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Abstract

The distance to monotonicity of a sequence is the min-
imum number of edit operations required to transform
the sequence into an increasing order; this measure is
complementary to the length of the longest increasing
subsequence (LIS). We address the question of estimat-
ing these quantities in the one-pass data stream model
and present the first sub-linear space algorithms for
both problems.

We first present O(
√

n)-space deterministic algo-
rithms that approximate the distance to monotonicity
and the LIS to within a factor that is arbitrarily close
to 1. We also show a lower bound of Ω(n) on the space
required by any randomized algorithm to compute the
LIS (or alternatively the distance from monotonicity)
exactly, demonstrating that approximation is necessary
for sub-linear space computation; this bound improves
upon the existing lower bound of Ω(

√
n) [LNVZ06].

Our main result is a randomized algorithm that
uses only O(log2 n) space and approximates the distance
to monotonicity to within a factor that is arbitrarily
close to 4. In contrast, we believe that any significant
reduction in the space complexity for approximating the
length of the LIS is considerably hard. We conjecture
that any deterministic (1 + ε) approximation algorithm
for LIS requires Ω(

√
n) space, and as a step towards this

conjecture, prove a space lower bound of Ω(
√

n) for a
restricted yet natural class of deterministic algorithms.

1 Introduction

The data stream model of computation, designed for an-
alyzing massive data sets, has been intensively studied
in the last few years; see the monograph by Muthukrish-
nan [Mut05] and the survey by Babcock et al. [BBD+02]

∗Work done while the author was at Georgia Tech and IBM
Almaden.

†Work done in part while the author was at IBM Almaden.

for an overview of the area. Much of this research has
focused on revisiting basic algorithmic problems and de-
signing algorithms in the data stream model that are
highly efficient with regard to storage space and up-
date time. A problem that has received much atten-
tion in this model is estimating how close an input se-
quence is to being sorted [EKK+00, CMS01, AJKS02,
GZ03, LNVZ06, ZLX+06]. There are several natural
scenarios where this problem arises, especially in data-
bases, information retrieval, and the web. For instance,
consider a list of billions of dynamically changing web
pages that are stored in ranked order according to some
query-independent scoring function, like page-rank. If
the contents of the web pages change, then applying
the scoring function to the web pages in the list yields
a new sequence of scores that may not be sorted. Since
sorting is an expensive operation, an efficient procedure
that estimates the deviation can be used to determine
whether to re-sort the list.

The above example demonstrates that the prob-
lem can be quantified as the distance D(σ, S(σ)) be-
tween a sequence σ and a sequence S(σ) obtained by
sorting σ in non-decreasing order, where D is a metric
defined on sequences. Efficient algorithms are known
for estimating D(σ, S(σ)), the distance to monotonic-
ity, in the data stream model for various metrics. Ajtai,
Jayram, Kumar, and Sivakumar [AJKS02] and Gupta
and Zane [GZ03] obtain algorithms for the Kendall dis-
tance (number of inversions); Cormode, Muthukrish-
nan, and Sahinalp [CMS01] obtain algorithms for trans-
position and inversion distances. However, a classical
metric that has proved harder for algorithms is the edit
distance [Gus97, Pev03, MP80, CM02]. In fact, edit dis-
tance is challenging even for related computational mod-
els such as property testing, sketching, and embedding
[BEK+03, BYJKK04, ADG+03, OR05, KN05, KR06,
CK06]. In this paper we consider the problem of es-
timating the distance to monotonicity under the edit



distance metric.
The edit distance between σ and S(σ), denoted

ed(σ), is the minimum number of edit operations that
must be performed to transform σ into S(σ) where each
edit operation involves deleting a single element of the
sequence and inserting it in a new place. If σ is a
permutation, this is equivalent to the Ulam distance
between σ and the identity permutation. The edit-
distance metric is particularly suited for quantifying
distance to monotonicity since it directly measures how
many elements are out-of-place when taking a global
view of the input. But it is precisely this property
that seems to make it hard to compute on a data
stream. The problem of estimating the distance to
monotonicity under the edit distance on a data stream
was raised in [AJKS02, CMS01]. Henceforth, distance
to monotonicity will refer to the edit distance metric.

There is an alternative characterization of ed(σ)
using the well-known concept of longest increasing se-
quence. Given a sequence σ of length n over an ordered
alphabet, an increasing sequence in σ is a subsequence
i1 < · · · < ik such that σ(i1) ≤ · · · ≤ σ(ik). Let lis(σ)
denote the length of the longest increasing sequence
(LIS) in σ. It can be shown that ed(σ) = n−lis(σ), since
the best way to sort the input is to identify an LIS and
move around the elements not in this subsequence. One
could require that an increasing sequence be strictly in-
creasing (σ(i1) < · · · < σ(ik)), all our results apply
even with this definition. The LIS is an important and
well-studied quantity in its own right; see the books by
Gusfield [Gus97] and Pevzner [Pev03] for applications in
bioinformatics and the survey by Aldous and Diaconis
[AD99]. There is a classical algorithm for this problem,
known as Patience Sorting, which can be viewed as a
one-pass O(n) space data stream algorithm. A natural
question is if there is a more space-efficient data stream
algorithm for this problem. Liben-Nowell, Vee, and Zhu
[LNVZ06] studied this problem and showed an Ω(

√
n)

space lower-bound for computing lis(σ) exactly.
Thus prior to our work, there were no sub-linear

space algorithms known for approximating either lis(σ)
or ed(σ) in the data stream model; whereas the known
lower bound even for exact computation was Ω(

√
n).

