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Abstract

A stereoscopic family of permutations maps an m-
dimensional mesh into several 1-dimensional lines, in a
way that jointly preserves distance information. Specifi-
cally, consider any two points and denote their distance on
the m-dimensional mesh by d. Then the distance between
their images, on the line on which these images are closest
together, is O(d™).

Weinitiate a systematic study of stereoscopic families of
permutations. e show a construction of these familiesthat
involves the use of m + 1 images. We also show that under
some additional restrictions (namely, adjacent pointson the
imagelinesoriginateat pointswhich arenot toofar away on
the mesh), three images are necessary in order to construct
such a family for the 2-dimensional mesh.

Wk present two applicationsfor stereoscopic families of
permutations. One applicationis an algorithm for routing
on the mesh that guarantees delivery of each packet within
a number of steps that depends upon the distance between
this packet’s source and destination, but is independent of
the size of the mesh. Our algorithmis exceptionally simple,
involves no queues, and can be used in dynamic settingsin
which packets are continuously generated. Another appli-
cation is an extension of the construction of nonexpansive
hash functions of Linial and Sasson (STOC 96) from the
case of one dimensional metricsto arbitrary dimensions.

1 Introduction

We study the following problem. Let U bean nxn
mesh, and let V' be an integer line with N = n? points,
V =[1...N]. Welook for afamily F = {mq,..., 77}
of one-to-one mappings from U to V', such that for any two
pointsz, y € U, thereissomer; € Fwith|m;(x)—m;(y)| =
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O((du(z,y))?), wheredy (z, y) denotesthe Manhattan dis-
tance (L1 norm) on /. That is, on at least one of the lines,
the distance between the images of the two pointsisin the
quadratic order of the origina distance on the mesh. It is
straightforward to see that the cardinality of such a family
must be at least two (see Lemma 1), and if the cardinal-
ity of F is a constant independent of », then the desired
guadratic upper bound on distance expansion isthe best one
can achieve (Observation 2). Therefore, our objective isto
minimize |F|. We call this model a stereoscopic family of
permutations, as each member of the family is a permuta
tion of the NV elements, and similarly to stereoscopic vision,
a higher dimensional object is mapped into severa lower
dimensional objectsin away that preserves depth (distance)
information.

Our study was motivated by the question of packet rout-
ing on the n x n mesh, where each edge of the mesh rep-
resents two antiparallel communication links, and each link
can carry a constant number of packets per unit time. We
want a simple routing agorithm that delivers each packet
in time that depends on the distance between its source and
destination, but not on the size of the network. Our sugges-
tionisto construct few Hamiltonian paths on the mesh, each
of adifferent “color” (which may correspond to wavelength,
in case of optical routing). At the time of injection a packet
chooses the Hamiltonian path on which its distance to desti-
nationisthesmallest, and followsthe color that corresponds
tothispath until reaching itsdestination. Quantitatively, for
any packet with distance d,, between its source and destina-
tion, we require that the distance along at least one of the
Hamiltonian pathsis O(dpz). This is exactly the question
of constructing stereoscopic families of permutations, with
the additional restriction that each individua permutationis
a Hamiltonian path on the mesh. Our main result is that
three Hamiltonian paths suffice, but two do not. A morede-
tailed discussion of our results on routing and related work
ispresented in Section 3.

In order to deal with dimensionshigher than two, we gen-
eralize our construction, showing that a stereoscopic family
of m + 1 permutationscan map an m dimensional mesh into
m + 1 lines, such that distances d are expanded to O(d™).



Higher dimension constructions are applicable in the
area of locality preserving hashing. Linia and Sasson [12]
suggested such a hashing scheme (in fact, a nonexpansive
scheme), for one dimensional metrics, and left the con-
struction of higher dimensional hashing schemes as an open
guestion. We propose a solution to the multi-dimensional
case, based on stereoscopic families of permutations. Inde-
pendently, Indyk et a. [9] proposed adifferent construction.
Thisapplicationispresented in Section 4, wheretherel evant
definitionsare given.

Related Work. Our construction of stereoscopic familiesof
permutations uses a variant of Hilbert’s space filling curve
(see, for example, [16]). Researchers in geometric data
structures and geographic information system (GIS) often
use such curves and study their properties (see, for exam-
ple [17]). Asano et al. [1] study arelated problem. Given
atwo dimensional square grid, they construct a one-to-one
mapping to the one dimensional linethat has the following
property: any two dimensional interval (square) on thegrid
is mapped into a most three one dimensional intervals on
the line. They aso show that under certain restrictions on
the mapping, three one dimensional intervals are necessary.
We shall discuss theseresultsagain in Section 4.

In the context of routing, questions regarding covering
agraph by afamily of trees satisfying certain relations be-
tween distances on the graph and distances on the trees
have been studied in [2]. In the context of hashing, map-
ping an m-dimensional mesh into buckets, such that each
bucket contains few el ements, and local neighborhoods (of
one particular size) on the mesh are mapped into a small
number of buckets, has been studiedin [6]. Thetwo studies
mentioned above (and other similar studies) capture some
aspects of stereoscopic familiesof permutations, but do not
capture the main characteristics of our model — a constant
size family that simultaneously handles all distances.

Open questions. There are gaps between our upper bounds
and lower boundsfor the cardinality of thefamiliesof stereo-
scopic permutations that map from m dimensionsto ¢ di-
mensions with distance expansion O(d™/¢). Our upper
boundsuse m + 1 permutations, whereas our lower bounds
show that at least two permutations are necessary (when
m > ¢). We have made afirst step towards showing alower
bound of three permutations for the case that .m = 2 and
¢ = 1. Closing (or narrowing) the gaps between the lower
bounds and the upper bounds is the main open question.

