]. We show that
on a random graph Gn,1/2, the value of the rth relaxation in the sequence is roughly

√

n/2r,
almost surely. It follows that for those relaxations known to be efficiently computable, namely
for r = O(1), the value of the relaxation is comparable to the theta function. Furthermore, a
perfectly tight relaxation is almost surely obtained only at the r = Θ(log n) relaxation in the
sequence.

1 Introduction

Let G(V,E) be a graph on n vertices. An independent set (a.k.a. stable set) in G is a subset of the
vertices no two of which are connected by an edge. The maximum independent set problem requires
to find an independent set of maximum size in an input graph G. The independence number (a.k.a.
stability number) of G, denoted α(G), is the maximum size of an independent set in G.

A clique in G is a subset of the vertices every two of which are connected by an edge. The
maximum clique problem requires to find a clique of maximum size in an input graph G. The clique
number of G, denoted ω(G), is the maximum size of a clique in G. A clique in G forms an indepen-
dent set in the edge complement graph G, so ω(G) = α(G). It follows that the maximum clique
problem and the maximum independent set problem are equivalent in many respects, including in
our context. For consistency with related literature, we refer to one problem in some parts and to
the other problem in others.

The maximum independent set problem is fundamental in the area of combinatorial optimiza-
tion, and is closely related, in addition to the maximum clique problem, also to the vertex cover
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problem (the vertex complement of an independent set) and the chromatic number problem (min-
imum cover by independent sets). The maximum independent set problem (or even finding α(G))
is one of the first problems shown to be NP-hard in [Kar72].

A common way to cope with NP-hardness of a problem is to devise algorithms that give ap-
proximate solutions. An efficient (i.e. polynomial time) algorithm is said to have an approximation
ratio ρ > 1 for the maximum independent set problem if for every input graph, the ratio between
α(G) and the size of the independent set returned by the algorithm is at most ρ = ρ(n). It is
known through work culminating in [H̊as96] that for any fixed ε > 0 it is impossible to approximate
the independence number α(G) within a ratio of n1−ε, unless NP has randomized polynomial time
algorithms (NP=ZPP). The best approximation algorithm that is known for α(G), due to [BH92],
has approximation ratio O(n/ log2 n).

The intractability of the maximum independent set problem in the worst case suggests studying
the performance of algorithms on average instances. A possible rigorous description of average
instances is by probabilistic models, see e.g. [FM97] for a survey on average-case analysis of graph
algorithms on random graphs.

The problem of finding a maximum independent set on a random graph appears to be difficult.
Let Gn,1/2 denote the random graph on n labeled vertices obtained by connecting each pair of
vertices by an edge independently with probability 1/2. It is known that the independence number
of Gn,1/2 is roughly 2 log2 n, almost surely, i.e. with probability that approaches 1 as n tends
to infinity, see e.g. [AS92]. Several simple and natural algorithms (e.g. the greedy one) find
an independent set of size roughly log2 n, almost surely. However, no algorithm is known to find
efficiently an independent set of size significantly larger than log2 n, see e.g. [Kar76, FM97]. Finding
independent sets of size 3

2 log2 n in random graphs was even suggested as a hard computational
problem on which to base cryptographic applications, see [JP00].

Lovász theta function. A well-known relaxation of the maximum independent set problem is
the theta function of a graph, denoted ϑ(G), introduced by Lovász [Lov79] (see also [GLS93, Chapter
9] and Knuth’s survey [Knu94]). The theta function can be formulated as a semidefinite program
and thus it can be computed, up to arbitrary precision, in polynomial time, see e.g. [GLS93]. We
may consider the theta function also as a relaxation of the maximum clique problem, by formally
referring to ϑ(Ḡ).

In terms of approximation ratio, the theta function appears to have little to offer. The ratio
between ϑ(G) and the independence number α(G) can be as large as n1−o(1), as shown in [Fei97].

Also on the average there is a large gap between the Lovász theta function ϑ(G) and the
independence number α(G). While the independence number of a random graph Gn,1/2 is almost
surely roughly 2 log2 n, it was shown by Juhász [Juh82] that the value of the theta function is,
almost surely, Θ(

√
n).

The hidden clique problem. Jerrum [Jer92] and Kučera [Kuč95] suggested independently the
following hidden clique problem. A random graph Gn,1/2 is chosen and then a clique of size k
is randomly placed in the graph, and we wish to find in this graph a maximum clique. Jerrum
showed that the Metropolis process almost surely does not find the clique when k = o(

√
n). Kučera

observed that when k > c
√

n log n for an appropriate constant c, the vertices of the planted clique
would almost surely be the ones with the largest degrees in G, and hence it is easy to recognize
them efficiently. Alon, Krivelevich and Sudakov [AKS98] showed an algorithm that almost surely
finds the planted clique whenever k ≥ Ω(

√
n). Their algorithm is based on spectral properties of
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the graph, namely, it uses the eigenvector that corresponds to the second largest eigenvalue of the
adjacency matrix of the graph. (See also [McS01]).

Feige and Krauthgamer [FK00] devised another algorithm that is based on the semidefinite
programming relaxation provided by the Lovász theta function. Their algorithm works for the
same planted clique size k as the algorithm of [AKS98], but it has the advantage of being more
robust; it works also in a semi-random model in which an adversary can remove edges that are
outside the planted clique. Another advantage of their algorithm is that it certifies, almost surely,
the optimality of its solution.

The approach of [FK00] is motivated by Juhász’ result [Juh82] that the theta function of a
random graph Gn,1/2 is Θ(

√
n), almost surely. It follows that the maximum clique relaxation

ϑ(Ḡ) is also almost surely Θ(
√

n) for a random graph Gn,1/2. When a clique of size k ≥ c
√

n,
for a sufficiently large constant c > 0, is planted in a random graph, the theta function (being a
relaxation) must increase to at least k. Furthermore, it is plausible that such a noticeable increase
in the theta function will allow to find the planted clique. Indeed, it is shown in [FK00] that on the
hidden clique graph Gn,1/2,k, the theta function almost surely gives exactly k, the planted clique
size, in which case it allows to find the planted clique (with some extra work). In contrast, when
a clique of size k = o(

√
n) is planted in a random graph, the monotonicity properties of the theta

function, see e.g. [Knu94, Sections 18-19]), guarantee its value can only increase, but not by more
than k. It follows that on the hidden clique graph Gn,1/2,k, the value of the theta function is also
almost surely Θ(

√
n), and it is therefore possible that the planted clique has no noticeable effect

on the theta function.
A possible direction for extending the approach of [FK00] to a planted clique of smaller size

k = o(
√

n), is to use relaxations that are stronger than the Lovász theta function. In particular, it
is desirable to find a relaxation whose value on a random graph Gn,1/2 is almost surely o(

√
n).

The general Lovász-Schrijver technique. Lovász and Schrijver [LS91] propose a general tech-
nique for obtaining stronger and stronger relaxations of 0-1 integer programming problems. Specif-
ically, they devise several procedures called matrix-cut operators, that produce from a convex (e.g.
linear programming) relaxation P ⊆ [0, 1]n of the problem, a convex set that is an improved relax-
ation for the 0-1 (i.e. integral) vectors in P . That is, the resulting convex set is contained in P
and contains all the 0-1 vectors in P . The matrix-cut operators follow a lift-and-project approach;
they lift the convex relaxation P into a higher (quadratic) dimension by introducing new variables
and new constraints, and then project it back into the original space.

The two main matrix-cut operators of Lovász and Schrijver [LS91] are denoted by N and N+.
The difference between the two operators is that the lifting of the latter involves, in addition, a
positive semidefinite constraint. That is, if P is a linear programming relaxation, then N(P ) is
also a linear programming relaxation, while N+(P ) is a semidefinite programming relaxation.

The matrix-cut operators can be applied iteratively, say r ≥ 0 times, and the iterated operators
are denoted N r and N r

+. The N -rank of a convex relaxation P is defined as the number of iterations
of the N operator, that are needed to obtain the convex hull of the 0-1 vectors of P (i.e. a perfectly
tight relaxation). The N+-rank is defined similarly. Lovász and Schrijver [LS91] show that the
N -rank of a relaxation is always at most the dimension d (e.g. number of variables in a linear
program). The N+ operator is a strengthening of the N operator, and hence also the N+-rank is
always at most d. Goemans and Tunçel [GT00] and Cook and Dash [CD01] show independently
that there exist relaxations whose N+-rank meets the upper bound d.

Furthermore, Lovász and Schrijver [LS91] show that the N and N+ operators have the following
important algorithmic property. If it is possible to efficiently optimize (linear objective functions)
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over a relaxation P , then it is also possible to efficiently optimize over the relaxation obtained by
applying the operator on P . It follows that for every fixed r ≥ 0, the iterated operators N r and
N r

+ also satisfy this property.

Strong relaxations for maximum independent set. To obtain relaxations of the maximum
independent set problem, Lovász and Schrijver [LS91] apply their general technique of matrix-cut
operators on a classical linear programming relaxation FRAC of the problem. The relaxation FRAC
is a linear program of polynomial size, and hence for every fixed r ≥ 0, one can efficiently optimize
over N r

+(FRAC). In contrast, the dimension d (i.e. number of variables) of FRAC is the number
of vertices n in the graph, and so optimizing over Nn(FRAC) is NP-hard.

Lovász and Schrijver [LS91] show that the semidefinite programming relaxation N+(FRAC) is
at least as strong as the Lovász theta function. It follows, for example, that for any graph on which
the theta function is not tight, the relaxation N r

+(FRAC) for r ≥ 2 is stronger than the theta
function.

The N -rank of a graph is defined as the N -rank of the relaxation FRAC. The N+-rank is defined
similarly. It follows that for graphs with bounded N+-rank, the maximum independent set problem
can be solved in polynomial time. This family includes, for example, all perfect graphs, since the
above connection with the theta function implies that their N+-rank is at most 1.

Stephen and Tunçel [ST99] study the case where the n-vertex graph G is the line graph of a
graph H on h vertices. They show that the N+-rank of G is at most bh/2c, and that this bound
is met if H is a complete graph on an odd number of vertices, in which case n =

(h
2

)

, and so the
N+-rank of G is Ω(

√
n). Note that independent sets in G correspond to matchings in H, and that a

maximum weight matching can be found efficiently; it follows that there are graphs with unbounded
(and rather large) N+-rank, in which the maximum (weighted) independent set problem can be
solved in polynomial time.

