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Abstract

A stereoscopic family of permutations maps an m-
dimensional mesh into several 1-dimensional lines, in a
way that jointly preserves distance information. Specifi-
cally, consider any two points and denote their distance on
the m-dimensional mesh by d. Then the distance between
their images, on the line on which these images are closest
together, is O(dm).

We initiate a systematic study of stereoscopic families of
permutations. We show a construction of these families that
involves the use of m + 1 images. We also show that under
some additional restrictions (namely, adjacent points on the
image lines originate at points which are not too far away on
the mesh), three images are necessary in order to construct
such a family for the 2-dimensional mesh.

We present two applications for stereoscopic families of
permutations. One application is an algorithm for routing
on the mesh that guarantees delivery of each packet within
a number of steps that depends upon the distance between
this packet’s source and destination, but is independent of
the size of the mesh. Our algorithm is exceptionally simple,
involves no queues, and can be used in dynamic settings in
which packets are continuously generated. Another appli-
cation is an extension of the construction of nonexpansive
hash functions of Linial and Sasson (STOC 96) from the
case of one dimensional metrics to arbitrary dimensions.

1 Introduction

We study the following problem. Let U be an n�n
mesh, and let V be an integer line with N = n2 points,V = [1 : : :N ]. We look for a family F = f�1; : : : ; �jFjg
of one-to-one mappings from U to V , such that for any two
pointsx; y 2 U , there is some�i 2 F with j�i(x)��i(y)j =�Department of Applied Math and Computer Science, The Weizmann
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O((dU(x; y))2), where dU (x; y) denotes the Manhattan dis-
tance (L1 norm) on U . That is, on at least one of the lines,
the distance between the images of the two points is in the
quadratic order of the original distance on the mesh. It is
straightforward to see that the cardinality of such a family
must be at least two (see Lemma 1), and if the cardinal-
ity of F is a constant independent of n, then the desired
quadratic upper bound on distance expansion is the best one
can achieve (Observation 2). Therefore, our objective is to
minimize jFj. We call this model a stereoscopic family of
permutations, as each member of the family is a permuta-
tion of theN elements, and similarly to stereoscopic vision,
a higher dimensional object is mapped into several lower
dimensional objects in a way that preserves depth (distance)
information.

Our study was motivated by the question of packet rout-
ing on the n�n mesh, where each edge of the mesh rep-
resents two antiparallel communication links, and each link
can carry a constant number of packets per unit time. We
want a simple routing algorithm that delivers each packet
in time that depends on the distance between its source and
destination, but not on the size of the network. Our sugges-
tion is to construct few Hamiltonian paths on the mesh, each
of a different “color” (which may correspond to wavelength,
in case of optical routing). At the time of injection a packet
chooses the Hamiltonian path on which its distance to desti-
nation is the smallest, and follows the color that corresponds
to this path until reaching its destination. Quantitatively, for
any packet with distance dp between its source and destina-
tion, we require that the distance along at least one of the
Hamiltonian paths is O(d 2p ). This is exactly the question
of constructing stereoscopic families of permutations, with
the additional restriction that each individual permutation is
a Hamiltonian path on the mesh. Our main result is that
three Hamiltonian paths suffice, but two do not. A more de-
tailed discussion of our results on routing and related work
is presented in Section 3.

In order to deal with dimensions higher than two, we gen-
eralize our construction, showing that a stereoscopic family
ofm+1 permutations can map an m dimensional mesh intom + 1 lines, such that distances d are expanded to O(dm).



Higher dimension constructions are applicable in the
area of locality preserving hashing. Linial and Sasson [12]
suggested such a hashing scheme (in fact, a nonexpansive
scheme), for one dimensional metrics, and left the con-
struction of higher dimensional hashing schemes as an open
question. We propose a solution to the multi-dimensional
case, based on stereoscopic families of permutations. Inde-
pendently, Indyk et al. [9] proposed a different construction.
This application is presented in Section 4, where the relevant
definitions are given.

Related Work. Our construction of stereoscopic families of
permutations uses a variant of Hilbert’s space filling curve
(see, for example, [16]). Researchers in geometric data
structures and geographic information system (GIS) often
use such curves and study their properties (see, for exam-
ple, [17]). Asano et al. [1] study a related problem. Given
a two dimensional square grid, they construct a one-to-one
mapping to the one dimensional line that has the following
property: any two dimensional interval (square) on the grid
is mapped into at most three one dimensional intervals on
the line. They also show that under certain restrictions on
the mapping, three one dimensional intervals are necessary.
We shall discuss these results again in Section 4.

In the context of routing, questions regarding covering
a graph by a family of trees satisfying certain relations be-
tween distances on the graph and distances on the trees
have been studied in [2]. In the context of hashing, map-
ping an m-dimensional mesh into buckets, such that each
bucket contains few elements, and local neighborhoods (of
one particular size) on the mesh are mapped into a small
number of buckets, has been studied in [6]. The two studies
mentioned above (and other similar studies) capture some
aspects of stereoscopic families of permutations, but do not
capture the main characteristics of our model – a constant
size family that simultaneously handles all distances.

Open questions. There are gaps between our upper bounds
and lower bounds for the cardinality of the families of stereo-
scopic permutations that map from m dimensions to q di-
mensions with distance expansion O(dm=q). Our upper
bounds use m+ 1 permutations, whereas our lower bounds
show that at least two permutations are necessary (whenm > q). We have made a first step towards showing a lower
bound of three permutations for the case that m = 2 andq = 1. Closing (or narrowing) the gaps between the lower
bounds and the upper bounds is the main open question.