Summary of results. We first consider the problem of
estimating the distance to monotonicity in the one-pass
data stream model. Our first result is, for arbitrary ε >
0, a (1 + ε)-approximation deterministic algorithm for
this problem using O(

√
n/ε) space (Theorem 2.3). We

also prove a lower bound of Ω(n) on the space required
to exactly compute the distance to monotonicity, even
if the algorithm is randomized (Theorem 4.2); this
demonstrates that Patience Sorting is optimal for exact
computation and that approximation is essential to

achieve sub-linear space.
Our main result is a randomized algorithm that

obtains a (4 + ε)-approximation, for any ε > 0 using
only O(ε−2 log2 n) space (Theorem 3.9).

For the problem of estimating the length of the LIS,
we note that the deterministic data stream algorithm
(Theorem 2.3) for estimating distance to monotonicity
can be adapted to estimating the LIS, with identical
guarantees. Since lis(σ) = n − ed(σ), the linear space
lower bound of Theorem 4.2 for exact computation, ap-
plies to the LIS problem as well. The main question
is whether there exists a (possibly randomized) data
stream algorithm that approximates the length of the
LIS to within some constant factor using only polylog-
arithmic space. We are unable to resolve this question
but conjecture that every such deterministic algorithm
requires Ω(

√
n) space. As a step towards this conjec-

ture, we show that the lower bound holds for a re-
stricted yet large natural classes of deterministic algo-
rithms (Theorem 4.6); in particular, this class includes
all the algorithms in this paper.

Techniques. Our randomized algorithm builds on
a body of work in property testing of monotonicity
[EKK+00, GGL+00, FLN+02]. A first approach to com-
puting the distance to monotonicity might be to re-
late it to the number of inversions; unfortunately, these
quantities can be far apart. Ailon, Chazelle, Coman-
dur, and Liu [ACCL04], building upon earlier work by
Ergun, Kannan, Kumar, Rubinfeld, and Viswanathan
[EKK+00], show that a variation of this idea can be used
to give a 2-approximation to the distance to monotonic-
ity; they consider the set of indices that are endpoints
of some interval where the majority of the input ele-
ments within that interval are inverted with respect to
the endpoint. This algorithm can be realized in the data
stream model, however, it uses O(n) space. The obvious
bottleneck is that to decide if an index is a left endpoint
requires knowledge of the elements that will come in the
future.

We show that it actually suffices to consider only
those indices that are right endpoints for a slight loss
in the approximation, namely, the number of such
right endpoints is a 4-approximation to the distance
to monotonicity. We then devise a sampling scheme
to test whether a given index is a right endpoint of
such an interval. This scheme is similar in spirit to
reservoir sampling [Vit85], which solves the following
problem: given access to a set of elements arriving in
streaming fashion, produce at any point in time random
elements from the set of all elements seen so far, using
small memory. Our scheme is more involved since we
need produce samples from different subsets of all the
elements seen so far, namely from the last k elements



seen for numerous different values of k > 0.
Our O(

√
n)-space deterministic algorithms for the

distance to monotonicity and the LIS problem can be
viewed as a bounded-space version of Patience Sorting.
To motivate these algorithms, we formulate a t-player
one-way communication problem, where each player is
given a sequence and they wish to approximate the
distance to monotonicity (alternatively, the LIS) of the
concatenation of their sequences. Our protocol for this
problem keeps track of only a few candidate increasing
sequences in the input and the correctness is argued
using a a careful induction. Our deterministic data
stream algorithm can be viewed as a simulation of this
protocol with t =

√
n players. While this algorithm

needs to know the length of the data stream in advance,
we also present a modification that uses slightly more
space, but does not need to know the length in advance.

An interesting aspect of the above protocol is that
the maximum message size sent by any player in-
creases with the number of players. This points to
the difficulty in proving a space lower bound for the
LIS problem because, in contrast, for most communi-
cation complexity problems such as multi-player set-
disjointness for which tight lower bounds have been
shown [BYJKS04, CKS03], the maximum communica-
tion decreases with more players. Indeed, the only other
problem we are aware of that shares this behavior is the
problem of approximately counting the number of 1’s
in a data stream of length n. Ajtai [Unpublished man-
uscript, 2002] has shown a lower bound of Ω(log n) for
deterministic algorithms for this problem; however his
proof is combinatorial and does not address the multi-
player setting directly. We formulate a problem in com-
munication complexity such that strong lower bounds
for this problem will imply the conjectured lower bound
of Ω(

√
n) for the LIS. We use this approach to establish

the conjecture for a natural class of algorithms using
new combinatorial techniques.