1.1 Déefinitions

Consider a universe U (either a mesh or torus of arbi-
trary dimension) with NV elements, with the corresponding
distance dyy (.1 norm).

Definition 1 A permutation 7 is a one-to-one function
m U — V, where U,V are meshes (or tori) of arbi-
trary (possibly different) dimensions, each with N elements
(U] =[V]=N).

Assume V' isonedimensional (i.e. «: U — [1...N]).
Then = iscalled a Hamiltonian path or shortly a path if it
is continuous, i.e.

foralll1<az< N, dp (7~ Ha), 7 Yz +1) =1
Definition 2 Let = : U +— [1...N] be a one-to-one func-
tion, where U/ is a mesh (or torus). Then 7 is called an
(e, B)-shrinkable numbering of vertices if

VeyeU,  du(ey) < B(n(x) — m(y))*
Remark: The term shrinkable numbering was introduced
in[7], based on earlier work [18, 11, 16].

Definition 3 Let F(N) = {1, 7, ..., 7} be a family of
permutations; : U — V', where U, V' are meshes (or tori)
of arbitrary (possibly different) dimensions, each with v
dements (|U| = |V| = N). FIN) iscalled a stereoscopic
family of permutationswith expansion gn : N — N, if

Vay €U, min{dy(m(e) m(s)} < on(du(z,y)

Notation: We will denote by d; the L1 distance on the i-
dimensional universe (either mesh or torus). Unless stated
explicitly otherwise, we shall always assume that V' (the
target mesh) isthe one dimensional integer line.

We defined a stereoscopic family of permutationsto con-
tain any permutation (one-to-one) functions. Routing ac-
cording to a stereoscopic family F requires particular per-
mutations which are Hamiltonian paths, since at each time
step, packets can only be directed to a neighboring node.
The more general definition (arbitrary permutations) allows
greater flexibility for other applications.

The definition of a stereoscopic family of permutations
isbased solely on the metric defined on the mesh (or torus).
In principle, stereoscopic families of permutations can be
defined on any graph (network), but thisisbeyond the scope
of the current work.

Summing up, the model of stereoscopic family of per-
mutations specifies m and ¢ (the dimensions of the source
and destination meshes/tori), N (size of domain, namely
the number of elements to map), || (number of permuta-
tions used, which we would like to be a constant indepen-
dent of N), and ¢ (thefunction bounding distance expan-
sion, which we would like to be independent of N, usually

gn(d) = O(d™/1)).



2 Construction of stereoscopicfamiliesof per-
mutations

2.1 Preliminary Observations

One permutation does not suffice for the construction of
stereoscopic families of permutations.

Lemmal Let = be a one-to-one function fromthe n x n
mesh to theline. Then
n
e,y do(e,y) =1 A di(w(z),7(y)) > >
where d; denotes distance on the (one dimensional) line,
and d, denotes distance on the (two dimensional) mesh.

Proof. Take the nodes « and y furthest apart on the line
(di(z,y) = n? — 1). Let 2', 3/ be the corresponding nodes
inthemesh. Then da(z’,y') < 2n — 1. Consider a shortest
path from z’ to ¥’ on the two dimensiona mesh, =’ =
r1,x2,...,2, = y for somer < 2n. Using the triangle
inequality, thereare two adjacent pointsz;, ;1 onthispath
with da(m(2;), 7(2i41)) > 2=t > n/2, O

Thefollowingisageneral lower bound on the expansion
of stereoscopic families of permutations whose cardinality
is constant.

Observation 2 Let {F(N)}%2_, be stereoscopic families of
per mutationson the m-dimensional mesh (or torus), and let
|FMNV)| = O(1). Then gy (d) = Q(d™).

Proof. Consider the following counting argument. Let = be
a fixed node on the m-dimensional mesh (or torus). Then
the number of nodes on themesh (or torus) inradius R from
z iIS©O(R™). Since the number of permutationsin F is
constant, at least one of these nodes must be Q(R™) steps
far from « on al permutations (lines). |

2.2 Constructive Upper Bound with Three Paths

We construct a stereoscopic family of permutations 7 =
{1, m2, w3} for the two dimensiona case with expansion
g(d) = O(d?), which is the best possible expansion up to
congtant factors, by Observation 2. For simplicity, we shall
illustratethisconstruction onan n x n torus, wheren = 3.2'.

Lemma3 Let 7, beann x n torus, wheren = 3- 2, for
arbitrary! > 0. Thenthereexistsafamily F = {71, w2, 73}
of 3 Hamiltonian pathson 7;,, such that

Ve,y - min {dy(mi(z), mi(y))} < 36(dz(z, v)?

i=12

Proof. Denote each of thetorusnodesas apair (¢, j) where
1 < 4,5 < n. We consgtruct a Hamiltonian path = in a
way similar to Hilbert’'s space filling curve [16]. Consider
thetorus7,, asan n x n mesh M, and we shall describe a
Hamiltonian path on A/ from (1, 1) to (n, 1). This Hamil-
tonian path on M is defined recursively, by partitioning M
to 2 segments in each axis, to get 4 equal size sub-meshes
M, My, M3, My, as in figure 1. The path starts at (1, 1)
which isin My, and ends up a (n,1) which isin M.
Therefore, the path shall be My — My — M3 — My, asin
figure 1.