1.1 Definitions

Consider a universe U (either a mesh or torus of arbi-
trary dimension) with N elements, with the corresponding
distance dU (L1 norm).

Definition 1 A permutation � is a one-to-one function�i : U 7! V , where U; V are meshes (or tori) of arbi-
trary (possibly different) dimensions, each withN elements
(jU j = jV j = N ).

Assume V is one dimensional (i.e. � : U 7! [1 : : :N ]).
Then � is called a Hamiltonian path or shortly a path if it
is continuous, i.e.

for all 1 � x < N; dU (��1(x); ��1(x+ 1)) = 1

Definition 2 Let � : U 7! [1 : : :N ] be a one-to-one func-
tion, where U is a mesh (or torus). Then � is called an(�; �)-shrinkable numbering of vertices if8x; y 2 U; dU (x; y) � �(j�(x) � �(y)j)�
Remark: The term shrinkable numbering was introduced
in [7], based on earlier work [18, 11, 16].

Definition 3 Let F (N) = f�1; �2; : : : ; �lg be a family of
permutations �i : U 7! V , where U; V are meshes (or tori)
of arbitrary (possibly different) dimensions, each with N
elements (jU j = jV j = N ). F (N) is called a stereoscopic
family of permutations with expansion gN : N 7! N, if8x; y 2 U; mini f dV (�i(x); �i(y)) g � gN (dU (x; y))
Notation: We will denote by di the L1 distance on the i-
dimensional universe (either mesh or torus). Unless stated
explicitly otherwise, we shall always assume that V (the
target mesh) is the one dimensional integer line.

We defined a stereoscopic family of permutations to con-
tain any permutation (one-to-one) functions. Routing ac-
cording to a stereoscopic family F requires particular per-
mutations which are Hamiltonian paths, since at each time
step, packets can only be directed to a neighboring node.
The more general definition (arbitrary permutations) allows
greater flexibility for other applications.

The definition of a stereoscopic family of permutations
is based solely on the metric defined on the mesh (or torus).
In principle, stereoscopic families of permutations can be
defined on any graph (network), but this is beyond the scope
of the current work.

Summing up, the model of stereoscopic family of per-
mutations specifies m and q (the dimensions of the source
and destination meshes/tori), N (size of domain, namely
the number of elements to map), jFj (number of permuta-
tions used, which we would like to be a constant indepen-
dent of N ), and gN (the function bounding distance expan-
sion, which we would like to be independent of N , usuallygN (d) = O(dm=q)).
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2 Construction of stereoscopic families of per-
mutations

2.1 Preliminary Observations

One permutation does not suffice for the construction of
stereoscopic families of permutations.

Lemma 1 Let � be a one-to-one function from the n � n
mesh to the line. Then9x; y d2(x; y) = 1 ^ d1(�(x); �(y)) > n

2

where d1 denotes distance on the (one dimensional) line,
and d2 denotes distance on the (two dimensional) mesh.

Proof. Take the nodes x and y furthest apart on the line
(d1(x; y) = n2 � 1). Let x0; y0 be the corresponding nodes
in the mesh. Then d2(x0; y0) � 2n� 1. Consider a shortest
path from x0 to y0 on the two dimensional mesh, x0 =x1; x2; : : : ; xr = y0 for some r < 2n. Using the triangle
inequality, there are two adjacent pointsxi, xi+1 on this path
with d1(�(xi); �(xi+1)) � n2�1

2n�1 > n=2. 2
The following is a general lower bound on the expansion

of stereoscopic families of permutations whose cardinality
is constant.

Observation 2 Let fF (N)g1N=1 be stereoscopic families of
permutations on them-dimensional mesh (or torus), and letjF (N)j = O(1). Then gN (d) = Ω(dm).
Proof. Consider the following counting argument. Let x be
a fixed node on the m-dimensional mesh (or torus). Then
the number of nodes on the mesh (or torus) in radiusR fromx is Θ(Rm). Since the number of permutations in F is
constant, at least one of these nodes must be Ω(Rm) steps
far from x on all permutations (lines). 2
2.2 Constructive Upper Bound with Three Paths

We construct a stereoscopic family of permutationsF =f�1; �2; �3g for the two dimensional case with expansiong(d) = O(d2), which is the best possible expansion up to
constant factors, by Observation 2. For simplicity, we shall
illustrate this construction on ann�n torus,wheren = 3�2l.
Lemma 3 Let Tn be an n� n torus, where n = 3 � 2l, for
arbitrary l > 0. Then there exists a familyF = f�1; �2; �3g
of 3 Hamiltonian paths on Tn, such that8x; y mini=1;2;3fd1(�i(x); �i(y))g � 36(d2(x; y))2

Proof. Denote each of the torus nodes as a pair (i; j) where
1 � i; j � n. We construct a Hamiltonian path � in a
way similar to Hilbert’s space filling curve [16]. Consider
the torus Tn as an n � n mesh M , and we shall describe a
Hamiltonian path on M from (1; 1) to (n; 1). This Hamil-
tonian path on M is defined recursively, by partitioning M
to 2 segments in each axis, to get 4 equal size sub-meshesM1;M2;M3;M4, as in figure 1. The path starts at (1; 1)
which is in M1, and ends up at (n; 1) which is in M4.
Therefore, the path shall be M1 !M2 !M3 !M4, as in
figure 1.