Our results. We examine the asymptotic behavior on the random graph Gn,1/2 of the relaxations
of Lovász and Schrijver [LS91] for the maximum independent set problem. In particular, we show
that the typical value of the semidefinite programming relaxation N r

+(FRAC) on a random graph
is, roughly

√

n/2r for r = o(log n). We note that this characterization answers (up to a constant
factor) a question of Knuth [Knu94, Section 37,Problem P6].

Theorem 1.1. For every fixed δ > 0 and r = o(log n), the value of the relaxation N r
+(FRAC) on

a random graph Gn,1/2 is at least
√

n/(2 + δ)r+1 and at most 4
√

n/(2 − δ)r+1, almost surely.

Recall that the strongest relaxations of Lovász and Schrijver [LS91] whose value is known to be
efficiently computable are N r

+(FRAC) for r = O(1). Theorem 1.1 shows that on a random graph,
the typical value of these relaxations is smaller than that of the theta function by no more than a
constant factor. In the hidden clique problem, the planted clique size k that a heuristic can handle
can be improved by an arbitrarily large constant factor using a method of [AKS98], and therefore
it appears that the improvement offered by these stronger relaxations can be achieved by other
methods.

We use Theorem 1.1 to characterize, up to a constant factor, the typical N+-rank of a random
graph Gn,1/2.

Theorem 1.2. The N+-rank of a random graph Gn,1/2 is almost surely Θ(log n).

Our results for the N+ operator extend to a slightly stronger variant of the matrix-cut operators
of Lovász and Schrijver [LS91]. This operator, denoted NFR+, is specialized for the maximum
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independent set problem and retains the important algorithmic property of N+, namely an efficient
optimization over P implies an efficient optimization over NFR+(P ).

Organization. Section 2 is a technical description of the matrix-cut operators of Lovász and
Schrijver [LS91] (including our variant NFR+). We present the formal definitions in Section 2.1,
and state in Section 2.2 some basic useful properties (whose proof is deferred to Appendix A.1).

Section 3 describes our results on matrix-cuts in a random graph. Specifically, a lower bound
on the value of the relaxation N r

+(FRAC) is shown in Section 3.1, and an upper bound is shown
in Section 3.2.

Appendix A proves several useful properties of the matrix-cut operators. In Section A.1 we give
some basic properties that are needed for our main results, and in Section A.2 we give bounds on
the ranks of the different matrix-cut operators.

Preliminaries. Throughout, we omit the graph G(V,E) if it is clear from the context. We
let n denote the number of vertices in the graph G, and assume, without loss of generality, that
V = {1, . . . , n}. For a vertex i in the graph, let Γ(i) denote the set of the vertices that are adjacent
to i in the graph, i.e. Γ(i) := {j ∈ V : ij ∈ E}, and let Γ(S) denote the set of vertices in V that
are adjacent to at least one vertex of S, i.e. Γ(S) := ∪i∈SΓ(i).

An n×n (real) matrix Y is positive semidefinite if Y is symmetric and xT Y x ≥ 0 for all x ∈ IRn.
It is well-known that a symmetric matrix Y is positive semidefinite if and only if all the eigenvalues
of Y are nonnegative.

A Gram matrix representation of an n × n matrix Y is a set of real-valued vectors {v1 . . . , vn}
such that Yij = vT

i vj for all i, j (i.e. Y = BT B for a corresponding matrix B). It is well-known
that a matrix Y is positive semidefinite if and only if it has a Gram matrix representation.

2 The Lovász-Schrijver matrix-cut operators

In this section we describe the so-called matrix-cut operators that were proposed by Lovász and
Schrijver [LS91]. Given a convex set (e.g. a polytope) P , the matrix-cut operators consider P as a
relaxation of the convex hull of its 0-1 vectors, and produce another relaxation that is tighter than P .
In other words, these operators produce a convex set that is sandwiched (in terms of containment)
between P and (the convex hull of) the 0-1 vectors in P . Furthermore, the produced relaxation is
strictly tighter than P , unless P is already tight. Our description and notation mostly follows that
of Lovász and Schrijver [LS91](but also those of [CD01, GT00]). An alternative formulation of the
matrix-cut operators is given by Lovász in [Lov94].

Section 2.1 reviews the definitions of the Lovász-Schrijver matrix-cut operators. In Section 2.2
we state some of their known properties (that we need), focusing on the application of these
operators to the stable set problem. For completeness (and to aid readers who are unfamiliar with
these operators), we give the proofs of these properties in Appendix A, where these and relevant
known results and examples are repeated and extended to a more general setting that includes the
NFR+ operator.

Throughout, let ej be the jth unit vector, let 0 be the vector of all zeros, and let 1 =
∑

j ej be
the vector of all ones. The sizes (dimensions) of 0,1 and ej will be clear from the context. Recall
that a set is called a cone if it is closed under multiplication by a nonnegative number. A convex
cone is thus a set that is closed under a nonnegative linear (a.k.a. conic) combination. (Throughout,
we will consider convex cones rather than polytopes.) A polyhedral cone is a cone that is also a
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polyhedron; equivalently, a polyhedral cone is a set that can be defined by {x : Ax ≥ 0} for some
matrix A.

2.1 Definitions

Homogenization. It will be convenient to deal with homogenous systems of inequalities. We
therefore embed the n-dimensional space IRn in IRn+1 as the hyperplane x0 = 1 (throughout, the
0th variable plays a special role), and work with convex cones in IRn+1, as follows.

Since we deal with 0-1 programming on n variables, our basic example is a polytope P that
is contained in [0, 1]n (the convex hull of the n-dimensional hypercube {0, 1}n). To homogenize P
using the new variable x0, first embed P in the hyperplane x0 = 1 of IRn+1, and then generate
from it a convex cone. That is, if

P = {x ∈ IRn : Ax ≤ b, 0 ≤ x ≤ 1} , (1)

then the convex cone obtained by homogenization is

K :=

{(

x0

x

)

∈ IRn+1 : Ax ≤ x0b, 0 ≤ x ≤ x01

}

. (2)

Note that such K can be described as the intersection of finitely many halfspaces defined by linear
constraints utx ≥ 0 (here x ∈ IRn+1), and hence it is a polyhedral cone.

We denote by Q ⊂ IRn+1 the convex cone that is obtained from the polytope [0, 1]n via the
homogenization procedure (1)-(2). Namely,

Q :=
{

(x0, x1, . . . , xn)T : 0 ≤ xi ≤ x0 for all 1 ≤ i ≤ n
}

. (3)

Note that Q is a polyhedral cone that can be described by 2n linear inequalities.

Throughout, let K ⊆ Q be a (closed) convex cone. We denote by KI the convex cone that is
generated by all 0-1 vectors in K. Observe that within the hyperplane x0 = 1, KI is exactly the
integral hull (i.e. convex hull of the integral vectors) of K. For example, QI = Q.

The polar cone of K, denoted K∗, is the convex cone defined by

K∗ := {u ∈ IRn+1 : xT u ≥ 0 for all x ∈ K}.

Observe that a vector u ∈ K∗ corresponds to a linear constraint uT x ≥ 0 that is valid for K (i.e.
satisfied by all vectors x ∈ K). The polar cone K∗ is thus the collection of valid linear constraints
for K. For example, Q is defined in (3) by 2n linear constraints, and hence Q∗ is spanned by the
vectors ei and fi = e0 − ei, for i = 1, . . . , n.

Fractional stable sets. We will be mostly interested in the stable set problem. Let G(V,E) be
a graph with no isolated vertices and |V | = n. Then the stable sets of G correspond to the 0-1
solutions of the system of linear inequalities

xi ≥ 0 for all i ∈ V (nonnegativity constraints) (4)

and

xi + xj ≤ 1 for all ij ∈ E (edge constraints) (5)

Let STAB(G) ⊂ IRn denote the convex hull of the 0-1 solutions of the system (4)-(5). Let
FRAC(G) ⊂ IRn (for “fractional stable sets”) denote the solution set of the system (4)-(5) (i.e.
without integrality restriction). Clearly, STAB(G) ⊆ FRAC(G).
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Let FR(G) ⊂ IRn+1 be the polyhedral cone that is obtained from the polytope FRAC(G) via the
homogenization procedure (1)-(2). That is, FR(G) is the solution set of the following homogenous
system of linear inequalities for the stable set problem:

xi ≥ 0 for each i ∈ V (6)

x0 − xi − xj ≥ 0 for each ij ∈ E (7)

Let ST(G) be the polyhedral cone that is obtained from the polytope STAB(G) via the homog-
enization procedure (1)-(2). It is straightforward that (FR(G))I = ST(G).

Throughout, we omit the graph G when it is clear from the context, denoting STAB(G) by
STAB etc. It can be seen that the polar cone FR∗ is spanned by the vectors ei for i = 1, . . . , n and
the vectors fij = e0 − ei − ej for ij ∈ E. Note that FR ⊆ Q and hence FR∗ ⊇ Q∗.

Matrix-cut operators. Let K1,K2 ⊆ Q be closed convex cones in IRn+1 (e.g. K1 = FR(G) and
K2 = Q). Consider the cone K1 ∩ K2. For each u ∈ K∗

1 the constraint uT x ≥ 0 is valid for K1,
and for each v ∈ K∗

2 the constraint vT x ≥ 0 is valid for K2. It follows that the quadratic inequality
(uT x)(xT v) ≥ 0 is valid for K1 ∩ K2. Furthermore,

K1 ∩ K2 =
{

x : uT xxT v ≥ 0 for all u ∈ K∗
1 , v ∈ K∗

2 , x0 ≥ 0
}

because any original inequality, say uT x ≥ 0 for K1, can be recovered by adding the two quadratic
inequalities obtained by ei, fi ∈ Q∗ ⊆ K∗

2 , giving uT x · x0 = uT xxT (ei + fi) ≥ 0.
Furthermore, all 0-1 vectors in K1∩K2 satisfy x2

i = xi. Therefore, if x is a 0-1 vector in K1∩K2

and with x0 = 1, then setting Y = xxT we have that

(a) Y is symmetric.

(b) Y e0 = diag(Y ), i.e. Yii = Yi0 for all 1 ≤ i ≤ n.