For lack of space, some results and proofs are
omitted from the current version. In another paper
that appears in these proceedings, Sun and Woodruff
[SW07] studied the problems of computing the LIS and
LCS (longest common subsequence) in the data-stream
model. However, their goal is to obtain algorithms
whose space complexity is optimal in terms of the length
of the LIS, as opposed to the length of the entire input
sequence as in our work. While the main results of
the two papers are different, there is some overlap; Sun
and Woodruff also analyze the two-player protocol for
approximating the LIS (Lemma 2.1) and give an Ω(n)
lower bound for exact computation of the LIS (Lemma
4.1).

2 Deterministic approximation algorithms

We obtain a deterministic O(
√

n)-space algorithm to
approximate LIS. We first describe Patience Sorting,
followed by a communication protocol to solve a multi-
party communication version of the LIS problem. Our
algorithm can be viewed as a simulation of this protocol
with O(

√
n) players.

Patience Sorting. Let {1, . . . ,m} be the alphabet.
In analyzing the space complexity of our algorithms,
we will suppress the dependency on m, and state the
space used in terms of the number of input symbols
stored. The number of bits stored is bounded by this
quantity multiplied by log m. Given a sequence σ, for
i ∈ {1, . . . , n} let Pσ(i) be the smallest letter a in the
alphabet such that there is an increasing sequence of
length i in σ ending at a. For i > lis(σ) there is
no increasing sequence in σ of length i, so we will set
Pσ(i) = ∞. Note that Pσ is an array of letters and it
is increasing. If σ is clear from the context, we will just
use P (i). PatienceSort is based on computing P (i);
see [AD99] for more details.

Algorithm PatienceSort(σ)
1. Set P (i) = ∞ for all i
2. For j = 1, . . . , n, read σ(j) and find the largest i so that
P (i) ≤ σ(j) and set P (i + 1) = σ(j)
3. Output the largest i so that P (i) 6= ∞

A multi-player protocol to approximate LIS.
Consider the following two-player communication com-
plexity problem. Alice is given a string σ1, Bob is
given a string σ2 and they wish to compute a (1 − ε)-
approximation to lis(σ) where σ = σ1 ◦ σ2. We will
give a one-way protocol for this problem that uses
ε−1(log m + log n) bits of communication. Alice first
runs PatienceSort on σ1, computes k1 = lis(σ1), and
sends 〈i, Pσ1(i)〉 for all i ∈ {εk1, 2εk1, . . . , k1}. Using
these tuples, Bob then computes the best extension of
these sequences, in addition to the empty sequence, by
σ2 and outputs k2 which is the length of the longest
sequence.

Lemma 2.1. The value k2 output by Bob satisfies
lis(σ) ≥ k2 > (1− ε) lis(σ).

Proof. Assume the LIS is of the form π1 ◦ π2 where π1

is a substring of σ1 and π2 is a substring of σ2. Assume
that |π1| = `1 and |π2| = `2 so that lis(σ) = `1 + `2.

Let π1(`1) = a and π2(1) = b so that a ≤ b.
Choose `′1 to be a multiple of εk1 such that `1 − εk ≤
`′1 ≤ `1. Since π1 is an increasing sequence, π1(`′1) ≤ a.
Let Pσ1(`

′
1) = a′. From the definition of Pσ1 , a′ ≤

π1(`′1). Hence we have a′ ≤ π1(`′1) ≤ a ≤ b. Thus
Alice’s message tells Bob that σ1 contains an increasing
sequence of length `′1 ending at a′ ≤ a. Bob can extend



this sequence by π2 to get an increasing sequence of
length `′1 + `2. Thus k2 ≥ `′1 + `2 ≥ `1 − εk1 + `2 ≥
lis(σ) − εk1 ≥ (1 − ε) lis(σ), where the last inequality
holds since lis(σ) ≥ k1. ¤

A stronger statement is true: Bob can estimate the
length of the longest sequence ending at or before a for
every a ∈ {1, . . . , m} within an additive error of εk1.

The above protocol can be generalized to t > 2
players; we give a brief overview of the t-player one-
way protocol. The players now compute an array Qσ

which is an approximation to Pσ, based on the messages
received from the other players and their own inputs. If
kj is the longest increasing sequence detected by the
j-th player, then he sends the values Qσ(i) for all i ∈
{ ε

t−1kj ,
2ε

t−1kj , . . . , kj}. Based on this information and
his own input, player Pj+1 will update the values of Qσ.
One can prove that each player introduces an additive
error of at most ε

t−1 lis(σ), thus the overall additive
error is bounded by ε lis(σ). The max communication
complexity of this protocol is bounded by t

ε . Since
each player’s input consists of n

t numbers, simulating
this protocol using a data stream algorithm will require
space max(n

t , t
ε ). Thus the optimal setting is to take

t =
√

εn.