Constructing the path inside M3 is done by breaking M;
into 4 sub-meshes M1, Mio, M3 and M. The path hasto
travel from M1, recursively cover all M; sub-meshes, and
finally move to M». Theonly way to do it (see figure 1), is
My — Mg — Mz — M.
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Figure 1. The Hamiltonian path and Refining
itinside M,

Formally, at each phase we break our mesh M into
2 segments at each axis, get 4 equa size sub-meshes
My, Mo, M3, My, and consider this high-level description
asa2 x 2mesh. We define ad-facet to be avirtua border
line between adjacent d x d sub-meshes (i.e. face/edge of
the square, see figure 1).

By definition, transitionsbetween successive sub-meshes
are made only through the sub-meshes corner nodes (i.e.
one of (1,1);(1,n);(n,1);(n,n)). In addition, in each
sub-mesh, the entrance (corner) node and the exit (corner)
node are necessarily adjacent corners. W.l.0.g. we assume
the entrance nodeis (1, 1), and thus the exit node is either
(1, n)or(n,1). Acorresponding Hamiltonian pathisaways
feasible by recursion, as shown in figure 2.

The path is constructed recursively, until we get down to
a3 x 3mesh, inwhichasimilar constructionisalso feasible
(seefigure 3). The path has the following properties:

1. After i recursion phases, the mesh M is partitioned
into2’ equal segmentsin each axis, total of (2¢)2 =22
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Figure 2. Demonstrating Hamiltonian paths
on a2x 2Mesh
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Figure 3. Feasibility of Hamiltonian paths on
a 3 x 3mesh

sub-meshes, each of size 5 X 3

2. Each of the construction sub-meshes is traversed as
awhole (i.e. it is covered sequentially without any
jumpsoutside).

3. Thedistance on = of any two nodesin the same sub-
mesh, say M’ from thei-th phasg, islessthenthesize
of the sub-mesh, i.e. di(7(z), 7(y)) < (5)%

We define 7 to be exactly #, as described above. Since
the torus is cyclic, any path on it can be moved (shifted)
using an additive transformation modulo . So let 7, bethe
same path as = shifted 5 unitsin each axis (say right and
down), and 73 the same with %” units shift. This can be
alternatively viewed as fixing the mesh (on the torus) with
an 3 (or %”) shift in each axis, and then constructing the
path recursively.

Let x,y be arbitrary nodes on the torus, and we will
bound their distance on the m;’s. Denoted’ = dy(x, y) their
distance on thetorus, and let d = 3- 2/ bethesmallest such
that d > 3d’, soclearly, d < 6d'.

We now partition the torus into sub-meshes of sized x d
(i.e. bylog, % = {—; phasesof theconstruction), separately
for each path #; (totally 3 sets of sub-meshes).

Let f, be a horizontal facet in the d x d partitioning of
71, and f> ahorizonta facet inthed x d partitioning of .
We claim that the distance between these facetsisat least £
mesh nodes. Facets f; appear every d rows, and facets f>

appear a 7 plusmultiplesof d. Consider thelocation of f>
relatively to f, i.e. itslocation modulo d (since f1 appears
at multiples of d). It comes down to computing 5 modulo

doand2 =2 =d 21;]. Since 3 does not divide 2’7, we

conclude that the difference between adjacent facets f; and
f2 is %

By symmetry considerations, we conclude an important
property that any two d-facets of different paths (7; # ;)
but with the same orientation (either horizonta or vertical)
are separated by at least 4 torus nodes.

We now claim that =, y belong to the same d x d sub-
mesh in some Hamiltonian path =;, and hence their distance
on this 7; isless than the sub-mesh size, and we're done:

da(mi(x), mi(y)) < d* < (6d')% = 36(da(x, y))?

Assume to the contrary, that « and y are in different
d x d sub-meshesin all 3 Hamiltonian paths. Thus, =, y are
separated from each other by at least one facet in any ;.
These 3 facets are either horizonta or vertical, so at least
two of them must have the same orientation (by the pigeon-
hole principle), w.l.0.g. say horizontal. Therefore, moving
from z to y, one must cross these two horizontal facets,
which are separated from each other by at least % rows, so
do(z,y) > & > d' = dy(2,y), whichiscontradictory. O

The specific paths used in this construction have yet an-
other property which is complementary to our requirement
of bounding the neighborhoods expansion.

Lemma4 Let 7 be the path constructed recursively in the
proof of Lemma 3. Then 7 isa (3, ¢)-shrinkable numbering
of vertices, for some constant ¢. That is

Yo,y day(z,y) < en/di(m(x), 7(y))

Proof. A value of ¢ < 4 was claimed without proof in [18].
For completeness, we present a simple proof for the case
¢ = 6. Denoted = di(w(z),n(y)). Then thereis some
d’ x d’ squareintheconstruction suchthat v/d < d’ < 2V/d.
Assume w.l.0.g. that « appears before y on the path. Then
traveling on the path from « to y (total of d — 1 steps), one
can either stay in the same d’ x d' square or advance to a
neighboringone, but not further (because thesquare’ssizeis
(d')? > d). Hence x and y areinthesame 2d’ x d’ rectangle
on the mesh, and thus da(z, y) < d’ + 2d' < 6v/d. i

In other words, F always expands distances at least
to their quadratics. Therefore, our stereoscopic fami-
lies of permutations satisfy min;=1 » 3{d1(m;(z), mi(y))} =
O((da(w,))?)-

2.3 A Lower Bound of three Hamiltonian paths

In this section we show that it isimpossible to preserve
quadratic distances with two Hamiltonian paths. Our proof



is based on the following argument. Consider a segment
of length k of the path 7;. It covers aregion on the mesh.
By the geometry of the mesh, this region has a boundary
of length Q(v/k). The other path 7, must be responsible
for connecting between points on the boundary and points
just outside of it. In order to do this, 7, must follow the
boundary closely, because 7 is continuous. Hence neither
1 hor , are ableto connect pointsin theboundary to points
of intermediate distance (v/k) from the boundary. Below we
turn thisintuitive argument to afull proof.