(c) uT Y v ≥ 0 for all u ∈ K∗
1 and v ∈ K∗

2 .

(d) Y is positive semidefinite.

Note that (c) can be written as

(c’) Y K∗
2 ⊆ K1

Lovász and Schrijver [LS91] proposed the following lift-and project procedure. Given K1,K2,
consider the derived cones:

M(K1,K2) := {Y ∈ IR(n+1)×(n+1) : Y satisifies (a)-(c)}

M+(K1,K2) := {Y ∈ IR(n+1)×(n+1) : Y satisifies (a)-(d)}

and define the projections of these liftings on IRn+1:

N(K1,K2) := {Y e0 : Y ∈ M(K1,K2)}

N+(K1,K2) := {Y e0 : Y ∈ M+(K1,K2)}.

It follows from the above discussion that

(K1 ∩ K2)I ⊆ N+(K1,K2) ⊆ N(K1,K2) ⊆ K1 ∩ K2 (8)
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Relevant variants of the operators. We shorten notation to easily handle two important
special cases. When K2 = Q we omit K2, i.e. N(K) := N(K,Q) and N+(K) := N+(K,Q). In this
case, we have that (c’) is equivalent to:

(c”) Every column of Y is in K1; the difference of the first column and any other column of Y is
in K1.

Note that we have from (8) that

KI ⊆ N+(K) ⊆ N(K) ⊆ K (9)

For the stable set problem, we may take K2 = FR, denoting it in the subscript, i.e. NFR(K) :=
N(K,FR) and NFR+(K) := N+(K,FR). In this case, we have that (c’) is equivalent to:

(c”’) Y ei ∈ K1 for all i ≥ 1, and Y fij ∈ K1 for all ij ∈ E.

We assume throughout that K ⊆ FR, and then we have from (8) that

KI ⊆ NFR+(K) ⊆ NFR(K) ⊆ K (10)

It follows from the definition that using K2 = FR is at least as strong as using K2 = Q in the
same operator, i.e. NFR(K) ⊆ N(K) and NFR+

(K) ⊆ N+(K). We therefore have that

KI ⊆ NFR+(K) ⊆ NFR(K) ⊆ N(K) ⊆ K (11)

KI ⊆ NFR+(K) ⊆ N+(K) ⊆ N(K) ⊆ K (12)

It can also be seen that NFR(K) 6⊆ N+(K) (e.g., when G is a clique on 5 vertices and taking
K = FR, see Appendix A.2), but it is not clear (to us) whether N+(K) ⊆ NFR(K). The strength
of these operators is further discussed in Appendix A.2.

Iterated operators. Define the iterated operator N r(K) recursively by N0(K) = K and N r(K) =
N(N r−1(K)) for r ≥ 1. For other operators, the iterated operator is defined similarly.

The following Theorem of Lovász and Schrijver [LS91] proves that even without the positive
semidefiniteness constraint (d), it suffices to apply n iterations in order to get from a convex cone
K ⊆ Q the cone KI . It follows that applying the N operator on K 6= KI produces a relaxation of
KI that is strictly tighter than K.

Theorem 2.1 (Lovász and Schrijver [LS91]). Let K ⊆ Q be a convex cone in IRn+1. Then
Nn(K) = KI .

It is often easier to work in the original n-dimensional space (without homogenization), so
in the case that K is the cone obtained from a polytope (or a convex set) P in [0, 1]n via the
homogenization procedure (1)-(2), define

N(P ) :=

{

x ∈ IRn :

(

1
x

)

∈ N(K)

}

and similarly for the other operators (including the iterated ones).
For the stable set problem, K will be one of the cones obtained from FR(G) by an iterated

operator, e.g. N r(FR(G)). Going back to the original n-dimensional space we shall abbreviate
N r(G) := N r(FRAC(G)) and similarly for the other operators. We then have from Theorem 2.1
that Nn(G) = STAB(G).
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Ranks. The N -rank of an inequality uT x ≥ 0 that is valid for KI , is the smallest nonnegative
integer r such that uT x ≥ 0 is valid for N r(K). (Note that the rank is relative to K). For N+,NFR

and NFR+ the rank is defined similarly. Theorem 2.1 implies that the rank of any valid inequality
is at most n (the dimension).

The N -rank of a cone K is the smallest nonnegative integer r such that N r(K) = KI , and
similarly for the other operators. By Theorem 2.1, the N -rank of K is at most n (the dimension).

The N -rank of a graph G, is the N -rank of FR(G), and similarly for the other operators. For
example, for a bipartite graph STAB = FRAC and hence the N -rank of a bipartite graph is 0. We
discuss bounds on the rank in Appendix A.2.

2.2 Useful properties

Algorithmic aspects. Lovász and Schrijver [LS91] give sufficient conditions for efficient weak (i.e.
up to arbitrary precision) optimization (of linear objective functions) over N(K), N+(K), NFR(K)
and NFR+(K). Technically, the matrix-cut operators have the following algorithmic property.

Theorem 2.2 (Lovász and Schrijver [LS91]). A polynomial time weak separation oracle for K
gives a polynomial time weak separation oracle for N r(K), N r

+(K), N r
FR(K) and N r

FR+(K) for any
fixed constant r.

By the equivalence between weak (i.e. up to arbitrary precision) optimization and weak separa-
tion (see [GLS93]), Theorem 2.2 implies a weak optimization of any linear objective function over
these relaxations of KI .

Lovász and Schrijver [LS91] suspect that Theorem 2.2 does not extend to N(K,K). They
remark, however, that it if K is given by an explicit system of polynomially many linear inequalities,
then Theorem 2.2 does extend to N(K,K).

For the stable set problem, the cone K = FR is given by an explicit linear program of polynomial
size, so one can solve the separation problem for it in polynomial time. We thus obtain the following
theorem.

Theorem 2.3. For every fixed r ≥ 0, the weak optimization problem for N r(G) can be solved in
polynomial time, and similarly for N r

+, N r
FR, N r

FR+.

Down-monotonicity. A non-empty convex set P ⊆ [0, 1]n is called down-monotone (in [0, 1]n)
if for every x ∈ P , every y ∈ [0, 1]n with y ≤ x is also in P (see e.g. [GLS93, page 11]). Similarly,
a convex cone {0} 6= K ⊆ Q is called down-monotone if for every x ∈ K, every y ∈ Q with y ≤ x
and y0 = x0 is also in K.

The next lemma shows that the relaxations of the stable set problem that are produced by
iterated matrix-cut operators are down-monotone. Its proof appears in Appendix A.1.

Lemma 2.1. N r(G) is down-monotone for every r ≥ 0, and similarly for N r
+,N r

FR,N r
FR+.

Removing vertices from the graph. Recall that V = {1, . . . , n}. For a vector x ∈ IRn and a
subset W ⊂ V , we denote by xW the restriction of x to the coordinates of W .

The next lemma characterizes the relaxations of the stable set problem that are produced by
iterated matrix-cut operators when one of the coordinates is fixed (i.e. xi = 0 or xi = x0). Its
proof appears in Appendix A.1.
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Lemma 2.2. Let x ∈ IRn and assume that i satisfies xi = 1 and xj = 0 for all j ∈ Γ(i). Then for
all r ≥ 0, x ∈ N r(G) if and only if xV −Γ(i)−i ∈ N r(G − Γ(i) − i), and similarly for N r

+,N r
FR and

N r
FR+.

Vertex deletion and contraction. Let aT x ≤ b be an inequality valid for STAB(G). For a
subset W ⊂ V , we denote by aW the restriction of a to the coordinates of W . For every i ∈ V , if
aT x ≤ b is valid for STAB(G), then aT

V −ix ≤ b is valid for STAB(G − i) and aT
V −Γ(v)−ix ≤ b − ai

is valid for STAB(G − Γ(i) − i). Following the terminology of Lovász and Schrijver [LS91], we say
that these inequalities arise from aT x ≤ b by the deletion and contraction of vertex i, respectively.
Note that if aT x ≤ b is an inequality such that for some i, both the deletion and the contraction of
i yield inequalities valid for the corresponding graphs, then aT x ≤ b is valid for G.

Upper bounds on the N+-rank.

Lemma 2.3 (Lovász and Schrijver [LS91]). If aT x ≤ b is an inequality valid for STAB(G)
such that for all i ∈ V with ai > 0 the contraction of i gives an inequality with N+-rank at most r,
then aT x ≤ b has N+-rank at most r + 1.

Lemma 2.4 (Lovász and Schrijver [LS91]). The N+-rank of a graph G is at most its stability
number α(G).

3 The Lovász-Schrijver relaxations in a random graph

In this section we show that the N+-rank of a random graph Gn,1/2 is almost surely Θ(log n). In

particular, we analyze the asymptotic behavior of max{1T x : x ∈ N r
+(G)} for r = o(log n). Loosely

speaking, we show that the value of this relaxation is almost surely roughly
√

n/2r. The precise
formulations of our lower bound and upper bound on max{1T x : x ∈ N r

+(G)} appear below. Our
analysis extends the proof of Juhász [Juh82] that shows that the theta function of a random graph
is almost surely Θ(

√
n).

Theorem 3.1. For any c >
√

2 there exists an ε′ > 0, such that if 0 ≤ r ≤ ε′ log n, then almost
surely max{1T x : x ∈ N r

+(Gn,1/2)} ≥ √
n/cr+1, and similarly for N r

FR+.

The proof of Theorem 3.1 appears in Section 3.1. Technically, we show that N r
+(Gn,1/2) al-

most surely contains the “uniform” solution (1/cr+1√n)1, and hence obtain a lower bound on the
probable value of the relaxation.

To show that the above lower bound is nearly tight, we next give an upper bound on the value
of the relaxation. Its proof appears in Section 3.2.

Theorem 3.2. For any d <
√

2 there exists an ε′ > 0, such that if 1 ≤ r ≤ ε′ log n, then almost
surely max{1T x : x ∈ N r

+(Gn,1/2)} ≤ 4
√

n/dr+1, and similarly for N r
FR+.

It is straightforward that Theorem 1.1 follows from Theorems 3.1 and 3.2 by taking c =
√

2 + δ
and d =

√
2 − δ.