2.1 The deterministic algorithm We present our
algorithm directly as a data stream algorithm, rather
than as a simulation of a communication protocol. The
algorithm can be viewed as a variant of PatienceSort
with only bounded space available. We compute val-
ues Q(i) that are meant to approximate P (i). How-
ever unlike in PatienceSort, we ensure that the
number of indices i for which Q(i) is stored is never
more than O(

√
n). The algorithm proceeds similar to

PatienceSort, but if the number of stored values ex-
ceeds this bound, then a cleanup operation is invoked,
where only the values of Q for O(

√
n) evenly spaced

indices i are retained.

Algorithm ApproximateLIS(σ)
1. Set S = {0}, Q(0) = 0
2. For j = 1, . . . , n
3. Read σ(j) and find the largest i ∈ S so that Q(i) ≤ σ(j)
and set Q(i + 1) = σ(j); if i + 1 6∈ S, add it to S
4. If |S| > 2

p
n/ε, let k = max{i ∈ S}, S =

{d
p

ε/nke, d2
p

ε/nke, . . . , k}, and store Q(i) only for i ∈ S
5. Output k = max{i ∈ S}

Note that we store Q only for the indices in S.
For the purpose of analysis, consider the following
“interpolated” function P ′ on the interval [1, k], where
k is the largest value in S, using the following definition:
for i ∈ S set P ′(i) = Q(i) and for i 6∈ S set P ′(i) = Q(j)
for the smallest j > i that lies in S. The motivation for

this definition is that P ′(i) is the smallest letter a so that
the algorithm detects an increasing sequence of length
i ending at a. If P ′(j) = a and i < j then certainly we
have P ′(i) ≤ a.

We refer to each execution of step 4 as a cleanup
operation. Between two consecutive cleanup operations,
the set S grows by

√
n/ε, hence the value of j increases

by at least this amount. Since the stream is of length n,
in total there are no more than

√
εn cleanup operations.

Based on when the cleanups occur, we can break the
string σ as σ1 ◦ · · · ◦ σ√εn (the last few might be
empty). We bound the performance of the algorithm
by comparing it to PatienceSort. This is done
by comparing the values of P ′ and P prior to every
cleanup operation. Let P ′t denote the function P ′ after
processing σ1 ◦· · ·◦σt and prior to the t-th cleanup. Let
us denote Pσ1◦···◦σt

by Pt. Let kt be the largest value
in S at this point. We have k1 ≤ · · · ≤ kt since the
algorithm never discards the largest element in S. Also
kt ≤ lis(σ) since our algorithm detects an increasing
sequence of length kt. The intuition for the analysis is
that at every step, the algorithm maintains an additive
approximation to L(a). Each new cleanup operation
causes the error to increase, but it can be bounded by
t
√

ε/nkt−1 after t cleanup operations.

Lemma 2.2. For t ≤ √
εn,

P ′t
(
i− (t− 1)

√
ε/nkt−1

)
≤ Pt(i).

Proof. The base case when t = 1 is trivial, since in
this case P ′1(i) = P1(i). Assume by induction that the
lemma holds for t− 1. For simplicity, we will ignore the
rounding operator in step 4.

Consider what happens to P and P ′ after processing
the string σt. After the (t− 1)-st cleanup, the memory
contains the value of P ′t−1 for all multiples of

√
ε/nkt−1.

P ′t is obtained by computing the best possible extensions
of these sequences using σt.

Let Pt(i) = c. Consider the increasing sequence of
length i ending at c. Split this sequence into π1 ◦ π2

where π1 lies in σ1 ◦ · · · ◦σt−1 and π2 lies in σt. Assume
that they have length `1 and `2 respectively so that
`1 + `2 = i. Let b be the first letter of π2 and a the
last letter of π1 so that a ≤ b ≤ c. Assume that
Pt−1(`1) = a, since if there is an increasing sequence
of length `1 that ends earlier than a, we could replace
π1 by it. Applying the induction hypothesis to P ′t−1(`1),

(2.1) P ′t−1

(
`1 − (t− 2)

√
ε

n
kt−2

)
≤ Pt−1(`1) = a.

We can find `′1 which is a multiple of
√

ε/nkt−1 satisfy-



ing
(2.2)

`1−(t−2)
√

ε

n
kt−2−

√
ε

n
kt−1 ≤ `′1 ≤ `1−(t−2)

√
ε

n
kt−2.

Since kt−1 ≥ kt−2, we can lower bound `′1 by `′1 ≥
`1 − (t− 1)

√
ε
nkt−1. Since P ′t−1 is a monotone function

on i ∈ [1, kt−1], from (2.1) and (2.2) we get

P ′t−1(`
′
1) ≤ P ′t−1

(
`1 − (t− 2)

√
ε

n
kt−2

)
≤ a.