Constructing the path inside M1 is done by breaking M1

into 4 sub-meshes M11;M12;M13 and M14. The path has to
travel from M11, recursively cover all M1 sub-meshes, and
finally move to M2. The only way to do it (see figure 1), isM11 !M14 !M13 !M12.

M4

M2

M3

n/2 -Facets
Horizontal

M4

M1 M2

M3
n

1

n/2 -Facets
Vertical

M12M11

1

n

1 1 nn

M14 M13

Figure 1. The Hamiltonian path and Refining
it inside M1

Formally, at each phase we break our mesh M into
2 segments at each axis, get 4 equal size sub-meshesM1;M2;M3;M4, and consider this high-level description
as a 2� 2 mesh. We define a d-facet to be a virtual border
line between adjacent d � d sub-meshes (i.e. face/edge of
the square, see figure 1).

By definition, transitions between successive sub-meshes
are made only through the sub-meshes corner nodes (i.e.
one of (1; 1); (1; n); (n; 1); (n; n)). In addition, in each
sub-mesh, the entrance (corner) node and the exit (corner)
node are necessarily adjacent corners. W.l.o.g. we assume
the entrance node is (1; 1), and thus the exit node is either(1; n)or (n; 1). A corresponding Hamiltonian path is always
feasible by recursion, as shown in figure 2.

The path is constructed recursively, until we get down to
a 3�3 mesh, in which a similar construction is also feasible
(see figure 3). The path has the following properties:

1. After i recursion phases, the mesh M is partitioned
into 2i equal segments in each axis, total of (2i)2=22i
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Figure 2. Demonstrating Hamiltonian paths
on a 2� 2 Mesh
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Figure 3. Feasibility of Hamiltonian paths on
a 3� 3 mesh

sub-meshes, each of size n
2i � n

2i .

2. Each of the construction sub-meshes is traversed as
a whole (i.e. it is covered sequentially without any
jumps outside).

3. The distance on � of any two nodes in the same sub-
mesh, say M 0 from the i-th phase, is less then the size
of the sub-mesh, i.e. d1(�(x); �(y)) < ( n2i )2.

We define �1 to be exactly �, as described above. Since
the torus is cyclic, any path on it can be moved (shifted)
using an additive transformation modulo n. So let �2 be the
same path as � shifted n

3 units in each axis (say right and
down), and �3 the same with 2n

3 units shift. This can be
alternatively viewed as fixing the mesh (on the torus) with
an n

3 (or 2n
3 ) shift in each axis, and then constructing the

path recursively.
Let x; y be arbitrary nodes on the torus, and we will

bound their distance on the �i’s. Denote d0 = d2(x; y) their
distance on the torus, and let d = 3 � 2j be the smallest such
that d > 3d0, so clearly, d � 6d0.

We now partition the torus into sub-meshes of size d� d
(i.e. by log2

nd = l�j phases of the construction), separately
for each path �i (totally 3 sets of sub-meshes).

Let f1 be a horizontal facet in the d � d partitioning of�1, and f2 a horizontal facet in the d� d partitioning of �2.
We claim that the distance between these facets is at least d

3
mesh nodes. Facets f1 appear every d rows, and facets f2

appear at n
3 plus multiples of d. Consider the location of f2

relatively to f1, i.e. its location modulo d (since f1 appears
at multiples of d). It comes down to computing n

3 modulod, and n
3 = 2l = d � 2l�j

3 . Since 3 does not divide 2l�j , we
conclude that the difference between adjacent facets f1 andf2 is d

3 .
By symmetry considerations, we conclude an important

property that any two d-facets of different paths (�i 6= �i0)
but with the same orientation (either horizontal or vertical)
are separated by at least d

3 torus nodes.
We now claim that x; y belong to the same d � d sub-

mesh in some Hamiltonian path �i, and hence their distance
on this �i is less than the sub-mesh size, and we’re done:d1(�i(x); �i(y)) < d2 � (6d0)2 = 36(d2(x; y))2

Assume to the contrary, that x and y are in differentd� d sub-meshes in all 3 Hamiltonian paths. Thus, x; y are
separated from each other by at least one facet in any �i.
These 3 facets are either horizontal or vertical, so at least
two of them must have the same orientation (by the pigeon-
hole principle), w.l.o.g. say horizontal. Therefore, moving
from x to y, one must cross these two horizontal facets,
which are separated from each other by at least d

3 rows, sod2(x; y) � d
3 > d0 = d2(x; y), which is contradictory. 2

The specific paths used in this construction have yet an-
other property which is complementary to our requirement
of bounding the neighborhoods expansion.

Lemma 4 Let � be the path constructed recursively in the
proof of Lemma 3. Then � is a ( 1

2 ; c)-shrinkable numbering
of vertices, for some constant c. That is8x; y d2(x; y) � cpd1(�(x); �(y))
Proof. A value of c < 4 was claimed without proof in [18].
For completeness, we present a simple proof for the casec = 6. Denote d = d1(�(x); �(y)). Then there is somed0�d0 square in the construction such that

pd � d0 < 2
pd.