Definition 4 Let = be a path. A segment s of « isa re-
striction of 7 resulting with the image set [a...0], i.e =
restricted to the domain 7= 1([a . . . 4]).

Let s be asegment of path = onthen x n mesh A, (or
torus7,, where |s| < n). Then it can be easily seen that the
projection of the path on every singleaxisisan interval, and
that at least one of theseintervalsis of sizeat least 1/|s].

Definition 5 Let U/ be an n x n mesh (or torus) universe.
Thenr: U +— {1,2,...,n?} isadiagonal neighborspath
if for all 4, 7=(4) and 7=1(i + 1) are either neighbors or
diagonal neighbors (see figure 4 for illustration).

Figure 4. Diagonal neighbors path

Lemmab5 Let 7;, bethen x n torus (or mesh), and 71, 72
be Hamiltonian paths on 7,,. Then for any constant ¢ > 0
and large enough 7,

Sey €T min{dim(a), m(y)} > e(dalz, 1)
Proof. Assumen islargeenough, sofor example /n >> c.
From now on, we deal only with respectively small objects
(segments of paths, etc.), up to size %n Therefore we can

consider our torus to be a mesh, assuming w.l.0.g. that the
following construction takes place in the center of the mesh.

Let s; be a segment of length & = /n of 71 (in the
center of the mesh), whose endpoints are £, F'. W.l.0.g.
the projection of s; on the z-axis (horizonta) is larger than
on the y-axis. Denote this projected interval by I, thus
11| > Vk. Let Ig,Ir be vk intervals around the -
axis projection of £ and [, respectively. Removing /g
and I from I, we get a most 3 sub-intervals of total size
|1\ (Ig U Ir)| > 3|I|, so at least one sub-interval I’ is
of size |I'| > 4(%|1]) > iVk. Denote this interval as
I' = [a...b], and let E’ F’ be the highest nodes in the
columnsa and b, respectively, which areon s; (seefigureb).
Let ¢, bethe sub-segment of s1, whose endpointsare £’ and
F'. Partitiontheinterva [« . . . b] into quarters and consider

the 3 columns separating the quarters, i.e. every b;“ nodes.

Figure 5. We get I’ = [a .. .b] by removing the
endpoints intervals Ig, Ir from s;

Lety; (¢ = 1,2, 3) beanodeinthisi-th (quarter) column,
which is above ¢ in this column and whose distance from
t1isl = Vk. Trivialy, such y; must exist and let z; beits
closest nodeon t1, SO da(z;, y;) = | (seefigure 6).

We define a border line R starting at £’ and going 2k
nodes vertically upwards, then horizontally right until the
column of F’, and then vertically downto F’ (seefigure6).
Let C' = C(t1) beadll nodesreachablefrom y; without using
(crossing) nodes from the border line R nor the path ¢1. In
fact, defining C' with any of the y;’s results with exactly
the same set C, since all y;’s are easily connected without
crossing ;.

Let B = B(t1) beal nodesint; which haveaneighborin
C'. Weclaimthat B isadiagonal neighborspath connecting
E’ and F’. Indeed, consider the nodes as sguares in a
continuousplane, then C'isactually aconnected set of these
squares (add the sguares one by one), whose boundary is
thusaclosed polygonal line. In particular, thisline connects



Figure 6. Border line R and boundary B(t1)

E’" and F’ and correspondsto B above, proving B’s nature
(seefigure 7).

We also clam that z; € B as follows. By definition,
z; € t1. Consider a shortest path from z; to y;. No nodein
thispathisin ¢4, because z; was defined as the closest to y;
from¢;. Nonodeinthispathisin R becausetheboundary R
ismuch further than fromy; (recall that ! = vk << 1|I'|).
Therefore, every single node in thispath isin €', and thus
z; € t1 hasaneighborin C.

Consider going from £’ to F" dong B and visiting z;'s
on the way, denoted asE’ = zg, z1,...,2, = F'. Bisa
diagonal neighborspath, so da(z;, z;41) < 2. By definition
of B, any x; hasaneighbor =} € C, and thusz} isnotin
t1, andinfact not in s; (noticethat s; and C' are digoint).

Hence dz(x§, z;41) < 3, and they must be connected
by some 7; within ¢ - 32 = 9c¢ steps, or otherwise we're
done. But x§ isnot on sq, So their distance on 71 isat least
%\/E >> 9c¢. Therefore their distance on 7> must be at
most 9c steps. The same argument appliesalsoto z; and «7,
which are neighbors, so we concludethat they are connected
byﬂ'2WithinC~12 = csteps. Hence, d]_(ﬂ'z(l‘j), Tz(l‘]'+1)) <
¢+ 9¢ = 10ec.