Since `′1 is a multiple of
√

ε/nkt−1, this value is stored in
the memory even after the (t−1)-st cleanup. Extending
this sequence using π2, we get an increasing sequence
ending at a of length

`′1+`2 ≥ `1−(t−1)
√

ε

n
kt−1+`2 ≥ i−(t−1)

√
ε

n
kt−1

Hence P ′t (i − (t − 1)
√

ε/nkt−1) ≤ a = Pt(i), which
completes the induction. ¤

Theorem 2.3. There is a one-pass deterministic algo-
rithm that computes a (1− ε)-approximation to the LIS
using space O(

√
n/ε) for any ε > 0.

Proof. Assume that lis(σ) = k and the LIS ends at a
so that P (k) = a. Assume that the total number of
cleanups is t ≤ √

εn. Applying Lemma 2.2, we get
P (k − t

√
ε/nkt−1) ≤ a. Hence the algorithm detects

an increasing sequence of length kt where kt ≥ k −
t
√

ε/nkt−1 ≥ k − εkt−1 ≥ (1 − ε)k, where the last
inequality uses kt−1 ≤ k. ¤

The above algorithm needs to know n in advance. We
can derive an algorithm that does not need to know n in
advance, yet works in space O(n1/2+δ), where δ is any
constant; we omit the details in this version.

Our algorithm can be modified to approximate the
distance to monotonicity instead of the LIS. Define Qσ

to be an array of letters with Qσ(i) = a if a is the
smallest letter so that one can get a monotone sequence
of length i ending at a by deleting i elements of σ,
and Qσ(i) = ∞ if i < ed(σ). Note that Qσ(i) =
Pσ(n − i). The approximation algorithm computes an
approximation Q′ to Q and stores the values of Q′ for
O(
√

n) indices. We omit the details in this version.

3 Randomized algorithm for distance to
monotonicity

We present a randomized (4 + ε)-approximation al-
gorithm for distance to monotonicity in O(ε−2 log2 n)
space (Theorem 3.9 ). We obtain a characterization of
distance to monotonicity via inversions, and use it to
obtain a randomized data stream algorithm.

3.1 Characterization via inversions A pair of in-
dices (i, j) is said to be inverted in σ if either i < j and
σ(i) > σ(j), or i > j and σ(i) < σ(j). For an index i,
let inv(i) denote the set of indices j that are inverted
with respect to i. For δ ≤ 1/2, define a set Rδ con-
taining all indices i that are the right endpoints of an
interval where more than a δ-fraction of the elements
lie in inv(i), i.e., the set of i such that there is a j for
which more than δ-fraction of indices in [j, i− 1] belong
to inv(i). Let R = R1/2, i.e., R contains all indices
i that are the right endpoints of an interval, a strict
majority of whose elements lie in inv(i). Notice that if
(i− 1, i) is an inversion then i ∈ R.

Lemma 3.1. There is a procedure that deletes at most
2|R| indices in σ so as to obtain an increasing sequence.

Proof. Assume without loss of generality that σ(n+1) =
m and so n + 1 6∈ R. The procedure is as follows. Scan
the string from right to left, starting at i = n + 1. At
every iteration, if i−1 6∈ R, proceed to i−1. Otherwise,
skip to the next index j (namely, largest j < i) that is
not in inv(i) ∪ R, deleting all the skipped characters
(namely, indices in [j + 1, i − 1]). The procedure stops
once the sequence is exhausted (i.e., index 1 is reached).

We claim that a majority of the indices that are
deleted at any step lie in R. To see this, consider a
single iteration. Clearly, i 6∈ R and let j be the largest
index such that j < i and j does not belong to inv(i)∪R.
Every index in [j + 1, i − 1] lies in inv(i) or in R. But
since i 6∈ R, at least half the indices from [j + 1, i − 1]
are not inverted with respect to i, and thus lie in R.

This procedure returns a subsequence (i1, . . . , ik)
such that every two successive indices (i`−1, i`) is not
an inversion, and thus in increasing order. It follows
that the entire sequence is increasing. ¤

Fix a set D ⊆ [n] of indices of size ed(σ) such that
deleting D leaves an increasing sequence. Note that
D need not be unique. Define a set Sδ containing all
indices i /∈ D that are the right endpoints of an interval
where more than a δ-fraction of the elements lie in D,
i.e., the set of i such that there is a j for which more
than δ-fraction of indices in [j, i− 1] lie in D. An index
j satisfying this last condition will be called a witness
for the membership of i in Sδ.

Lemma 3.2. For all δ ≤ 1/2,

|Rδ \D| ≤ |Sδ| ≤ (1− δ)/δ · |D|.

Proof. [Sketch] For the first inequality, notice that the
subsequence of σ induced by the indices not in D forms
an increasing sequence, and thus for every i /∈ D we



have inv(i) ⊆ D. It follows that i ∈ Rδ \ D implies
i ∈ Sδ, and thus Rδ \D ⊆ Sδ.

For the second inequality, we give a procedure to
compute the set Sδ. Scan the sequence left to right,
starting at the smallest index j ∈ D. At every iteration,
find the next index k (i.e., smallest index k > j) such
that at most δ-fraction of [j, k−1] lies in D, and add the
indices in [j, k − 1] \D to Sδ; then let ` be the smallest
index greater than k that lies in D, and set j = ` and
proceed to the next iteration. The procedure stops once
the sequence is exhausted (i.e., index n is reached).