Assume w.l.o.g. that x appears before y on the path. Then
traveling on the path from x to y (total of d� 1 steps), one
can either stay in the same d0 � d0 square or advance to a
neighboringone, but not further (because the square’s size is(d0)2 � d). Hence x and y are in the same 2d0�d0 rectangle
on the mesh, and thus d2(x; y) � d0 + 2d0 � 6

pd. 2
In other words, F always expands distances at least

to their quadratics. Therefore, our stereoscopic fami-
lies of permutations satisfy mini=1;2;3fd1(�i(x); �i(y))g =
Θ((d2(x; y))2).
2.3 A Lower Bound of three Hamiltonian paths

In this section we show that it is impossible to preserve
quadratic distances with two Hamiltonian paths. Our proof
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is based on the following argument. Consider a segment
of length k of the path �1. It covers a region on the mesh.
By the geometry of the mesh, this region has a boundary
of length Ω(pk). The other path �2 must be responsible
for connecting between points on the boundary and points
just outside of it. In order to do this, �2 must follow the
boundary closely, because �2 is continuous. Hence neither�1 nor�2 are able to connect points in the boundary to points
of intermediate distance ( 5

pk) from the boundary. Below we
turn this intuitive argument to a full proof.

Definition 4 Let � be a path. A segment s of � is a re-
striction of � resulting with the image set [a : : : b], i.e. �
restricted to the domain ��1([a : : : b]).

Let s be a segment of path � on the n� n mesh Mn (or
torus Tn where jsj < n). Then it can be easily seen that the
projection of the path on every single axis is an interval, and
that at least one of these intervals is of size at least

pjsj.
Definition 5 Let U be an n � n mesh (or torus) universe.
Then � : U 7! f1; 2; : : :; n2g is a diagonal neighbors path
if for all i, ��1(i) and ��1(i + 1) are either neighbors or
diagonal neighbors (see figure 4 for illustration).

Figure 4. Diagonal neighbors path

Lemma 5 Let Tn be the n � n torus (or mesh), and �1; �2

be Hamiltonian paths on Tn. Then for any constant c > 0
and large enough n,9x; y 2 Tn mini=1;2fd1(�i(x); �i(y))g > c(d2(x; y))2

Proof. Assume n is large enough, so for example 4
pn >> c.

From now on, we deal only with respectively small objects
(segments of paths, etc.), up to size 1

2n. Therefore we can
consider our torus to be a mesh, assuming w.l.o.g. that the
following construction takes place in the center of the mesh.

Let s1 be a segment of length k = pn of �1 (in the
center of the mesh), whose endpoints are E;F . W.l.o.g.
the projection of s1 on the x-axis (horizontal) is larger than
on the y-axis. Denote this projected interval by I, thusjIj � pk. Let IE ; IF be 1

10

pk intervals around the x-
axis projection of E and F , respectively. Removing IE
and IF from I, we get at most 3 sub-intervals of total sizejI n (IE [ IF )j > 1

2 jIj, so at least one sub-interval I0 is
of size jI0j > 1

3 ( 1
2 jIj) � 1

6

pk. Denote this interval asI0 = [a : : : b], and let E0; F 0 be the highest nodes in the
columns a and b, respectively, which are on s1 (see figure 5).
Let t1 be the sub-segment of s1, whose endpoints areE0 andF 0. Partition the interval [a : : : b] into quarters and consider
the 3 columns separating the quarters, i.e. every b�a

4 nodes.

s
1

s
1

I

I
E

I’ I
F

E

F

E’

F’

ba

1
t

Figure 5. We get I0 = [a : : : b] by removing the
endpoints intervals IE ; IF from s1

Let yi (i = 1; 2; 3)be a node in this i-th (quarter) column,
which is above t1 in this column and whose distance fromt1 is l = 5

pk. Trivially, such yi must exist and let zi be its
closest node on t1, so d2(zi; yi) = l (see figure 6).

We define a border line R starting at E0 and going 2k
nodes vertically upwards, then horizontally right until the
column of F 0, and then vertically down to F 0 (see figure 6).
LetC = C(t1) be all nodes reachable from y1 without using
(crossing) nodes from the border line R nor the path t1. In
fact, defining C with any of the yi’s results with exactly
the same set C, since all yi’s are easily connected without
crossing t1.

LetB = B(t1) be all nodes in t1 which have a neighbor inC. We claim thatB is a diagonal neighbors path connectingE0 and F 0. Indeed, consider the nodes as squares in a
continuous plane, thenC is actually a connected set of these
squares (add the squares one by one), whose boundary is
thus a closed polygonal line. In particular, this line connects
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Figure 6. Border line R and boundary B(t1)E0 and F 0 and corresponds to B above, proving B’s nature
(see figure 7).

We also claim that zi 2 B as follows. By definition,zi 2 t1. Consider a shortest path from zi to yi. No node in
this path is in t1, because zi was defined as the closest to yi
from t1. No node in this path is inR because the boundaryR
is much further than l from yi (recall that l = 5

pk << 1
4 jI0j).

Therefore, every single node in this path is in C, and thuszi 2 t1 has a neighbor in C.
Consider going from E0 to F 0 along B and visiting zi’s

on the way, denoted asE0 = x0; x1; : : : ; xq = F 0. B is a
diagonal neighbors path, so d2(xj; xj+1) � 2. By definition
of B, any xj has a neighbor x0j 2 C, and thus x0j is not int1, and in fact not in s1 (notice that s1 and C are disjoint).

Hence d2(x0j; xj+1) � 3, and they must be connected
by some �i within c � 32 = 9c steps, or otherwise we’re
done. But x0j is not on s1, so their distance on �1 is at least
1
10

pk >> 9c. Therefore their distance on �2 must be at
most 9c steps. The same argument applies also toxj and x0j,
which are neighbors, so we conclude that they are connected
by�2 within c�12 = c steps. Hence, d1(�2(xj); �2(xj+1)) �c+ 9c = 10c.