The N+-rank of a random graph Gn,1/2. Using Theorem 3.1 and Lemma 2.4 we can now
show that the N+-rank of a random graph is almost surely Θ(log n), proving Theorem 1.2. For
comparison, it follows from Corollary A.24 that the N -rank of a random graph is almost surely at
least Ω(n/ log n).
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Proof of Theorem 1.2. Let G be a random graph from the distribution Gn,1/2, and let us first show
a lower bound on the N+-rank. It is well known that, almost surely, the maximum size of a stable
set in G is roughly 2 log2 n, i.e.

max{1T x : x ∈ STAB} ≤ O(log n)

We have from Theorem 3.1 with r = ε′ log n that, almost surely,

max{1T x : x ∈ N r
+(FRAC)} ≥ nΩ(1)

It follows that N r
+(FRAC) 6= STAB, and hence the N+-rank of FRAC (and therefore of G), is

larger than r = ε′ log n = Ω(log n).
The upper bound on N+-rank of G follows from Lemma 2.4. Indeed, the stability number of

a random graph Gn,1/2 is, almost surely, roughly 2 log2 n, and hence the N+-rank of G is, almost
surely, O(log n), as claimed.

3.1 Lower bound on the value of N r
+(Gn,1/2)

We prove Theorem 3.1 by showing that N r
+(Gn,1/2) almost surely contains the “uniform” solution

(1/cr+1√n)1. First we exhibit in Lemma 3.1 certain conditions that are sufficient for such a uniform
solution to be feasible in N r

+(G). We then show in Lemma 3.2 that these conditions are almost
surely satisfied by a random graph Gn,1/2.

We will say that two vertices are non-adjacent if they are not adjacent and they are not equal
(i.e. they are adjacent in the complement graph). We make no attempt to optimize constants.

Lemma 3.1. Let G be a graph on n vertices, let c =
√

2(1 + ε)10 for 0 < ε < 1/5 and let r ≥ 0.
Assume that for every S ⊂ V with |S| ≤ r, the graph G′ = G−S −Γ(S) satisfies (let n′ denote the
number of vertices in G′):

(i) All eigenvalues of the adjacency matrix of G′ are at least −(1 + ε)
√

n′.

(ii) The degree of every vertex in G′ is between 1
1+ε

n′

2 and (1 + ε)n′

2 .

If cr+1 ≤ ε
√

n then (1/cr+1√n)1 ∈ N r
+(G), and similarly for N r

FR+(G).

Proof. Proceed by induction on r. For the base case r = 0, observe that (1/cr+1√n)1 (and even
(1/2)1) satisfies the nonnegativity and edge constraints and therefore is in FR(G) by definition.

For the inductive step, assume it holds for r ≥ 0, and let us show that it holds for r + 1. Let G
be a graph with (i),(ii) holding for any |S| ≤ r + 1, and cr+2 ≤ ε

√
n. We can choose, in particular,

|S| = 0 and have that (i),(ii) hold for the graph G itself. To ease notation, define

µ := (1 + ε)5(cr+1/
√

2)
√

n (13)

Let A be the n×n adjacency matrix of G, i.e. Aij = 0 whenever (i, j) ∈ E or i = j and Aij = 1
otherwise. We know from (i) that all eigenvalues of A are at least −(1 + ε)

√
n ≥ −µ. Hence, the

matrix B = A+µI is positive semidefinite, and there exist vectors z1, . . . , zn such that Bij = zT
i zj .

Therefore

‖zi‖2 = Bii = µ, ∀i ≥ 1. (14)

Let z0 =
∑n

i=1 zi. Then

‖z0‖2 = (
∑

i>0

zi)
T (
∑

j>0

zj) =
∑

i,j>0

Bij =
∑

i>0

∑

j>0

Bij .
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To estimate
∑

j>0 Bij =
∑

j>0 Aij + µ for i > 0, observe that we have from (ii) that

1

1 + ε

n

2
≤
∑

j>0

Aij ≤ (1 + ε)
n

2

while µ ≤ (cr+2/2)
√

n ≤ εn/2. Hence,

1

1 + ε

n

2
≤
∑

j>0

Bij ≤ (1 + ε)2
n

2
, (15)

and we conclude that

1

1 + ε

n2

2
≤ ‖z0‖2 ≤ (1 + ε)2

n2

2
(16)

For every i ≥ 0 let vi be the unit length vectors in the direction of the vector zi, i.e. vi = zi/‖zi‖,
and let xi = (vT

i v0)
2. Observe that x0 = (vT

0 v0)
2 = 1.

We claim that x = (x1, . . . , xn)T is in N r+1
+ (G). Let us first show how the proof of Lemma 3.1

follows from this claim. Indeed, from (ii) we have that

vT
i v0 = (

zi

‖zi‖
)T (

∑

j>0 zj

‖z0‖
) =

∑

j>0 Bij√
µ‖z0‖

Together with (15) and (16) we can estimate xi = (vT
i v0)

2 by

1

(1 + ε)4
· 1

2µ
≤ xi ≤ (1 + ε)5

1

2µ
(17)

and from (13) we have that

xi ≥
1

2(1 + ε)4
·

√
2

(1 + ε)5cr+1
√

n
≥ 1

cr+2
√

n

and thus (1/cr+2√n)1 ≤ x ∈ N r+1
+ (G). By the monotonicity guaranteed in Lemma 2.1 we have

(1/cr+2√n)1 ∈ N r+1
+ (G), which indeed proves the inductive step.

We now prove the claim x ∈ N r+1
+ (G), by presenting a matrix Y ∈ M+(N r

+(G)) whose 0th
column corresponds to x. Indeed, let Y be the (n+1)×(n+1) matrix defined by Yij = (vT

i vj)
√

xixj

for all i, j ≥ 0. By definition, Yi0 = (vT
i v0)

√
xi = xi for i ≥ 0, and in particular Y00 = x0 = 1. We

will show that Y satisfies (a),(b),(c”) and (d). Three of them are straightforward:

(a) Y is symmetric by definition.

(b) Yii = ‖vi‖2xi = xi and hence Yii = xi = Yi0.

(d) Y is positive semidefinite because it can be represented by the vectors {√xivi}, i.e. Yij =
(
√

xivi)
T (
√

xjvj) for all i, j ≥ 0.

Before proving (c”), observe that for i, j > 0 we have

Yij = (
zi

‖zi‖
)T (

zj

‖zj‖
)
√

xixj = (1/µ)Bij
√

xixj

and Bij is either µ, 0 or 1. So for i, j > 0 we have

Yij =







xi if i = j
0 if i 6= j and ij ∈ E
(1/µ)

√
xixj if i 6= j and ij 6∈ E
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and the estimate of (17) gives that xi ∼ 1/2µ and
√

xixj ∼ 1/2µ. Hence,

Y =















1 x1 · · · xn

x1 x1 0
∣

∣

∣

√
xixj

µ
...

. . .

xn 0
∣

∣

∣

√
xixj

µ xn















∼















1 1
2µ · · · 1

2µ
1
2µ

1
2µ 0

∣

∣

∣

1
2µ2

...
. . .

1
2µ 0

∣

∣

∣

1
2µ2

1
2µ















Consider Y ei, the ith column of Y , for i > 0, and scale it by a factor of 1/xi so that its 0th
entry will be 1. We get a fractional solution where vertex i has value 1, its adjacent vertices have

value 0, and its non-adjacent vertices j have value (1/µ)
√

xj/xi ∼ 1/µ. Let G′ be the subgraph

of G induced on the latter vertices (i.e. those non-adjacent to i), and let n′ denote the number of
vertices in G′. Then by Lemma 2.2, we have that the fractional solution Y ei is in N r

+(G) if and
only if its restriction to G′ is in N r

+(G′). Each coordinate in the fractional solution restricted to G′

is bounded by

1

µ

√

xj

xi
≤ 1

µ
(1 + ε)9/2 ≤

√
2

cr+1
√

n(1 + ε)
≤ 1

cr+1
√

n′

where the first inequality is due to (17), the second is due to (13), and the third follows from
n′ ≤ (1+ ε)n

2 which we have from (ii). The fractional solution restricted to G′ is thus dominated by

the uniform solution (1/cr+1
√

n′)1, which belongs to N r
+(G′) by applying the induction hypothesis

to G′. (Note that G′ satisfies (i),(ii) for any 0 ≤ |S| ≤ r by definition, and that we have cr+1 ≤
ε
√

n/c ≤ ε
√

n′.) From the monotonicity guaranteed by Lemma 2.1, we conclude that also the
fractional solution restricted to G′ is in N r

+(G′), and therefore Y ei ∈ N r
+(G).

Consider Y fi, the difference between column 0 and column i of Y , for i > 0. Its 0th entry is
1−xi ∼ 1− 1/2µ, its ith entry is 0, and any other jth entry is at most roughly 1/2µ. Observe that

xi ≤
(1 + ε)5

2µ
≤ 1√

2n
≤ 1 − 1√

2
(18)

where the first inequality is due to (17), the second is due to (13) and the third is due to
√

n ≥
5ε
√

n ≥ 5cr+2 > 10. Scaling the vector Y fi by a factor 1/(1 − xi) so that its 0th entry is 1, we
obtain a fractional solution in which the value of the jth entry is at most

xj

1 − xi
≤ (1 + ε)5/2µ

1/
√

2
=

1

cr+1
√

n
.

The fractional solution is thus dominated by (1/cr+1√n)1, which by the induction hypothesis be-
longs to N r

+(G). (Note that G satisfies the requirements for r). From the monotonicity guaranteed
by Lemma 2.1, (as all entries of Y fi are nonnegative) we conclude that Y fi ∈ N r

+(G).
We therefore have that (c”) holds, which completes the proof of the inductive step and of

Lemma 3.1.
Finally, let us show that the proof extends also to N r

FR+(G). We need to consider also Y fij for
ij ∈ E. The 0th entry of this vector is 1−xi−xj ∼ 1−2/2µ, the ith and jth entries are 0, and any
other kth entry is either roughly 1/2µ if k is adjacent to both i, j, or roughly 1/2µ− 2/2µ2 ∼ 1/2µ
if k is non-adjacent to both i, j, or roughly 1/2µ − 1/2µ2 ∼ 1/2µ if k is adjacent to exactly one of
i, j. Similar to (18) we have that

xi + xj ≤ 2 · 1√
2n

≤ 1 − 1√
2
.
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Scaling this vector (by a small factor) so that the 0th entry is 1, we obtain a fractional solution in
which the value of the kth entry is at most

xk

1 − xi − xj
≤ (1 + ε)5/2µ

1/
√

2
=

1

cr+1
√

n
.