Consider the occurrences of z1, z2, z3 on w,. Each pair
(say z1 and z) have a series of successive z;’s connect-
ing them (eg. z1 = z,, and z2 = z,,, then the seriesis
Ty, Tpytd, - - -, Ty 1, £ry). 1 he distance between two suc-
cessve z;'sis a most 10c. Hence di(ma(#1), m2(22)) <
10ck << n, and we conclude that al z1, 22, z3 must be
close together on 7. It is therefore possible to find the
middle z;, say z3, asinfigure 8.

Figure 7. Diagonal neighbors path B(t¢1), in-
duced by C(t¢1) (connecting £’ and F)

X's are dense

Figure 8. The segment [z;..
with z;’s

.z7] i1s “dense”

The distance of y3 from any z; € B isat least { >> 10c.
Sincetheinterval [z1 ... zp] (0n mp) is“dense” with z;’s et
every 10c steps, y3 must be outside the interval. However,
both 21, 2, areat least | 1’| — 1 >> cl? far from 23 on m,. SO
z3 and ys are not connected by 7, within ¢/2. Their distance
on 71 is aso more than c/? (because 3 isat least 5|I'| — !
far from ¢; endpoints). So we're done:

n{dy(mi(z3), mi(ys))} > cl?

)

i
i=1

Remark: The proof of Lemma 5 uses the continuity prop-
erty of 71, 72, when these curves are at the center of the
mesh. For the purpose of the proof, it does not matter
whether at the boundaries of the mesh the curves are not
continuous, and jump from one location on the boundary to
another. We shall use thisfact in Section 2.5.



24 Enhancing the Lower Bound

The lower bound of Lemma 5 is given for the case
of Hamiltonian paths and quadratic expansion (¢(d) =
O(d?)). 1t can be generalized to permutations = in which
dy(7~Y(z), 7~z +1)) < A (instead of Hamiltonian paths
we alow jumps bounded by }), and arbitrary expansion
functions¢(d), whenever A and ¢(d) are independent of the
mesh size n. This can be further extended to cases where
A and g(d) depend on n in aweak sense. For example, if
A does not grow too quickly with n (i.e, A, = o(n/1%)),
then two A,,-bounded jumps permutations cannot achieve
guadratic expansion (for sufficiently large n).

The above implies that either we use large jumps and
then some distance shrinks considerably, or some dis-
tance expands by more than squaring. Hence for fami-
lies F of two permutations, min;=1 »{d1(m(z), mi(y))} =
O((da(z, y))?) isimpossible.

25 Extended Mode - Path with Repetitions

We present here a variant of the model of stereoscopic
families of permutations. Instead of a family of ¢ permu-
tations, we would like a single one-to-many mapping from
themesh U tothelineV = [1...¢N], such that each mesh
point is mapped to ¢ distinct locations on the line. For two
points x,y € U, their distance on V' is defined to be the
distance between the two images that are closest together.
What would be the minimal ¢ needed to bound distance ex-
pansionto quadraticorder? Doest = 2 suffice? Weprovide
anegative answer for the case where continuity is required.

Definition 6 Let U/ be a mesh (or torus) of N eements,
and ¢ some fixed integer. Then W : {1,2,... (N} — U
is called a walk with ¢ repetitions if W maps exactly ¢
elementsin thedomainto every € U and

forall1 <j <tN, de(W(),Wi+1)=1

A segment of the walk 11" is a restriction of 17/ to a sub-
interval of thedomain[1...¢N].

The walk ¥ connects two nodes =,y € U within é steps
if there exist j € W=(z) and k € W~1(y) such that
j— k| < 6.

We say that 1V visits at time j the node W ().

The walk W visits twice a node = within § steps if there
exist j, k € W—1(z) suchthat |j — k| < 6.

Lemma6 Let 7, bethen x n torus (or mesh), and let I/
be a walk on 7, with 2 repetitions. If every pair of nodes
z,yinak x k squareisconnected by I withinc(da(z, y))?
steps, then there is a node in the square which is visited by
W twicewithin k steps.

Proof. Consider the middle point ¢ of the square, and ook
at asegment s; of length k/2 on the walk such that ¢ isin
itsmiddle. This segment cannot get out of the square. We
assume that this segment does not contain any point twice,
as otherwise we are done. We also assume w.l.0.g. that
the projection of s; on the z-axis is larger than on the y-
axis. Denotethisprojected interval by 7, then | 7| > +/]s| =
\/k/2. Asin the proof of Lemma 5, we remove from [
intervals of %\/E around the endpoints &, F' of s1, and get
at least one sub-interval I’ = [a...b] of size |I'| > k.
Let £’, F' be the highest nodes of s; in the columns a, b,
respectively, and restrict s; to the sub-segment ¢; between
E' F.

Let y beanodeabovet, inthecentral column of I’ whose
distancefromt; is! = k. Trividly, such y must exist and
let « beitsclosest nodeonty, S0 dy(x, y) = . Define S, as
the! x { square around y (y isin the center of S,). Then the
nodes of S, are not visited by ¢;.

Now consider the other occurrence of = on W (i.e. out-
sidet1). Thismust be of distance morethan & from thefirst
occurrence of « (ont;), asotherwiseweare done. All points
of S, areat distance of at most 2/ from x on the mesh. How-
ever, S, pointsare outside ¢y, and the first occurrence of «
(ontq) isroughly inthe middleof I’, so thisoccurrence of =
is not connected within 4¢/? to any of .S, points (recall that
Vk >> 4cl?). It follows that all Sy points must appear in
a4cl? segment around the second occurrence of = (outside
t1).