Consider the occurrences of z1; z2; z3 on �2. Each pair
(say z1 and z2) have a series of successive xj’s connect-
ing them (e.g. z1 = xr1 and z2 = xr2 , then the series isxr1; xr1+1; : : : ; xr2�1; xr2). The distance between two suc-
cessive xj’s is at most 10c. Hence d1(�2(z1); �2(z2)) �
10ck << n, and we conclude that all z1; z2; z3 must be
close together on �2. It is therefore possible to find the
middle zi, say z3, as in figure 8.

F’

E’
.y

CR

Figure 7. Diagonal neighbors path B(t1), in-
duced by C(t1) (connecting E0 and F 0)

j

y3z1 z3 z2

x
74

x
81

x

2

x x7 5

’s  are  dense

π  :

Figure 8. The segment [z1 : : : z2] is “dense”
with xj ’s
The distance of y3 from any xj 2B is at least l >> 10c.

Since the interval [z1 : : : z2] (on �2) is “dense” with xj’s at
every 10c steps, y3 must be outside the interval. However,
both z1; z2 are at least 1

4 jI0j� l >> cl2 far from z3 on �2. Soz3 and y3 are not connected by �2 within cl2. Their distance
on �1 is also more than cl2 (because z3 is at least 1

4 jI0j � l
far from t1 endpoints). So we’re done:

mini=1;2fd1(�i(z3); �i(y3))g > cl2 2
Remark: The proof of Lemma 5 uses the continuity prop-
erty of �1; �2, when these curves are at the center of the
mesh. For the purpose of the proof, it does not matter
whether at the boundaries of the mesh the curves are not
continuous, and jump from one location on the boundary to
another. We shall use this fact in Section 2.5.
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2.4 Enhancing the Lower Bound

The lower bound of Lemma 5 is given for the case
of Hamiltonian paths and quadratic expansion (g(d) =O(d2)). It can be generalized to permutations � in whichdU(��1(x); ��1(x+1)) � � (instead of Hamiltonian paths
we allow jumps bounded by �), and arbitrary expansion
functions g(d), whenever � and g(d) are independent of the
mesh size n. This can be further extended to cases where� and g(d) depend on n in a weak sense. For example, if� does not grow too quickly with n (i.e., �n = o(n1=15)),
then two �n-bounded jumps permutations cannot achieve
quadratic expansion (for sufficiently large n).

The above implies that either we use large jumps and
then some distance shrinks considerably, or some dis-
tance expands by more than squaring. Hence for fami-
lies F of two permutations, mini=1;2fd1(�i(x); �i(y))g =
Θ((d2(x; y))2) is impossible.

2.5 Extended Model - Path with Repetitions

We present here a variant of the model of stereoscopic
families of permutations. Instead of a family of t permu-
tations, we would like a single one-to-many mapping from
the mesh U to the line V = [1 : : : tN ], such that each mesh
point is mapped to t distinct locations on the line. For two
points x; y 2 U , their distance on V is defined to be the
distance between the two images that are closest together.
What would be the minimal t needed to bound distance ex-
pansion to quadratic order? Does t = 2 suffice? We provide
a negative answer for the case where continuity is required.

Definition 6 Let U be a mesh (or torus) of N elements,
and t some fixed integer. Then W : f1; 2; : : : ; tNg 7! U
is called a walk with t repetitions if W maps exactly t
elements in the domain to every x 2 U and

for all 1 � j < tN; dU(W (j);W (j + 1)) = 1

A segment of the walk W is a restriction of W to a sub-
interval of the domain [1 : : : tN ].
The walk W connects two nodes x; y 2 U within � steps
if there exist j 2 W�1(x) and k 2 W�1(y) such thatjj � kj � �.
We say that W visits at time j the node W (j).
The walk W visits twice a node x within � steps if there
exist j; k 2 W�1(x) such that jj � kj � �.

Lemma 6 Let Tn be the n� n torus (or mesh), and let W
be a walk on Tn with 2 repetitions. If every pair of nodesx; y in a k�k square is connected byW within c(d2(x; y))2

steps, then there is a node in the square which is visited byW twice within k steps.

Proof. Consider the middle point q of the square, and look
at a segment s1 of length k=2 on the walk such that q is in
its middle. This segment cannot get out of the square. We
assume that this segment does not contain any point twice,
as otherwise we are done. We also assume w.l.o.g. that
the projection of s1 on the x-axis is larger than on the y-
axis. Denote this projected interval by I, then jIj �pjsj =pk=2. As in the proof of Lemma 5, we remove from I
intervals of 1

10

pk around the endpoints E;F of s1 , and get
at least one sub-interval I0 = [a : : : b] of size jI0j � 1

6

pk.
Let E0; F 0 be the highest nodes of s1 in the columns a; b,
respectively, and restrict s1 to the sub-segment t1 betweenE0; F 0.

Let y be a node above t1 in the central column of I0 whose
distance from t1 is l = 5

pk. Trivially, such y must exist and
let x be its closest node on t1, so d2(x; y) = l. Define Sy as
the l� l square around y (y is in the center of Sy). Then the
nodes of Sy are not visited by t1.