One can show that Sδ is computed correctly via
simple but tedious case analysis, which we defer to the
full version. Since for every t indices added to Sδ at an
iteration, at least (1− δ)(t/δ) indices of D are skipped
over, we have |Sδ| ≤ (1− δ)/δ · |D|. ¤

Theorem 3.3. For all δ ≤ 1/2,

(3.3) ed(σ)/2 ≤ |R| ≤ |Rδ| ≤ ed(σ)/δ

Proof. Lemma 3.1 shows that ed(σ) ≤ 2|R|. By
definition, we have R ⊆ Rδ. Using Lemma 3.2 and
recalling that |D| = ed(σ), we obtain |Rδ| = |Rδ ∩D|+
|Rδ \D| ≤ |D|+ (1− δ)/δ · |D| = ed(σ)/δ. ¤

The first inequality in Equation 3.3 is new, whereas
the last inequality is implied by results of Ailon et al.
[ACCL04] via a different proof. Both inequalities are
tight. For the first one, let k < n/4 and take π =
k+1, . . . , n/2, n, . . . , n−k+1, 1, . . . , k, n/2+1, · · · , n−k.
Here ed(π) = 2k whereas |R| = k. For the last
inequality, let k < δn and take σ = n, . . . , n − k +
1, 1, . . . , n− k. Here ed(σ) = k whereas |Rδ| = k/δ − 2.

3.2 The randomized algorithm Theorem 3.3 im-
mediately suggests a natural algorithm for estimating
ed(σ): at every time i, check whether there exists an in-
terval I = [j, i− 1] in which a majority of the elements
are inverted with respect to i. Observe that the deci-
sion at time i depends only on elements already seen at
that time, which is very suitable for a data stream im-
plementation. Unfortunately, this naive algorithm uses
linear space and hence undesirable. Below, we improve
upon this idea to obtain an algorithm that uses only
polylogarithmic space. Here is the basic idea. First, the
“slack” between R and Rδ in Theorem 3.3 effectively
allows us to replace the majority decision for an inter-
val I with an estimate based on a sample of O(log i)
elements from I. At first cut, it appears that at every
time i we need a random sample from every interval
[j, i − 1], which is clearly prohibitive. But the crucial
observation is that the samples obtained for different
intervals need not be independent. We exploit this fact

by maintaining, at each time i, only O(log2 i) samples
from σ(1), . . . , σ(i− 1).

Let ε be such that 0 < ε < 1/6. We give below an al-
gorithm that achieves 4+O(ε) approximation. Theorem
3.9 would then follow immediately by scaling ε appropri-
ately together with a slightly improved implementation.
Let C = C(ε) be a parameter to be determined later so
that Cε2 is a sufficiently large constant.

A bucket of samples. The algorithm maintains a
sample of the already seen elements of σ in a bucket B.
The fact that σ(j) is retained in the bucket is denoted
by j ∈ B; note that the algorithm actually maintains in
B a record of the tuple 〈j, σ(j)〉. For j < i define

p(j, i) = min
(

1,
C · log(2i)

(i− j)

)

and let p(i, i) = 1. The bucket B will be maintained so
that at each time i it has the following distribution: for
all j ≤ i,

Pr[j ∈ B at time i ] = p(j, i)

Furthermore, for every time i, the events {j ∈
B at time i } for j ∈ [i] are mutually independent of
each other. However, there is no such requirement for
events corresponding to different times i, and in fact the
bucket B at time i will be quite similar to that at time
i− 1.

Note that for every j ≤ i, we have p(j, i) ≥ p(j, i +
1). Thus, if the bucket has the right distribution at
time i, we can obtain the right distribution at time
i + 1 by retaining each j < i already in the bucket
independently with probability p(j, i)/p(j, i + 1) and
then adding i to the bucket. The following Lemma
upper bounds the number of samples retained in the
bucket; it immediately implies a similar bound on the
space (storage requirement) of the algorithm.

Lemma 3.4. Fix an i and let B be the bucket at time i.
Then, E[|B|] ≤ C log2(2i) and |B| = O(C log2(2i)) with
probability at least 1− (2i)−Ω(C log i).

Estimating majority in one interval. We next de-
scribe procedure TestMajority(j, i) that uses only
the bucket B to test whether a near-majority of ele-
ments in Ij = [j, i − 1] are inverted with respect to i.
More precisely, it distinguishes between the case where
the fraction of inversions is more than 1/2 and where
it is at most 1/2− 3ε. The procedure, described below,
operates as follows: it first generates a random sample
S of elements from the interval Ij by an appropriate
selection from the bucket B (line 2), and then uses the
fraction of elements in S that are inverted with respect



to i as an estimate for the corresponding fraction in Ij

(lines 4-5).