Consider now a larger segment of length 9¢i? << &
around the second occurrence of = (outside ¢t1). No node
is visited twice in this segment, as otherwise we are done.
Hence al visits of 1/ to S, can be partitioned into two
distinct regions on I - those at distance at most 4¢/? from
x (exactly one occurrence for each nodein S, ), and those of
distance more than 9¢/? from x. Note that the two regions
are separated by at least 5¢/? nodes, so no pair of S, nodesis
connected within 4¢I? using occurrencesin different regions.
In other words, the occurrences which do connect a pair of
nodes z, y € .S, belong to the same regionin W.

Hence, we can split W to the two regions, remove the
nodeswhich arenot from S, and get two pathswhich handle
al pairsof nodesin .S, with aquadratic distance expansion.
This contradicts Lemma 5, where the case of two paths
is considered. (Removing nodes outside of 5, resultsin
permutations which are continuous at internal nodes of .5,
but not necessarily on its boundary. Lemma5 holdsalso in
thisweaker case. Seeremark at theend of Section2.3.) O

Corollary 7 Let7,, bethen x n torus(or mesh), andlet W/
be a walk on 7;, with 2 repetitions. Then there exist , y €
T,,, which are not connected by W within ¢(dz(z, y))?.

Proof. Let k = ¥n. Consider (n/2k)? squares on T,
where the side-length of each squareis k, and the distance



between neighboring squaresis k. (Seefigure 9).

n

Figure 9. The squares and their representa-
tive form a“mesh”

In each square, Lemma 6 guarantees the existence of a
node which is visited by W twice within % steps. Select
one such node from each sguare, and call it the sguare
representative. The distance between distinct squares is at
least k, so visits of W to distinct square representatives do
not interleave. Number the square representatives from 1 to
(n/2k)?, inthe order that thewalk W visitsthem. Call this
indexing ='. We shall apply the argument of Lemma 1 on
the square representatives and their indexing =’

Consider apair of square representatives whose distance
on 7’ isn?/8k2. Since the squares (i.e. the nodes selected
from them) form a “mesh”, it is possible to connect any
pair of squares by a sequence of 7 neighboring squares
(i.e. successive squares in the sequence are neighbors). In
this sequence there must be at least one pair of neighboring
squares which are separated by at least - stepson 7', The
corresponding square representatives z, y are a least n/8
steps apart on W, since every trangition in ' trandates
to at least £ stepsin IV (recal that selected nodes from
neighboring squares are at least £ steps apart on ).

However, these square representatives are at distance at
most 3k apart on 7,,. Hence the expansion of WV for this
pair of representatives is more than quadratic. |

2.6 Upper Bound for Higher Dimensional Torus

The construction of stereoscopic familiesof Hamiltonian
paths can be extended to higher dimensions.

Lemma8 LetT,, beanm-dimensional torus(nxn x- - -xn),
forn = s - 2!, arbitrary! > Oandodd s € {m+1, m+2}.

Then there exists a stereoscopi ¢ family of Hamiltonian paths
onT,, F") = {xy, 7, ..., Tme1}, Suchthatfor all z,y €
Ty

omin (@), mi(y)} < (20m +2) - do(,y)"
where d; denotes distance on the (one dimensional) path,
and d,,, denotes I; distance on the (m-dimensional) torus.

Proof. Extendsthe proof of Lemma 3. Detailsomitted. O

The paths used in this construction also have a comple-
mentary property. When the nodes of theline are placed on
the mesh along the path, their distances on the line shrink to
their m-th root order.

Lemma9 Let = be the path constructed recursively in the
proof of Lemma 8. Then = is a shrinkable numbering of
verticeswitha = 1, and 3 = 2(m + 1). Thatis

Yo,y dm (2, y) < 2(m+ 1) V/di(n(z), n(y))

Proof. Extendsthe proof of Lemma 4. Detailsomitted. O

3 Routing along Stereoscopic Families

We are interested in simple routing algorithms for the
two dimensional torus (with bidirectiona edges), for which
the number of time steps that a packet p spends in the net-
work depends only on d,,, the distance between the packet’s
source and destination, and isindependent of the size of the
network.

An elementary Store-and-Forward agorithm can route
packets in the two dimensional mesh (or torus) in O(dpz)
steps.  We assume that every node can be the origin of
at most one packet. Packets are routed along an arbitrary
shortest path. In case of contention, priority is given to
packets whose distance from origin to destination (i.e. d,)
is minimal, and other packets wait. A packet p is delayed
only by higher priority packets whose origin is at most d,,
stepsfrom p’sroute. The number of such originsisat most
O(dpz).

We would like an even simpler agorithm, in the sense
that packetsare never stored at intermediatelocations(called
“hot potato” or “deflection” routing [3, 4]). Even with this
added requirement, there isa relatively simple solution for
the case of batch routing, in which al nodes inject their
packets to the network in the same time step.

Theidea (on the torus) isto route each packet in a spiral
path (a snail), starting at its origin, as in figure 10. In
this case, every node can be the source of up to 4 packets,
each injected on a spiral of a different orientation (initial
direction). Simple anaysis based on timing considerations
(omittedin thisversion) showsthat no two packetswill want



to cross the same edge at the same time. Every single spiral
path covers the whole torus, so each packet will reach its
destination within O(d ?) steps.