The fractional solution is thus dominated by (1/cr+1√n)1, which by the induction hypothesis
belongs to N r

+(G). From the monotonicity guaranteed by Lemma 2.1, (as all entries of Y fij are
nonnegative) we conclude that Y fij ∈ N r

+(G).

Lemma 3.2. Let ε > 0. Then there exists an ε′ > 0 that depends only on ε, such that for any
r ≤ ε′ log n, a random graph Gn,1/2 almost surely satisfies all the requirements of Lemma 3.1.

Proof. Observe that a sufficiently small ε′ > 0 that depends on ε guarantees that cr+1 ≤ ε
√

n (we
can assume, without loss of generality, that ε < 1/5).

Consider a particular choice of S of size s ≤ r, and its corresponding graph G′(V ′, E′) (the
subgraph of G induced on the vertices that are non-adjacent to all the vertices of S). The number
of vertices in G′, which we denote by n′ = |V ′|, has binomial distribution B(n − s, 1/2s). Since
s ≤ log n ≤ n/4, we have by Chernoff bound that

IP
[

n′ ≤ n/2s+1
]

≤ 2−δ1n/2s

(19)

for some fixed δ1 > 0.
G′ is a random graph (with edge probability 1/2) on n′ vertices. Therefore, the adjacency matrix

of G′ is a random symmetric matrix and we can use results on the concentration of its eigenvalues.
In particular, we have from Krivelevich and Vu [KV00] (which improve the concentration shown
by Füredi and Komlós [FK81], see also [AKV01]) that

IP [G′ does not satisfy (i)] ≤ 2−δ2n′

(20)

for some δ2 > 0 that depends on ε.
Since G′ is a random graph, the degree of a particular vertex in G′ has binomial distribution

B(n′ − 1, 1/2). By Chernoff bound and the union bound on the n′ vertices we have that

IP [G′ does not satisfy (ii)] ≤ n′2−δ3n′

(21)

for some fixed δ3 > 0 that depends on ε.
Using the union bound on the events of (20) and (21) we can bound the probability that G′

does not satisfy (i) or (ii). In order to obtain a bound in terms of n (rather than n′), we add to the
union bound also the event of (19) and have that for some fixed δ > 0 that depends on ε,

IP [G′ does not satisfy (i) or (ii)] ≤ n2−δn/2s

Taking the union bound on all possible sets S of size at most r, the probability that the
requirements of Lemma 3.1 do not hold is at most

r
∑

s=0

(

n

s

)

n2−δn/2s ≤ rnr+12−δn/2r ≤ nr+22−δn/2r � 1

when r ≤ ε′ log n for a sufficiently small ε′ > 0 that depends on ε, and hence these requirements
hold almost surely.

The proof of Theorem 3.1 follows from Lemma 3.1 and Lemma 3.2.
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3.2 Upper bound on the value of N r
+(Gn,1/2)

We prove Theorem 3.2 by showing that the inequality 1T x ≤ 4
√

n/dr+1 is almost surely valid for
N r

+(G). First we exhibit in Lemma 3.3 certain conditions that are sufficient for this inequality to
be valid for N r

+(G). We then show in Lemma 3.4 that these conditions are almost surely satisfied
by a random graph Gn,1/2.

The Lovász theta function of a graph is defined as ϑ(G) := max{1T x : x ∈ TH(G)}, where
TH(G) is the solution set of the nonnegativity constraints (4) and the so-called orthogonality con-
straints (see [Lov79, GLS93] for definition). Lovász and Schrijver [LS91] show that the orthogonality
constraints have N+-rank at most 1, and hence N+(G) ⊆ TH(G).

Lemma 3.3. Let G be a graph on n vertices, let d =
√

2(1−ε) for 0 < ε < 1 and let r ≥ 1. Assume
that for every S ⊂ V with |S| ≤ r, the graph G′ = G−S − Γ(S) satisfies (let n′ denote the number
of vertices in G′):

(i) ϑ(G′) ≤ 2(1 + ε)
√

n′.

(ii) The degree of every vertex in G′ is between 1
1+ε

n′

2 and (1 + ε)n′

2 .

If dr+1 ≤ ε2√n then max{1T x : x ∈ N r
+(G)} ≤ 4

√
n/dr+1, and similarly for N r

FR+.

Proof. Proceed by induction on r. For the base case r = 1, we can choose |S| = 0 and then (i) and
(ii) hold for the graph G itself. In particular, we have that

max{1T x : x ∈ N+(G)} ≤ ϑ(G) ≤ 2(1 + ε)
√

n < 4
√

n/d2

For the inductive step, assume it holds for r ≥ 1 and let us show that it holds for r+1. In other
words, given a graph G with (i),(ii) holding for any |S| ≤ r + 1, we will prove that the inequality
1T x ≤ 4

√
n/dr+2 is valid for N r+1

+ (G). By Lemma 2.3 we know that it suffices to prove that for
every vertex v, the inequality that arises from the contraction of v, i.e. 1T x ≤ 4

√
n/dr+2 − 1, is

valid for N r
+(G − Γ(v) − v).

By the induction hypothesis for G′ = G − Γ(v) − v we have that max{1T x : x ∈ N r
+(G′)} ≤

4
√

n′/dr+1, i.e. the inequality 1T x ≤ 4
√

n′/dr+1 is valid for N r
+(G′). Since (ii) holds also for G

itself, we have that n′ ≤ (1 + ε)n
2 , and hence

4
√

n′

dr+1
≤ 4

√
n

dr+1

√
1 + ε√

2
=

4
√

n

dr+2

√
1 + ε(1 − ε) ≤ 4

√
n(1 − ε2)

dr+2
≤ 4

√
n

dr+2
− 1

where the last inequality follows from dr+2 ≤ 4ε2√n. Therefore we have that for N r
+(G′) the

inequality 1T x ≤ 4
√

n′/dr+1 ≤ 4
√

n/dr+2 − 1 holds, which completes the proof of the inductive
step.

Finally, the proof immediately extends to the N r
FR+ operator since N r

FR+(G) ⊆ N r
+(G).

Lemma 3.4. Let ε > 0. Then there exists an ε′ > 0 that depends only on ε, such that for any
r ≤ ε′ log n, a random graph Gn,1/2 almost surely satisfies all the requirements of Lemma 3.3.

Proof. The proof is similar to that of Lemma 3.2, but with the different requirement (i). Juhász [Juh82]
shows that ϑ(G′) is at most (2 + o(1))

√
n′, almost surely, by using the result of Füredi and

Komlós [FK81] on the concentration of eigenvalues of random symmetric matrices. By using the
stronger concentration result of Krivelevich and Vu [KV00] (see also [AKV01]), we have that the
analog of (20) holds, and the proof follows.

The proof of Theorem 3.2 follows from Lemma 3.3 and Lemma 3.4.
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A Properties of the matrix-cut operators

A.1 Basic properties

We collect some properties of the matrix-cut operators defined in Section 2.1. In particular, we
prove Lemmas 2.1 and 2.2 (that are used in Section 3.1).

Monotonicity. It is straightforward that the matrix-cut operators are monotone with respect to
containment of K1 and K2, as follows.

Lemma A.1. Let K ′
1 ⊆ K1 and K2 ⊆ K ′

2. Then N(K ′
1,K

′
2) ⊆ N(K1,K2) and similarly for N+.

For the stable set problem it follows that the matrix-cut operators are monotone with respect
to adding/removing edges.

Corollary A.2. Let G′ be a graph that is obtained from another graph G by adding edges. Then
N r(G′) ⊆ N r(G), and similarly for N r

+,N r
FR,N r

FR+.

Proof. Observe that FR(G′) ⊆ FR(G). The proof follows from Lemma A.1.
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Down-monotonicity. The next lemma shows that down-monotonicity (see Section 2.2 for defi-
nition) is preserved by the matrix-cut operators. It extends a similar result that is given for N(·)
and N+(·) by Goemans and Tunçel [GT00, Theorem 5.1] (under the name lower-comprehensive)
and by Cook and Dash [CD01, Lemma 2.6] (under the name anti-blocking type).

Lemma A.3. Let K1,K2 ⊆ Q be down-monotone convex cones. Then N(K1,K2) is down-
monotone, and similarly for N+.

Proof. Let x ∈ N(K1,K2) and 0 ≤ x′ ≤ x with x′
0 = x0. It suffices to prove that x′ ∈ N(K1,K2)

when x, x′ differ only in a single coordinate, say i = 1, since we can repeat the same argument for
each coordinate. Furthermore, for a single coordinate i = 1 it suffices to prove the case x′

1 = 0, since
N(K1,K2) is convex, and so convex combinations of x′ and x give any desired value in coordinate
i = 1.

Since x ∈ N(K1,K2), there exists a matrix Y ∈ M(K1,K2) with x = Y e0. Define the matrix
Y ′ by

Y ′
ij =

{

0 if i = 1 or j = 1;
Yij otherwise.

We claim that Y ′ ∈ M(K1,K2). Indeed, Y ′ clearly satisfies (a) and (b). To prove (c), let
u ∈ K∗

1 , v ∈ K∗
2 , and from Proposition A.4 below we have that u − u1x1 ∈ K∗

1 and v − v1x1 ∈ K∗
2

and hence

uT Y ′v = (u − u1x1)
T Y (v − v1x1) ≥ 0

Observe that x′ = Y ′e0, and therefore x′ ∈ N(K1,K2), as required.
For the proof of N+ we need to show that (d) also holds, and indeed from the Gram matrix

representation of Y we can obtain a Gram matrix representation of Y ′ by replacing the vector that
corresponds to coordinate i = 1 with the all zeros vector 0.

Proposition A.4. Let K ⊆ Q be down-monotone and let v ∈ K∗. Then v − viei ∈ K∗ for all
i ≥ 1.

Proof. By the down-monotonicity of K, for every x ∈ K we have that x − xiei ∈ K, and hence
(v − viei)

T x =
∑

j 6=i vjxj = vT (x − xiei) ≥ 0.