Now consider the other occurrence of x on W (i.e. out-
side t1). This must be of distance more than k from the first
occurrence ofx (on t1), as otherwise we are done. All points
of Sy are at distance of at most 2l from x on the mesh. How-
ever, Sy points are outside t1, and the first occurrence of x
(on t1) is roughly in the middle of I 0, so this occurrence of x
is not connected within 4cl2 to any of Sy points (recall thatpk >> 4cl2). It follows that all Sy points must appear in
a 4cl2 segment around the second occurrence of x (outsidet1).

Consider now a larger segment of length 9cl2 << k
around the second occurrence of x (outside t1). No node
is visited twice in this segment, as otherwise we are done.
Hence all visits of W to Sy can be partitioned into two
distinct regions on W - those at distance at most 4cl2 fromx (exactly one occurrence for each node in Sy), and those of
distance more than 9cl2 from x. Note that the two regions
are separated by at least 5cl2 nodes, so no pair of Sy nodes is
connected within 4cl2 using occurrences in different regions.
In other words, the occurrences which do connect a pair of
nodes x; y 2 Sy belong to the same region in W .

Hence, we can split W to the two regions, remove the
nodes which are not fromSy, and get two paths which handle
all pairs of nodes in Sy with a quadratic distance expansion.
This contradicts Lemma 5, where the case of two paths
is considered. (Removing nodes outside of Sy results in
permutations which are continuous at internal nodes of Sy
but not necessarily on its boundary. Lemma 5 holds also in
this weaker case. See remark at the end of Section 2.3.) 2
Corollary 7 Let Tn be then�n torus (or mesh), and letW
be a walk on Tn with 2 repetitions. Then there exist x; y 2Tn, which are not connected by W within c(d2(x; y))2.

Proof. Let k = 3
pn. Consider (n=2k)2 squares on Tn,

where the side-length of each square is k, and the distance

7



between neighboring squares is k. (See figure 9).

k

k

n

k

k

n

Figure 9. The squares and their representa-
tive form a “mesh”

In each square, Lemma 6 guarantees the existence of a
node which is visited by W twice within k steps. Select
one such node from each square, and call it the square
representative. The distance between distinct squares is at
least k, so visits of W to distinct square representatives do
not interleave. Number the square representatives from 1 to(n=2k)2, in the order that the walk W visits them. Call this
indexing �0. We shall apply the argument of Lemma 1 on
the square representatives and their indexing �0.

Consider a pair of square representatives whose distance
on �0 is n2=8k2. Since the squares (i.e. the nodes selected
from them) form a “mesh”, it is possible to connect any
pair of squares by a sequence of nk neighboring squares
(i.e. successive squares in the sequence are neighbors). In
this sequence there must be at least one pair of neighboring
squares which are separated by at least n

8k steps on �0. The
corresponding square representatives x; y are at least n=8
steps apart on W , since every transition in �0 translates
to at least k steps in W (recall that selected nodes from
neighboring squares are at least k steps apart on W ).

However, these square representatives are at distance at
most 3k apart on Tn. Hence the expansion of W for this
pair of representatives is more than quadratic. 2
2.6 Upper Bound for Higher Dimensional Torus

The construction of stereoscopic families of Hamiltonian
paths can be extended to higher dimensions.

Lemma 8 Let Tn be anm-dimensional torus (n�n�� � ��n),
for n = s � 2l, arbitrary l > 0 and odd s 2 fm+1;m+2g.

Then there exists a stereoscopic family of Hamiltonianpaths
on Tn,F (m) = f�1; �2; : : : ; �m+1g, such that for all x; y 2Tn

mini=1;2;:::;m+1
fd1(�i(x); �i(y))g � (2(m + 2) � dm(x; y))m

where d1 denotes distance on the (one dimensional) path,
and dm denotes L1 distance on the (m-dimensional) torus.

Proof. Extends the proof of Lemma 3. Details omitted. 2
The paths used in this construction also have a comple-

mentary property. When the nodes of the line are placed on
the mesh along the path, their distances on the line shrink to
their m-th root order.

Lemma 9 Let � be the path constructed recursively in the
proof of Lemma 8. Then � is a shrinkable numbering of
vertices with � = 1m , and � = 2(m + 1). That is8x; y dm(x; y) � 2(m+ 1) mpd1(�(x); �(y))
Proof. Extends the proof of Lemma 4. Details omitted. 2
3 Routing along Stereoscopic Families

We are interested in simple routing algorithms for the
two dimensional torus (with bidirectional edges), for which
the number of time steps that a packet p spends in the net-
work depends only on dp, the distance between the packet’s
source and destination, and is independent of the size of the
network.

An elementary Store-and-Forward algorithm can route
packets in the two dimensional mesh (or torus) in O(d 2p )
steps. We assume that every node can be the origin of
at most one packet. Packets are routed along an arbitrary
shortest path. In case of contention, priority is given to
packets whose distance from origin to destination (i.e. dp)
is minimal, and other packets wait. A packet p is delayed
only by higher priority packets whose origin is at most dp
steps from p’s route. The number of such origins is at mostO(d 2p ).

We would like an even simpler algorithm, in the sense
that packets are never stored at intermediate locations (called
“hot potato” or “deflection” routing [3, 4]). Even with this
added requirement, there is a relatively simple solution for
the case of batch routing, in which all nodes inject their
packets to the network in the same time step.

The idea (on the torus) is to route each packet in a spiral
path (a snail), starting at its origin, as in figure 10. In
this case, every node can be the source of up to 4 packets,
each injected on a spiral of a different orientation (initial
direction). Simple analysis based on timing considerations
(omitted in this version) shows that no two packets will want
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to cross the same edge at the same time. Every single spiral
path covers the whole torus, so each packet will reach its
destination within O(d 2p ) steps.