Figure 10. Batch routing along spirals

Edgesin thetorus belong to different spirals at different
time steps. Therefore, the routing table in each node must
depend either on the time ¢, or aternatively, on the source
of each incoming packet. With this information available,
the node can decide how to assign an incoming packet to
an outgoing edge. Observe that the packet’s destination is
only used for checking whether the packet has reached its
destination.

The delicate timing considerations prevent extension of
this algorithm to dynamic routing. In the dynamic case,
nodes generate packets continuously, so packetsare injected
to the network at different times. Spira paths generated at
different time stepsmay interferewith each other, producing
contention on links.

We now suggest adifferent hot potato routing a gorithm,
based on stereoscopic families of permutations. We assume
that each link (edge) iscomposed of three channels soit can
transfer 3 packetsin asingletime step. Such networkscan be
implemented by multiplexing 3 packetson each link. Inthis
network model, we suggest that packetstravel only alongthe
3 Hamiltonian paths of a corresponding stereoscopic family
of permutations, 7 = {1, 72, 73}. Since the capacity of
each link is 3, packets traveling along different paths do not
interferewith each other. (It wasour origina hopethat fewer
Hamiltonian pathswoul d suffice for the resultsstated bel ow,
but thelower boundsof Lemma 1 and Lemma5 excludethis
possibility.)

Consider batch routing where each node is the source of
at most one packet. Then each packet will beinjected to the
network on its preferred path 7; € F (the one along which
its distance to destination is smallest), and travel along this
path until reaching its destination. The routing is collision-
free since the 3 channels enable the coexistence of the 3

paths, without any contentions. According to Lemma 8,
each packet will reach its destination in O(d,?) steps, and
with no deflections.

The batch routing can be easily extended to dynamic
routing by allowing packetsinjection, on avacancy basis. A
node generating anew packet, findsthe preferred (best) path
according to its destination, and waits for an opportunity to
inject the packet along this path. From the moment the
packet is injected, it travels along its path with no further
delays, reaching its destination withinthe next O(dpz) steps.
However, the overall time required to deliver a packet to
its destination might be much larger, as there is no a-priori
bound on the number of time steps that a packet is forced
to wait in its source node until it can be injected into the
network.

It is straightforward to obtain rigorous results regarding
the performance of the algorithm in the dynamic case, most
notably, in the adversarial queueing modd of [5]. Assume
that at every timestep, an adversary generates packetson the
mesh with thefollowingrestriction: if a packet is generated
at node s and its destination is d steps away, then no other
packet isgenerated inthe sametimestep at anodeat distance
lessthan 64 from s. Usingthefact that routing a ong stereo-
scopic families of permutationsis essentially routing along
paths, and using the results of [5] for routing along paths, it
can be shown that our algorithmis stable against such an ad-
versary. Namely, the number of undelivered packets at any
time step remains bounded by some constant that depends
on the mesh size but not on the number of time steps that
elapsed.

Weremark that for theadversarial model, [5] observethat
by the analysis of [10], the one bend algorithmon the mesh
is stable, and this holds for loads that are higher than those
that our algorithm can handle. The new aspect in our result
is the fact that queues at intermediate vertices are bounded
(either no queues at dl, if each link can carry three packets,
or queues of bounded size, in the case of time multiplexing
of the packets).

The main advantage of routing along stereoscopic fam-
iliesis its simplicity. Initialy, the injecting node assigns
a path to the packet (possibly by a fixed table prepared in
advance). At intermediate nodes, the assignment of packets
to outgoing edges istrivia. If the packet isdestined to the
current node, no routing needs to be done. Otherwise, the
incoming edge (or more precisaly, the channel) alone defines
the assignment to an outgoing edge, according to predefined
decisions (which reflect the Hamiltonian paths). There is
no need to consider the destination of the packet, nor make
any calculations. Thetrivia routing table requires minimal
computational resources (both time and memory).



4 Applicationsto Hashing

A dictionary isadatastructurefor storing e ementsfrom
universe/ inmemory M . It hasto be capable of storing any
subset 1) C U whose cardinality isnot too big, and provide
efficient implementation of the following operations:

e Queries: Membership (given € U decide whether
z € D) and Find (determinewhere z isstored in M).

e Update operations. Add/Delete/Change elements in
D.

We consider the “noisy” version of the problem, where
Linial and Sasson[12] providethefollowingdefinitions. Let
U beametric space with distancefunction dy;, reflecting the
structure of the inputs. Then the dictionary has to provide
the following operations:

e Queries: Membership (given « € U and A > 0
(noise/uncertainty), list dl items y € D which are
close to z, namdy dy(z,y) < A); and Find (deter-
minewhere are these items stored in Af).

e Update operations. Add/Delete/Change elements in
D.

Any dictionary can be adapted to deal with noisy data as
well. Givenz € U, check for every y inthe A-neighborhood
of « (denoted by A,), whether it is stored in the dictionary.
However, each check of y € A, requires an application of
the hashing function. Overall, the procedure may require
Q(]A;|) applications of the hashing function. Moreover,
elementsy € A, might be hashed to distant locationsin the
memory. Large memory isusually paged, in which casethe
procedure might require access to Q(|A,|) different pages.