We can now prove Lemma 2.1, i.e. show that N r(G) is down-monotone for every r ≥ 0, and
similarly for N r

+,N r
FR,N r

FR+.

Proof of Lemma 2.1. Observe that Q is down-monotone by its definition (3), and that FRAC is
down-monotone by its definition (6)-(7). By Lemma A.3 the matrix-cut operators preserve down-
monotonicity and the proof follows.

Flipping and renaming coordinates. The operators N,N+, NFR, NFR+ are invariant under
various operations, including renaming coordinates (i.e. permuting the order of coordinates), and
flipping coordinates xi → (x0 − xi) for any subset of the coordinates {1, 2, . . . , n}. More formally,

Lemma A.5 (Lovász and Schrijver [LS91]). Let A be a linear transformation mapping Q onto
itself. Then N(AK1, AK2) = AN(K1,K2) and similarly for N+. Hence N(AK) = AN(K) and
similarly for N+.

By flipping coordinates, one can extend Lemma A.3. For example, it follows that the N and
N+ operators preserve up-monotonicity, see Cook and Dash [CD01, Section 2] (as the blocking
property) and Goemans and Tunçel [GT00, Section 5] (as the “convex corner” property).
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Intersection with faces. A face of Q is the intersection of Q with hyperplanes of the form
{x : xi = 0} or {x : xi = x0}. The intersection of K with a face of Q consists of all x ∈ K with one
or more of their coordinates fixed to 0 or x0 (recall that x0 corresponds to 1 in the non-homogenous
case).

The following lemma proves equivalence between fixing some coordinates before applying a
matrix-cut operator (e.g. in K) and afterwards (e.g. in N(K)). It extends a similar result that is
given by Goemans and Tunçel [GT00] for N(·) and N+(·).

Lemma A.6. If F is a face of Q, then N(K1 ∩ F,K2) = N(K1,K2) ∩ F and similarly for N+.

Proof. The direction “⊆” follows from Lemma A.1, since N(K1 ∩F,K2) ⊆ N(K1,K2) and N(K1∩
F,K2) ⊆ N(F,K2) ⊆ F , and similarly for N+.

For the converse direction “⊇” with the N operator, let x ∈ N(K1,K2)∩F . Then there exists a
matrix Y ∈ M(K1,K2) with Y e0 = x. Let H be any one of the hyperplanes of the form {x : xi = 0}
or {x : xi = x0} that define F . Since ej , fj ∈ Q∗ ⊆ K∗

2 for all j, we have that Y ej ∈ K1 ⊆ Q and
Y fj ∈ K1 ⊆ Q, while their sum satisfies Y ej + Y fj = Y e0 = x ∈ F ⊂ H. Since H defines a face
of Q then by definition of a face we have that Y ej (and also Y fj) must belong to H.1 But every
v ∈ IRn+1 is a linear combination of {e0, e1, . . . , en} and Y ej ∈ H for all j ≥ 0, and so Y v ∈ H for
every v, including all v ∈ K∗

2 .
For every v ∈ K∗

2 we have that Y v belongs to K1 ⊆ Q, by the definition of Y . We saw above
that Y v also belongs to all hyperplanes H that define F , and we conclude that Y v belongs also to
F . Hence, Y v ∈ K1 ∩F for all v ∈ K∗

2 , implying that Y ∈ M(K1 ∩F,K2) and x ∈ N(K1 ∩F,K2).
The proof for N+ is similar, since Y is also known to be positive semidefinite.

We remark that the above proof of Lemma A.6 extends to the case where F is a face of K1, as
shown by Cook and Dash [CD01, Lemma 2.2] for N(·) and N+(·). For the special cases K2 = Q
and K2 = FR we obtain the following.

Corollary A.7. If F is a face of Q (or a face of K), then N(K ∩ F ) = N(K) ∩ F and similarly
for N+,NFR,NFR+.

Deleting fixed coordinates. Suppose that K is contained in a face of Q. Then some of the
coordinates are fixed (i.e. xi = 0 or xi = x0), and it may be desirable to delete these coordinates
and reduce the dimension. Formally, a deletion operation of indices subset I ⊂ {1, . . . , n} is the
function f : IRn+1 → IRn+1−|I| where f(x) is the vector x restricted to the coordinates not in I, i.e.
f(x) = (xi)i6∈I .

For the stable set problem it is straightforward that the effect of fixing and deleting a coordinate
of FR(G) is as follows.

Lemma A.8. Let F = Q ∩ {x : xi = 0}, and let f be the deletion operation of coordinate i. Then
f(FR(G) ∩ F ) = FR(G − i).

Lemma A.9. Let F = Q∩{x : xi = x0}, and let f be the deletion operation of coordinate i. Then
f(FR(G) ∩ F ) = FR(G − i) ∩ {x : ∀j ∈ Γ(i), xj = 0}.

1In other words, suppose that the hyperplane H is defined by the equality uT x = 0 (with u = ei or u = fi)
and that the inequality uT x ≥ 0 is valid for Q (i.e. Q is entirely contained in one side of H). We then have that
uT (Y ej), u

T (Y fj) ≥ 0 while their sum is uT x = 0, implying that uT (Y ej) = uT (Y fj) = 0.
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We show below that deleting fixed coordinates of K before applying a matrix-cut operator (e.g.
in K) is equivalent to deleting them afterwards (e.g. in N(K)). This extends similar results that
are given for N(·) and N+(·) by Cook and Dash [CD01] (see also [ST99]). Technically, they consider
an embedding operation (that introduces new coordinates that are fixed to either 0 or x0), which
is just the inverse of the deletion operation.

We first handle the basic case of one coordinate that is fixed to 0 (Lemma A.10), then extend
the result to an arbitrary face F and to an arbitrary K2 (Lemma A.11), and finally specialize it to
the cases K2 = Q and K2 = FR (Corollary A.12).

Lemma A.10. Let F = Q ∩ {x : xn = 0} and let f be the deletion operation of coordinate n. If
K1,K2 ⊆ F are convex cones then f(N(K1,K2)) = N(f(K1), f(K2)),

2 and similarly for N+.

Proof. The deletion operation f is a linear transformation from IRn+1 to IRn, and thus can be
described as an n × (n + 1) matrix A. Note that columns 0 to n − 1 of A form an identity matrix
and column n of A is all zeros. We first claim that AK∗ = (AK)∗ for K = K1 and for K = K2.

Indeed, by definition, u ∈ AK∗ if there exists r ∈ IR with

(

u
r

)

∈ K∗. Note that

(

u
r

)

∈ K∗ holds

either for all values of r or for no value of r, since K ⊂ {x : xn = 0}. Therefore,

AK∗ = {u : ∃r ∈ IR with

(

u
r

)

∈ K∗} = {u :

(

u
0

)

∈ K∗}.

We also have that

(AK)∗ = {u : uT (Ax) ≥ 0 ∀x ∈ K} = {u : AT u ∈ K∗}.

Since AT u =

(

u
0

)

, we obtain AK∗ = (AK)∗.

Let us now prove that M(AK1, AK2) = AM(K1,K2)A
T . For the direction “⊆”, let Y ∈

M(AK1, AK2). Then by (c), for every u ∈ K∗
1 , v ∈ K∗

2 we have that uT AT Y Av ≥ 0. We therefore
have that

(

Y 0
0T 0

)

= AT Y A ∈ M(K1,K2).

Multiplying by A from the left and by AT from the right, we obtain (since AAT is the identity
matrix) that Y ∈ AM(K1,K2)A

T .
For the converse direction “⊇”, let Y ∈ AM(K1,K2)A

T . Since K1 ⊆ {x : xn = 0}, every matrix
in M(K1,K2) has only zeros in row n, and by the symmetry (a) it has only zeros also in column
n. Hence,

AT Y A =

(

Y 0
0T 0

)

∈ M(K1,K2).

By (c), for every u ∈ K∗
1 , v ∈ K∗

2 it holds that uT AT Y Av ≥ 0, and hence Y ∈ M(AK1, AK2).
Now since AT e0 is just e0 (in a larger dimension), we conclude that

N(AK1, AK2) = AM(K1,K2)A
T e0 = AM(K1,K2)e0 = AN(K1,K2).

The proof for the N+ operator is similar since Y is positive semidefinite if and only if AT Y A is
(observe that Y has a Gram matrix representation if and only if AT Y A has such a representation).

2Note that the application of N in the righthand side is in a smaller dimension than in the lefthand side.
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Lemma A.11. Let F = Q ∩ {x : ∀i ∈ I0, xi = 0} ∩ {x : ∀i ∈ I1, xi = x0} and let f be the
deletion operation of the coordinates I0 ∪ I1. If K1 ⊆ F and K2 ⊆ Q are convex cones, then
f(N(K1,K2)) = N(f(K1), f(K2 ∩ F )), and similarly for N+.

Proof. K1 and K2 ∩ F are both contained in F , so we can repeatedly apply Lemma A.10 on
them, and delete the coordinates of I0 ∪ I1. (Note that by using Lemma A.5 we can extend
Lemma A.10 also to deleting coordinates that are fixed to x0.) It follows that f(N(K1,K2 ∩F )) =
N(f(K1), f(K2 ∩ F )).

By Lemma A.6 we have that N(K1,K2∩F ) = N(K1,K2)∩F , and since N(K1,K2) ⊆ K1 ⊆ F ,
we have that N(K1,K2 ∩ F ) = N(K1,K2). The proof follows.

Corollary A.12. Let F = Q∩{x : ∀i ∈ I0, xi = 0}∩{x : ∀i ∈ I1, xi = x0} and let f be the deletion
operation of the coordinate I0 ∪ I1. If K ⊆ F is a convex cone then f(N(K)) = N(f(K)),3 and
similarly for N+, NFR and NFR+.

Proof. For the N operator we have from Lemma A.11 that

f(N(K)) = N(f(K), f(Q ∩ F ))

and f(Q ∩ F ) is just Q in the smaller dimension, so f(N(K)) = N(f(K)). The proof for the N+

operator is similar.
For the NFR operator we have from Lemma A.11 that

f(NFR(K)) = N(f(K), f(FR(G) ∩ F )),

and it follows from Lemmas A.8 and A.9 that f(FR(G) ∩ F ) = FR(G − I0 − I1) ∩ H, where
H = {x : xi = 0 ∀i ∈ Γ(I1) − I0 − I1}. We therefore have that

f(NFR(K)) = N(f(K),FR(G − I0 − I1) ∩ H).