Procedure TestMajority(j, i)
1. Initialize the set S to be empty
2. For each k ∈ B, if j ≤ k ≤ i − 1, add k to S with
probability p(j, i)/p(k, i).
4. If at least ( 1

2
− ε) fraction of elements k ∈ S satisfy

σ(k) > σ(i) then return true
5. return false

Now we analyze this procedure. Recall that each
element k ∈ Ij is retained in the bucket independently
with probability p(k, i). Thus, a random sample that
is uniform over Ij can be generated by picking each el-
ement k ∈ B ∩ Ij independently with probability in-
versely proportional to p(k, i), namely, with probability
p(j, i)/p(k, i). We thus obtain.

Lemma 3.5. Fix j < i. Then the corresponding set S
has the following (marginal) distribution: Pr[k ∈ S] =
p(j, i), if k ∈ Ij and 0 otherwise. Furthermore, the
events for different k (but same i and j) are mutually
independent.

We use Lemma 3.5 to show that |S ∩ inv(i)|/|S| is a
fairly good approximation to |Ij∩inv(i)|/|Ij |. We bound
the error probability of the test by (2i)−O(1) where the
hidden constant depends on ε and C.

Lemma 3.6. If more than 1/2 fraction of Ij lies in
inv(i), then

Pr[TestMajority(j, i) = true] ≥ 1− (2i)−Ω(ε2C).

If less than (1/2− 3ε) fraction of Ij lies in inv(i), then

Pr[TestMajority(j, i) = false] ≥ 1− (2i)−Ω(ε2C).

Approximating the distance to monotonicity. We
describe algorithm ApproximateDist(σ) that uses the
procedure TestMajority(j, i) to estimate the distance
to monotonicity of σ. The algorithm, described below,
maintains a count d that estimates for how many values
i, there exists at least one j ∈ [i − 1] such that
TestMajority(j, i) = true. More specifically, after
the i-th element is read, the algorithm updates the
bucket B (line 3) so that it has the right distribution,
and determines whether to increment d by 1 (line 4).
A naive testing of every j ∈ [i − 1] would make the
update time (per input element) linear in i. A more
efficient way is to test only values j ∈ B and argue that
they are representative of all j ∈ [i − 1] (by relating
the outcome of TestMajority(j′, i) for j′ /∈ B with
that of TestMajority(j′, i) for a nearby j ∈ B). This
would require testing only O(|B|) values of j, and as

we saw in Lemma 3.4, |B| ≤ O(C log2 i) with high
probability. This can be further reduced to testing
only O(log i) values of j, using an idea from Ailon
et al. [ACCL04]: try only j’s for which the length of
the interval [j, i − 1] changes by a factor of 1 + ε1,
where ε1 = ε/4. Specifically, define T (i) = {i −
1, b i−1

1+ε1
c, b i−1

(1+ε1)2
c, . . . , 1}, and observe that |T (i)| =

O(ε−1 log i).

Algorithm ApproximateDist(σ)
1. Initialize the bucket B to be empty and set d = 0
2. For i = 1, . . . , n
3. Remove from B each j ∈ B independently with
probability 1− p(j,i)

p(j,i−1)

4. Add i to B
5. For each t ∈ T (i), compute TestMajority(i− t, i). If
at least one of them returns true, then set d = d + 1.
6. Output d

We now analyze the correctness.

Lemma 3.7. Let R̂ denote the set of indices i that
cause d to increase. With probability at least 1 −∑n

i=1(2i)1−Ω(ε2C),

R ⊆ R̂ ⊆ R1/2−3ε.

Proof. Fix i ∈ R and let j be a witness to this. Hence
a majority of elements from [j, i − 1] are in inv(i).
Consider first the simpler case where i − j ∈ T (i).
Then the algorithm runs TestMajority(j, i), which
by Lemma 3.6 returns true with probability at least
1 − (2i)−Ω(ε2C). In general, pick the smallest t ∈
T (i) such that t ≥ i − j. Observe that necessarily
t ≤ (1 + ε1)(i − j), and therefore the fraction of
elements from [i − t, i − 1] that lie in inv(i) is more
than (i−j)/2

t ≥ 1
2(1+ε1)

> 1/2 − ε1/2. Observe that the
analysis of Lemma 3.6 goes through even with such a
weaker assumption (namely, that |Ij∩inv(i)|

|Ij | > 1/2−ε/4),
and therefore TestMajority(i− t, i) returns true with
probability at least 1− (2i)−Ω(ε2C). We get that Pr[i /∈
R̂] ≤ (2i)−Ω(ε2C).

Now fix i 6∈ R1/2−3ε. Then for every j < i, fewer
than 1/2 − 3ε elements in [j, i − 1] belong to inv(i).
By applying Lemma 3.6 and taking a union bound, the
probability that for at least one j ∈ [i−1] the execution
of TestMajority(i, j) = true is at most (2i)1−Ω(ε2C).
Recalling that we assumed ε2C is sufficiently large, we
get that Pr[i ∈ R̂] ≤ (2i)−Ω(ε2C).

Finally, the lemma follows by applying a union
bound over all i ∈ [n]. ¤

By setting C = C0ε
−2 log(1/δ) for a sufficiently

large constant C0, we get the following theorem.