The problem of hashing noisy data appears in severa
variants in many applications (see [13, 8, 6, 15] and ref-
erences therein). Linia and Sasson [12], devise a “noisy”
hashing scheme for a one dimensiona universe /' and a
one dimensional memory M, with any noise measure A. It
is a non-expansive hashing scheme, i.e. one which trans-
lates every A-neighborhood in U to a constant number of
A-neighborhoods in M. Linial and Sasson define a spe-
cific family H of functionswith the property that for every
zeU,ether f(x+1) = f(z)+1lor f(z4+1) = f(x)— 1.
Such function is a long path with “turning points’ on the
interval U/, and can be specified by its “starting point” and
its “turning points’. They restrict H to functions f whose
“turning points’ are selectively chosen. Hashing the dictio-
nary D then uses several hashing tables, each corresponding
to adifferent hash function f € H.

We introduce the following notation:

H1 1 hashing scheme for the one dimensional universeand
one dimensiona memory.
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H,y, 4 hashing scheme for m-dimensional universe and ¢-
dimensional memory, with 7.; distance.

Clember(N,A)  number of pages (blocks of size |A,|)
accessed by aMembership query of the /,,, , scheme.

CLpdate(N') number of pages accessed by an Update op-
eration (such as Add, Deleteand Change) of the H,, ,
scheme.

| My, 4| memory complexity of the H,, , hashing scheme.

The non-expansive hashing scheme [12] isa H; 1 scheme.
For arbitrary ¢ > 0, it uses O(log 1) hashing tables, each of

size|D| == , with the followi ng compl exity:

emoer ate 1
CL7M (N, A) = Cr (V) = O(log =)

1 1
| M| = O(log - - |D|=<)

We show how to transform any 1 1 scheme (and in par-
ticular, that of Linial and Sasson) intoan H,, , scheme, with
arbitrary m and ¢. Our H,, , scheme is based on a stereo-
scopic family of permutations on the m-dimensional torus,
and a shrinkable numbering of verticesin the ¢-dimensional
mesh (or torus). Lemma 8 guaranteestheexistence of afam-
ily F = {m, ..., mmy1} Of paths, which are, in particular,
one-to-one mappings from the m-dimensiona universe to
theinteger line. Lemma9 showshow to construct shrinkable
numbering of vertices.

Thedictionary D isfirst mappedtom+ 1 separateimages
on the (one dimensional) interval, one for each path #; (i =
1,...,m+1). Eachof thesem+1intervalsisthen hashed by
the non-expansive hashing 1 1 to another one dimensiona
representation. Finally, the one dimensional tables are, in
turn, mapped by the shrinkable numbering of vertices to the
q-dimensional mesh (or torus).

Membership query is straightforward. Given an input
z € U, find itsm + 1 images in the ¢-dimensional mem-
ory, and check their corresponding neighborhoods. The
stereoscopic family of permutations F enlarges distancesto
O(A™). The non-expansive hashing does not expand dis-
tances, and the shrinkable numbering shrinks distances to
O(A™1). So, overall

CAember (N A) = (m + 1) - CY™ (N, O(A™/ 1))

CRlt(N) = (m+ 1) - CL ™" (V)

The stereoscopic family of permutations F copiesm + 1
times each dictionary element (or itsindex or a pointer to
the element). The shrinkablenumbering of verticesrequires
the same size of memory asitsdomain. Hence, the memory
complexity of scheme H,, , iS|M,, 4| = (m+1)|My4].



We now consider possible modifications of the approach
described above. First note that unlike the routing applica-
tion of Section 3, here we do not need each of theindividual
permutations to be continuous. Hence rather than base our
stereoscopic family of permutations on the Hilbert space
filling curve, we can use Morton order [14], which is much
easier to manipulate. Similar to the Hilbert order, the Mor-
ton order recursively subdivides the plane into square tiles,
and then covers each tile by recursively covering the tiles
contained in it. However, the order in which tiles are cov-
ered isdifferent, resulting in asimpler rule for the mapping
fromthe planeto theline. Thisrule (bit interleaving) works
inarbitrary dimensions. To get astereoscopic family of per-
mutations based on the Morton ordering, use m + 1 shifted
versions of it, aswe did for the Hilbert ordering.

The use of a stereoscopic family of permutationsin the
context of hashing has the disadvantagethat each element is
hashed m+1 different times, and memory requirementsare
increased by afactor of m+1. Thiscan be avoided by taking
just one member of the family (e.g., one Morton ordering),
and then each element is hashed only once, and no overhead
in memory isrequired. But then, in the A-neighborhood of
an element in the m-dimensional mesh there may be up to
2™ different tiles that are m-cubes of side-length roughly
A, resulting in access to potentially 2 pages per member-
ship query. Possibly, this number of pages can be reduced
drastically by choosing a different indexing scheme. In par-
ticular, [1] design an indexing scheme that maps every two
dimensional interval into only three one dimensional inter-
vals. Perhaps such an indexing scheme can be generalized
to an arbitrary number of dimensions. Alternatively, instead
of recursively subdividingthe m-dimensional mesh into m-
dimensional cubes, one can use tiles of other shapes, with
the property that any interval iscompletely covered by m+1
tiles of comparable size. Self similar tilingswith this prop-
erty are known for the two dimensional mesh (thesetilings
are derived from the hexagon), but we are not aware of work
on thisin higher dimensions.

It appears to us that when the dimension is low, it is
preferableto use only oneindexing scheme (and not pay the
penalty of elements duplication), but that for high dimen-
sions, theremay beadvantagesto using stereoscopicfamilies
of permutations, so as to avoid the exponentia blowup in
number of pages accessed.

Independently of our work, Indyk et al. [9] proposed a
different way of constructing hash functions that preserve
locality in multidimensional spaces. They devisean H,, ,
scheme form = g¢.
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