Figure 10. Batch routing along spirals

Edges in the torus belong to different spirals at different
time steps. Therefore, the routing table in each node must
depend either on the time t, or alternatively, on the source
of each incoming packet. With this information available,
the node can decide how to assign an incoming packet to
an outgoing edge. Observe that the packet’s destination is
only used for checking whether the packet has reached its
destination.

The delicate timing considerations prevent extension of
this algorithm to dynamic routing. In the dynamic case,
nodes generate packets continuously, so packets are injected
to the network at different times. Spiral paths generated at
different time steps may interfere with each other, producing
contention on links.

We now suggest a different hot potato routing algorithm,
based on stereoscopic families of permutations. We assume
that each link (edge) is composed of three channels so it can
transfer 3 packets in a single time step. Such networks can be
implemented by multiplexing 3 packets on each link. In this
network model, we suggest that packets travel only along the
3 Hamiltonian paths of a corresponding stereoscopic family
of permutations, F = f�1; �2; �3g. Since the capacity of
each link is 3, packets traveling along different paths do not
interfere with each other. (It was our original hope that fewer
Hamiltonian paths would suffice for the results stated below,
but the lower bounds of Lemma 1 and Lemma 5 exclude this
possibility.)

Consider batch routing where each node is the source of
at most one packet. Then each packet will be injected to the
network on its preferred path �i 2 F (the one along which
its distance to destination is smallest), and travel along this
path until reaching its destination. The routing is collision-
free since the 3 channels enable the coexistence of the 3

paths, without any contentions. According to Lemma 8,
each packet will reach its destination in O(d 2p ) steps, and
with no deflections.

The batch routing can be easily extended to dynamic
routing by allowing packets injection, on a vacancy basis. A
node generating a new packet, finds the preferred (best) path
according to its destination, and waits for an opportunity to
inject the packet along this path. From the moment the
packet is injected, it travels along its path with no further
delays, reaching its destination within the next Θ(d 2p ) steps.
However, the overall time required to deliver a packet to
its destination might be much larger, as there is no a-priori
bound on the number of time steps that a packet is forced
to wait in its source node until it can be injected into the
network.

It is straightforward to obtain rigorous results regarding
the performance of the algorithm in the dynamic case, most
notably, in the adversarial queueing model of [5]. Assume
that at every time step, an adversary generates packets on the
mesh with the following restriction: if a packet is generated
at node s and its destination is d steps away, then no other
packet is generated in the same time step at a node at distance
less than 6d from s. Using the fact that routing along stereo-
scopic families of permutations is essentially routing along
paths, and using the results of [5] for routing along paths, it
can be shown that our algorithm is stable against such an ad-
versary. Namely, the number of undelivered packets at any
time step remains bounded by some constant that depends
on the mesh size but not on the number of time steps that
elapsed.

We remark that for the adversarial model, [5] observe that
by the analysis of [10], the one bend algorithm on the mesh
is stable, and this holds for loads that are higher than those
that our algorithm can handle. The new aspect in our result
is the fact that queues at intermediate vertices are bounded
(either no queues at all, if each link can carry three packets,
or queues of bounded size, in the case of time multiplexing
of the packets).

The main advantage of routing along stereoscopic fam-
ilies is its simplicity. Initially, the injecting node assigns
a path to the packet (possibly by a fixed table prepared in
advance). At intermediate nodes, the assignment of packets
to outgoing edges is trivial. If the packet is destined to the
current node, no routing needs to be done. Otherwise, the
incoming edge (or more precisely, the channel) alone defines
the assignment to an outgoing edge, according to predefined
decisions (which reflect the Hamiltonian paths). There is
no need to consider the destination of the packet, nor make
any calculations. The trivial routing table requires minimal
computational resources (both time and memory).
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4 Applications to Hashing

A dictionary is a data structure for storing elements from
universeU in memoryM . It has to be capable of storing any
subset D � U whose cardinality is not too big, and provide
efficient implementation of the following operations:� Queries: Membership (given x 2 U decide whetherx 2 D) and Find (determine where x is stored in M ).� Update operations: Add/Delete/Change elements inD.

We consider the “noisy” version of the problem, where
Linial and Sasson [12] provide the followingdefinitions. LetU be a metric space with distance functiondU , reflecting the
structure of the inputs. Then the dictionary has to provide
the following operations:� Queries: Membership (given x 2 U and ∆ > 0

(noise/uncertainty), list all items y 2 D which are
close to x, namely dU(x; y) � ∆); and Find (deter-
mine where are these items stored in M ).� Update operations: Add/Delete/Change elements in
D.

Any dictionary can be adapted to deal with noisy data as
well. Givenx 2 U , check for every y in the ∆-neighborhood
of x (denoted by ∆x), whether it is stored in the dictionary.
However, each check of y 2 ∆x requires an application of
the hashing function. Overall, the procedure may require
Ω(j∆xj) applications of the hashing function. Moreover,
elements y 2 ∆x might be hashed to distant locations in the
memory. Large memory is usually paged, in which case the
procedure might require access to Ω(j∆xj) different pages.