Note that f(K) ⊂ H since K ⊆ F ∩FR(G) ⊆ H, and so by Lemma A.6 we have that f(NFR(K)) =
NFR(f(K)), as required. The proof for NFR+(K) is similar.

Removing vertices from the graph. For the stable set problem, the properties collected so
far, and in particular Corollary A.12, give a useful characterization to whether x ∈ N r(G) in the
case that x has a fixed coordinate (i.e. xi = 0 or xi = x0).

Recall that V = {1, . . . , n}. For a vector x ∈ IRn and a subset W ⊂ V , we denote by xW

the restriction of x to the coordinates of W . We can now prove Lemma 2.2, showing that if
x ∈ IRn with xi = 1 and xj = 0 for all j ∈ Γ(i), then for all r ≥ 0, x ∈ N r(G) if and only if
xV −Γ(i)−i ∈ N r(G − Γ(i) − i), and similarly for N r

+,N r
FR and N r

FR+.

Proof of Lemma 2.2. It is clear that x belongs to the face F of Q that is defined by the hyperplanes
{x : xi = x0} and {x : xj = 0} for all j ∈ Γ(i). Then x ∈ N r(G) if and only if x ∈ N r(G) ∩ F ,
which is equivalent, by Corollary A.7, to x ∈ N r(FR(G) ∩ F ). Let f be the deletion operation
of the coordinates Γ(i) ∪ {i}, and then we have equivalently that f(x) ∈ f(N r(FR(G) ∩ F )). By
Corollary A.12, the latter is equivalent to f(x) ∈ N r(f(FR(G)∩F )). By Lemmas A.8 and A.9, we
have that f(FR(G) ∩ F ) = FR(G − Γ(i) − i), and the proof follows. The proof for N r

+,N r
FR and

N r
FR+ is similar.

Lemma A.13. Let x ∈ IRn be a vector and assume that xi = 0 for some i. Then x ∈ N r(G) if
and only if xV −i ∈ N r(G − i), and similarly for N r

+,N r
FR and N r

FR+.

3Note that the application of N in the righthand side is in a smaller dimension than in the lefthand side.
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Proof. It is clear that x belongs to the face F of Q that is defined by the hyperplane xi = 0. Then
x ∈ N r(G) if and only if x ∈ N r(G)∩F , which is equivalent, by Corollary A.7, to x ∈ N r(FR(G)∩
F ). Let f be the deletion operation of the coordinate i, and then we have equivalently that
f(x) ∈ f(N r(FR(G)∩F )). By Corollary A.12, the latter is equivalent to f(x) ∈ N r(f(FR(G)∩F )).
By Lemma A.8 we have that f(FR(G) ∩ F ) = FR(G − i), and the proof follows. The proof for
N r

+,N r
FR and N r

FR+ is similar.

A.2 Bounds on the rank

We describe some general methods to obtain upper and lower bounds on the N -rank and N+-rank
of valid inequalities, and extend them to the NFR-rank. We also illustrate the use of these methods
on a few valid constraints for the stable set problem (see Table 1 on page 27).

The N -rank of an inequality valid for STAB(G) depends only on the subgraph induced by those
vertices with a nonzero coefficient, and similarly for N+,NFR and NFR+. Indeed, if a vertex i has
a zero coefficient, then the inequality being valid for N r(G) is equivalent, by Lemma 2.1, to the
inequality being valid for N r(G)∩{x : xi = 0}, which in turn is equivalent, by Lemma A.13, to the
inequality being valid for N r(G − i).

Upper bounds on the N-rank. Lovász and Schrijver [LS91] give an upper bound on N(K),
which allows to upper bound the N -rank of an inequality, as follows.

The sum of two sets K ′,K ′′ ⊆ IRn+1 is defined as K ′ + K ′′ := {x′ + x′′ : x ∈ K ′, x′′ ∈ K ′′}.
Note that if K ′,K ′′ are convex cones in Q then K ′ + K ′′ is also a convex cone in Q. Furthermore,
if K ′,K ′′ are obtained via the homogenization procedure (1)-(2) from polytopes P ′, P ′′ ⊆ IRn,
respectively, then K ′ + K ′′ corresponds to all convex combinations of a point from P ′ and a point
from P ′′ (recall that x0 needs to be scaled to 1).

Lemma A.14 (Lovász and Schrijver [LS91]). For all 1 ≤ i ≤ n,

N(K) ⊆
(

K ∩ {x : xi = 0}
)

+
(

K ∩ {x : xi = x0}
)

.

Proof. If x ∈ N(K) then there exists Y ∈ M(K) with x = Y e0 = Y ei + Y fi for any i ≤ i ≤ n.
Clearly, Y ei ∈ K ∩ {x : xi = x0} and Y fi ∈ K ∩ {x : xi = 0}, and the proof follows.

Corollary A.15. If an inequality is valid for both K ∩ {x : xi = 0} and K ∩ {x : xi = x0}, then it
is valid for N(K).

Goemans and Tunçel [GT00] note that repeatedly using Lemma A.14 and Corollary A.7, gives
that for all I ⊆ {1, . . . , n} with |I| = r,

N r(K) ⊆
∑

I0⊆I

(

K ∩ {x : ∀i ∈ I0, xi = 0} ∩ {x : ∀i ∈ I \ I0, xi = x0}
)

.

In particular, this shows that the N -rank of any cone K is at most n, proving Theorem 2.1.

For the stable set problem, Corollary A.15 can be rephrased as follows (using Lemmas 2.2
and A.13).

Lemma A.16 (Lovász and Schrijver [LS91]). Let P be a convex set with STAB ⊆ P ⊆ FRAC.
If aT x ≤ b is an inequality such that for some i ∈ V , both the deletion and contraction of i give an
inequality valid for P , then aT x ≤ b is valid for N(P ).
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For example, if C induces a chordless odd cycle in G, the odd hole constraint

∑

i∈C

xi ≤
|C| − 1

2
(22)

has N -rank at most (and actually exactly) 1, because both the contraction and the deletion of
any vertex result in an inequality that is valid for FRAC. (In fact, Lovász and Schrijver [LS91]
prove that N(FRAC) is exactly the relaxation that is obtained by adding to FRAC all the odd
hole constraints.)

Lovász and Schrijver [LS91] also give the following upper bound on the N -rank of a graph. The
proof follows by applying Lemma A.16 repeatedly for n − α(G) − 1 vertices outside a maximum
stable set in the graph, since the graph induced on the other vertices must be bipartite.

Corollary A.17 (Lovász and Schrijver [LS91]). The N -rank of a graph G with stability number
α(G) is at most n − α(G) − 1.

It follows that the N -rank of any graph G is at most n − 2. Note that the N -rank of FR is at
most n − 2, while the N -rank of a general cone K is at most (and can actually be) n.

We next analyze the N -rank of a few more examples, due to Lovász and Schrijver [LS91]. By
Corollary A.17, if B is a clique in G, the clique constraint

∑

i∈B

xi ≤ 1 (23)

has N -rank at most (and actually exactly) |B| − 2. Note that the class of all clique constraints
strengthens the class of all edge constraints (5).

If D induces a chordless odd cycle in G (the edge complement of G), the odd antihole constraint
∑

i∈D

xi ≤ 2 (24)

has N -rank at most (and actually exactly) (|D| − 3)/2, because the contraction of a vertex results
in an inequality trivially valid for FRAC, and the deletion of a vertex results in an inequality that
is the sum of two clique constraints, each of size (|D| − 1)/2 and hence of N -rank (|D| − 5)/2.

If W induces an odd wheel in G with center i0 ∈ W , the odd wheel constraint

∑

i∈W\{i0}
xi +

|W | − 2

2
xi0 ≤ |W | − 2

2
(25)

has N -rank at most (and actually exactly) 2, since the contraction of the center vertex results in a
trivial inequality, and the deletion of the center vertex results with the odd hole constraint.

Upper bounds on the NFR-rank. The methods for obtaining upper bounds on the N -rank can
be extended (with modifications) to upper bounds on the NFR-rank, as follows.

Lemma A.18. For all ij ∈ E,

N(K) ⊆
(

K ∩ {x : xi = xj = 0}
)

+
(

K ∩ {x : xj = x0}
)

+
(

K ∩ {x : xi = x0}
)

.

Proof. If x ∈ NFR(K) then there exists Y ∈ M(K) with x = Y e0 = Y ei+Y ej +Y fij for any ij ∈ E.
Clearly, Y ei ∈ K ∩ {x : xi = x0} and Y ej ∈ K ∩ {x : xj = x0} and Y fij ∈ K ∩ {x : xi = xj = 0},
and the proof follows.
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Corollary A.19. Let ij ∈ E. If an inequality is valid for K ∩{x : xi = x0}, for K ∩{x : xj = x0}
and for K ∩ {x : xi = xj = 0}, then it is valid for NFR(K).

Corollary A.19 can be rephrased as follows (using Lemmas 2.2 and A.13).

Lemma A.20. Let P be a convex set with STAB ⊆ P ⊆ FRAC. If aT x ≤ b is an inequality such
that for some ij ∈ E, the contraction of i, the contraction of j, and the deletion of {i, j} give an
inequality valid for P , then aT x ≤ b is valid for N(P ).

The following upper bound on the NFR-rank of a graph follows by applying Lemma A.20
repeatedly on edges, so that the removal of their endpoints results in a bipartite graph (e.g. a
matching that is maximal with respect to containment).

Corollary A.21. Suppose that a graph G contains a set of β edges, whose endpoints removal results
in a bipartite graph. Then the NFR-rank of G is at most β.

It follows that the NFR-rank of a graph G is at most (n− 2)/2 if n is even and (n− 1)/2 if n is
odd; in general it is at most b(n − 1)/2c. In particular, the NFR-rank of the clique constraint (23)
is at most b(|B| − 1)/2c.