The problem of hashing noisy data appears in several
variants in many applications (see [13, 8, 6, 15] and ref-
erences therein). Linial and Sasson [12], devise a “noisy”
hashing scheme for a one dimensional universe U and a
one dimensional memory M , with any noise measure ∆. It
is a non-expansive hashing scheme, i.e. one which trans-
lates every ∆-neighborhood in U to a constant number of
∆-neighborhoods in M . Linial and Sasson define a spe-
cific family H of functions with the property that for everyx 2 U , either f(x+1) = f(x)+1 or f(x+1) = f(x)�1.
Such function is a long path with “turning points” on the
interval U , and can be specified by its “starting point” and
its “turning points”. They restrict H to functions f whose
“turning points” are selectively chosen. Hashing the dictio-
naryD then uses several hashing tables, each corresponding
to a different hash function f 2 H.
We introduce the following notation:H1;1 hashing scheme for the one dimensional universe and

one dimensional memory.

Hm;q hashing scheme for m-dimensional universe and q-
dimensional memory, with L1 distance.CMemberm;q (N;∆) number of pages (blocks of size j∆xj)
accessed by a Membership query of theHm;q scheme.CUpdatem;q (N ) number of pages accessed by an Update op-
eration (such as Add, Delete and Change) of theHm;q
scheme.jMm;qj memory complexity of theHm;q hashing scheme.

The non-expansive hashing scheme [12] is a H1;1 scheme.
For arbitrary � > 0, it uses O(log 1� ) hashing tables, each of

size jDj 1
1�� , with the following complexity:CMember
1;1 (N;∆) = CUpdate

1;1 (N ) = O(log
1� )jM1;1j = O(log

1� � jDj 1
1�� )

We show how to transform any H1;1 scheme (and in par-
ticular, that of Linial and Sasson) into anHm;q scheme, with
arbitrary m and q. Our Hm;q scheme is based on a stereo-
scopic family of permutations on the m-dimensional torus,
and a shrinkable numbering of vertices in the q-dimensional
mesh (or torus). Lemma 8 guarantees the existence of a fam-
ily F = f�1; : : : ; �m+1g of paths, which are, in particular,
one-to-one mappings from the m-dimensional universe to
the integer line. Lemma 9 shows how to construct shrinkable
numbering of vertices.

The dictionaryD is first mapped tom+1 separate images
on the (one dimensional) interval, one for each path �i (i =
1; : : : ;m+1). Each of thesem+1 intervals is then hashed by
the non-expansive hashing H1;1 to another one dimensional
representation. Finally, the one dimensional tables are, in
turn, mapped by the shrinkable numbering of vertices to theq-dimensional mesh (or torus).

Membership query is straightforward. Given an inputx 2 U , find its m + 1 images in the q-dimensional mem-
ory, and check their corresponding neighborhoods. The
stereoscopic family of permutationsF enlarges distances toO(∆m). The non-expansive hashing does not expand dis-
tances, and the shrinkable numbering shrinks distances toO(∆m=q). So, overallCMemberm;q (N;∆) = (m + 1) �CMember

1;1 (N;O(∆m=q ))CUpdatem;q (N ) = (m+ 1) �CUpdate
1;1 (N )

The stereoscopic family of permutationsF copies m+1
times each dictionary element (or its index or a pointer to
the element). The shrinkable numbering of vertices requires
the same size of memory as its domain. Hence, the memory
complexity of scheme Hm;q is jMm;qj = (m+1)jM1;1j.
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We now consider possible modifications of the approach
described above. First note that unlike the routing applica-
tion of Section 3, here we do not need each of the individual
permutations to be continuous. Hence rather than base our
stereoscopic family of permutations on the Hilbert space
filling curve, we can use Morton order [14], which is much
easier to manipulate. Similar to the Hilbert order, the Mor-
ton order recursively subdivides the plane into square tiles,
and then covers each tile by recursively covering the tiles
contained in it. However, the order in which tiles are cov-
ered is different, resulting in a simpler rule for the mapping
from the plane to the line. This rule (bit interleaving) works
in arbitrary dimensions. To get a stereoscopic family of per-
mutations based on the Morton ordering, use m + 1 shifted
versions of it, as we did for the Hilbert ordering.

The use of a stereoscopic family of permutations in the
context of hashing has the disadvantage that each element is
hashed m+1 different times, and memory requirements are
increased by a factor ofm+1. This can be avoided by taking
just one member of the family (e.g., one Morton ordering),
and then each element is hashed only once, and no overhead
in memory is required. But then, in the ∆-neighborhood of
an element in the m-dimensional mesh there may be up to
2m different tiles that are m-cubes of side-length roughly
∆, resulting in access to potentially 2m pages per member-
ship query. Possibly, this number of pages can be reduced
drastically by choosing a different indexing scheme. In par-
ticular, [1] design an indexing scheme that maps every two
dimensional interval into only three one dimensional inter-
vals. Perhaps such an indexing scheme can be generalized
to an arbitrary number of dimensions. Alternatively, instead
of recursively subdividing them-dimensional mesh intom-
dimensional cubes, one can use tiles of other shapes, with
the property that any interval is completely covered bym+1
tiles of comparable size. Self similar tilings with this prop-
erty are known for the two dimensional mesh (these tilings
are derived from the hexagon), but we are not aware of work
on this in higher dimensions.

It appears to us that when the dimension is low, it is
preferable to use only one indexing scheme (and not pay the
penalty of elements duplication), but that for high dimen-
sions, there may be advantages to using stereoscopic families
of permutations, so as to avoid the exponential blowup in
number of pages accessed.

Independently of our work, Indyk et al. [9] proposed a
different way of constructing hash functions that preserve
locality in multidimensional spaces. They devise an Hm;q
scheme for m = q.
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