We can apply these bounds to the other examples. The NFR-rank of the odd hole constraint (22)
is at most (and thus exactly) 1, since the NFR operator is at least as strong as N . The NFR-rank of
the odd antihole constraint (24) is at most b(|D| + 1)/4c, because the contraction of a vertex results
in an inequality trivially valid for FRAC, and the deletion of two vertices results in an inequality
that is the sum of two clique constraints, each of size at most (|D| − 1)/2 and hence of NFR-rank
b(|D| − 3)/4c.4 The NFR-rank of the wheel constraint (25) is at most (and thus exactly) 1, since
the contraction of the center vertex results in a trivial inequality, the contraction of a non-center
vertex results in an inequality that is valid for FRAC, and the deletion of these two vertices also
results in an inequality that is valid for FRAC.

Lower bounds on the N-rank. Lovász and Schrijver [LS91] show that certain uniform fractional
stable sets belong to N r(G), regardless of the graph G. For example, for r = 0 it is straightforward
that (1/2)1 ∈ FRAC(G). The following lemma allows to extend this to larger r, with the uniform
solution being smaller, depending on r.

Lemma A.22 (Lovász and Schrijver [LS91]). Assume that P is down-monotone and contains
STAB(G). If (1/r)1 ∈ P for r > 0 then 1/(r + 1)1 ∈ N(P ).

Proof. Let K be the convex cone obtained from P via the homogenization procedure (1)-(2). Define
the matrix Y ∈ IR(n+1)×(n+1) by

Yij =







1 if i = j = 0;
1/(r + 1) if (i = 0, j > 0) or (i > 0, j = 0) or (i = j > 0);
0 otherwise.

To see that Y ∈ M(K,Q) observe that (a),(b) clearly hold, and let us now show that (c”) holds.

Y ei =
1

t + 1
(e0 + ei) ∈ ST(G) ⊆ K

and

Y fi =
r

r + 1
e0 +

∑

j 6=0,i

1

r + 1
ej =

r

r + 1



e0 +
∑

j 6=0,i

1

r
ej



 .

4In fact, direct calculations show that the NFR-rank of the odd antihole constraint (24) with |D| = 7 is at most 1.
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By the induction hypothesis we have that

∑

j 6=0,i

1

r
ej ≤

∑

j 6=0

1

r
ej ∈ P,

and the down-monotonicity of P implies that Y fi ∈ K, and thus (c”) holds. We conclude that
Y e0 ∈ N(K), i.e. 1/(r + 1)1 ∈ N(P ).

Corollary A.23 (Lovász and Schrijver [LS91]). 1/(r + 2)1 ∈ N r(G) for all r ≥ 0.

Proof. Proceed by induction on r. We mentioned above that the case r = 0 is trivial. The
inductive step follows from Lemma A.22, since N r(FRAC(G)) clearly contains STAB(G) and is
down-monotone by Lemma 2.1.

Corollary A.24 (Lovász and Schrijver [LS91]). The N -rank of a graph G with stability number
α(G) is at least n/α(G) − 2.

Proof. Let r be the N -rank of G, and hence N r(G) = STAB(G). By Corollary A.23 we have that
1/(r + 2)1 ∈ N r(G). The inequality 1T x ≤ α is valid for STAB(G) = N r(G), and in particular for
1/(r + 2)1, implying that n/(r + 2) ≤ α(G), and the proof follows.

For example, the stability number of a clique B is 1, so the N -rank of B is at least, and hence
exactly, |B| − 2. In fact, the above proof shows that the N -rank of the clique constraint (23) is at
least, and hence exactly, |B| − 2. The stability number of an an odd antihole D is 2, so the N -rank
of D is at least |D|/2 − 2, and since |D| is odd, it must be at least (|D| − 3)/2. In fact, this shows
that the N -rank of the odd antihole constraint (24) is at least, and hence extacly, (|D| − 3)/2.
Corollary A.23 also yields a lower bound on the N -rank of the wheel constraint (25). Indeed, let
r be the N -rank of this constraint. Then we have that this constraint is valid for N r(G) and, in
particular, for 1/(r + 2)1 ∈ N r(G). Thus,

1

r + 2

(

|W | − 1 +
|W | − 2

2

)

≤ |W | − 2

2

which gives that 2(|W |−1)
|W |−2 + 1 ≤ r + 2 and thus r ≥ 1 + 2

|W |−2 . Since the N -rank of the wheel
constraint is an integer, it must be at least, and hence exactly, 2.

Lower bounds on the NFR-rank. The methods for obtaining lower bounds on the N -rank can
be extended (with modifications) to lower bounds on the NFR-rank, as follows.

Lemma A.25. Assume that P be down-monotone and contains STAB(G). If (1/r)1 ∈ P for r > 0
then 1/(r + 2)1 ∈ NFR(P ).

Proof. Define the matrix Y ∈ IR(n+1)×(n+1) by

Yij =







1 if i = j = 0;
1/(r + 2) if (i = 0, j > 0) or (i > 0, j = 0) or (i = j > 0);
0 otherwise.

To see that Y ∈ M(K,FR) observe that (a),(b) clearly hold, and let us now show that (c”) holds.

Y ei =
1

r + 2
(e0 + ei) ∈ ST(G) ⊆ K
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and for ij ∈ E

Y fij =
r

r + 2
e0 +

∑

l 6=0,i,j

1

r + 2
el =

r

r + 2



e0 +
∑

l 6=0,i,j

1

r
el





By the induction hypothesis we have that

∑

l 6=0,i,j

1

r
el ≤

∑

l 6=0

1

r
el ∈ P

and the down-monotonicity of P implies that Y fij ∈ K, and thus (c”) holds. We conclude that
Y e0 ∈ NFR(K), i.e. 1/(r + 2)1 ∈ NFR(P ).

Corollary A.26. 1/(2r + 2)1 ∈ N r
FR(G) for all r ≥ 0.

Proof. Proceed by induction on r. We mentioned above that the case r = 0 is trivial. The
inductive step follows from Lemma A.25, since N r

FR(FRAC(G)) clearly contains STAB(G) and is
down-monotone by Lemma 2.1.

Corollary A.27. The NFR-rank of a graph G with stability number α(G) is at least n/(2α(G))−1.

Proof. Let r be the N -rank of G, and hence N r(G) = STAB(G). By Corollary A.26 we have that
1/(r + 2)1 ∈ N r(G). The inequality 1T x ≤ α(G) is valid for STAB(G) = N r(G), and in particular
for 1/(r + 2)1, implying that n/(2r + 2) ≤ α(G), and the proof follows.

For example, the NFR-rank of a clique B is at least |B|/2−1 (since the stability number of B is
1), and it must be an integer, so we have that it is at least b(|B| − 1)/2c. In fact, the above proof
shows that the NFR-rank of the clique constraint (23) is at least, and hence exactly, b(|B| − 1)/2c.
The NFR-rank of an odd antihole D is at least |D|/4− 1 (since the stability number of D is 2), and
it must be an integer (while |D| is odd), so we have that it is at least b|D|/4c. In fact, this shows
that the N -rank of the odd antihole constraint (24) is at least b|D|/4c.

Upper bounds on the N+-rank. Lovász and Schrijver [LS91] give also a sufficient condition
for an inequality to be valid for N+(K). The following lemma considers an inequality uT x ≥ 0 with
u0 ≥ 0 and ui ≤ 0 for i ≥ 1. It can be extended to an arbitrary inequality uT x ≥ 0 by flipping the
relevant coordinates according to Lemma A.5.

Lemma A.28 (Lovász and Schrijver [LS91]). If for all i with ui < 0, uT x ≥ 0 is valid for
K ∩ {x : xi = x0}, then uT x ≥ 0 is valid for N+(K).

By applying this to the stable set problem we obtain Lemma 2.3. Indeed, considering the
original n-dimensional space, the inequalities aT x ≤ b (with a ∈ IRn) that are valid for STAB(G)
are non-trivial only when b > 0 and a ≥ 0, and then we can use Lemma A.28.

For example, the clique, odd hole, odd wheel, and odd antihole constraints all have N+-rank at
most (and thus exactly) 1. Lovász and Schrijver [LS91] show also that the so-called orthogonality
constraints (see [Lov79, GLS93] for definition) are valid for N+(FRAC) by definition, and hence
their N+-rank is also 1.

One simple way to derive facet-defining valid inequalities from other facet-defining inequalities
is cloning a clique at a vertex i. That is, replacing the vertex i by a clique and replacing every edge
incident to i by corresponding edges that are incident to all the clique vertices, and substituting the
variable of i in the inequality with the sum of the variables of the clique vertices. In general, it is not
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clear how cloning influences the N+-rank of an inequality. However, Goemans and Tunçel [GT00]
note that Lemma 2.3 implies that cloning at the center vertex of an odd wheel inequality still has
N+-rank 1, and that cloning at one or several vertices of an odd wheel, odd hole, or odd antihole
inequality has N+-rank at most 2. Indeed, fixing any variable (of the corresponding subgraph) to
1, the resulting inequality can be seen to be a linear combination of clique inequalities and hence
valid for N+(FRAC).

Corollary A.29 (Lovász and Schrijver [LS91]). If G − Γ(i) − i has N+-rank at most r for
every i ∈ V , then the N+-rank of G is at most r + 1.

It follows for example, that the N+-rank of a clique, an odd antihole or an odd wheel, is at
most (and hence exactly) 1. It also follows (as stated in Lemma 2.4) that the N+-rank of a graph
G is at most its stability number α(G). This bound is tight for a clique.

Lower bounds on the N+-rank. Lovász and Schrijver [LS91] give no general method to
lower bound the N+-rank. The approach taken by Stephen and Tunçel [ST99], Goemans and
Tunçel [GT00], and Cook and Dash [CD01] is to obtain an analog of Corollary A.23 that holds
for a specific cone K. That is, they show that N r

+(K) contains a “uniform” solution that does
not belong to KI , and thus obtain that the N+-rank of K must be larger than r. Our analysis in
Section 3 also follows this approach.

We note that Goemans and Tunçel [GT00] give a sufficient condition for N+(K) = N(K) to
hold, but this condition appears to be not applicable to the stable set problem.

The ranks of the constraints exemplified above are listed in Table 1.

Constraint N -rank NFR-rank N+-rank NFR+-rank

odd hole (22) 1 1 1 1
clique (23) |B| − 2 b(|B| − 1)/2c 1 1
antihole (24) (|D| − 3)/2 b|D|/4c ≤ rank ≤ b(|D| + 1)/4c 1 1
wheel (25) 2 1 1 1

Table 1: The ranks of some example constraints