Theorem 3.8. For every 0 < ε < 1/6 and 0 < δ < 1,
algorithm ApproximateDist(σ) computes a (4+O(ε))-
approximation to ed(σ) with probability at least 1 − δ.
At each time i, with probability at least 1− (2i)−Ω(ε2C),
the algorithm uses O(C log2 i) space and its update time
is O(Cε−1 log3 i).

Proof. Recall that R̂ denotes the set of indices i that
cause d to increase. By Lemma 3.7 and the choice of C,
we know that R ⊆ R̂ ⊆ R1/2−3ε holds with probability
at least 1−∑

i(2i)−O(ε2C) ≥ 1− δ. By Theorem 3.3, we
have |R| ≥ ed(σ)/2 and |R1/2−3ε| ≤ 2

1−6ε ed(σ). Hence
with probability 1−δ the algorithm approximates ed(σ)
within factor 4 + O(ε).

It is easily seen that the algorithm’s space require-
ment is O(|B|), which by Lemma 3.4 is O(C log2 i) with
high probability. Similarly, for each element i the al-
gorithm consists of updating the bucket B by scanning
it linearly, and |T (i)| = O(ε−1 log i) calls to procedure
TestMajority, each of which requiring a linear scan
of the bucket B. Using Lemma 3.4 and applying a union
bound, we conclude that the update time for element i
is O(Cε−1 log3 i), with high probability. ¤

If the length of the data stream n is known in
advance, we can set the sampling probabilities as
p(j, i) = min

(
1, C log(2n)

i−j

)
. Then the bounds above

will hold with probability 1 − n−Ω(1), the space used
is O(C log2 n) and the update time is O(Cε−1 log3 n).
The full version contains an improvement to the update
time per element and a more efficient sampling proce-
dure, which gives:

Theorem 3.9. There is a randomized algorithm that
computes a 4 + ε approximation to the distance to
monotonicity for any ε > 0 with probability arbitrarily
close to 1. The space used is O(ε−2 log2 n) and update
time per element is O(ε−3 log2 n) where n is the length
of input.

4 Lower bounds

4.1 Lower bounds for exact algorithms. First
consider the case when σ is not a permutation. Consider
the communication problem where Alice is given the
first half of σ, Bob the second half and they wish to
compute lis(σ). We give a reduction from the problem
of computing the AND of two bits to computing the LIS
when n = 2 and m = 4. Alice holds a bit x, Bob holds
a bit y and they want to compute x ∧ y. Let

σ(1) =

{
4 if x = 0,

2 if x = 1.
σ(2) =

{
1 if y = 0,

3 if y = 1.

Let σ = σ(1), σ(2). Then clearly, lis(σ) = 2 if x ∧ y = 1
and lis(σ) = 1 otherwise.

We extend this to reduce set disjointness to com-
puting lis(σ). Assume that Alice and Bob have strings
x = x1, . . . , xn and y = y1, . . . , yn respectively that rep-
resent the incidence vectors of sets X, Y on [n]. Alice
and Bob compute σ(i) and σ(n + i) for 1 ≤ i ≤ n as
follows:

σ(i) =

{
4(i− 1) + 4 if xi = 0,

4(i− 1) + 2 if xi = 1.

σ(n + i) =

{
4(i− 1) + 1 if yi = 0,

4(i− 1) + 3 if yi = 1.

Let σ = σ(1), . . . , σ(2n).

Lemma 4.1. If X ∩ Y 6= ∅, then lis(σ) = n + 1. If
X ∩ Y = ∅, then lis(σ) = n.

Proof. Assume that X and Y are disjoint. We claim
that any increasing sequence can contain at most one
element from each interval [4(i − 1) + 1, 4(i − 1) + 4]
for 1 ≤ i ≤ n. This is because the string σ contains
precisely two elements in this interval σ(i) and σ(n + i)
and they are in increasing order iff xi ∧ yi = 1. Hence
when X ∩ Y is empty, only one of them can occur in
any increasing sequence and lis(σ) ≤ n. Equality holds
since σ(1), . . . , σ(n) is an increasing sequence.

On the other hand, assume that i ∈ X ∩ Y .
The following is an increasing subsequence of σ:
σ(1), . . . , σ(i), σ(n+i), . . . , σ(2n). It is easy to check that
in fact lis(σ) = n + 1. ¤

The resulting sequences are not permutations.
However it is possible to reduce computing the AND
of two bits to LIS for permutations for n = 8; we omit
the details in this version. We use this to show:

Theorem 4.2. Given a permutation σ over the alpha-
bet [8n], any randomized algorithm to decide whether
lis(σ) is 2n + 1 or 2n + 2 requires space Ω(n) even if
multiple passes are allowed.

4.2 Lower bounds for deterministic approxima-
tion algorithms.

Conjecture 4.3. There is a constant ε > 0 such that
every deterministic one-pass data stream algorithm that
computes a (1 + ε) approximation to the LIS requires
space Ω(

√
n).

It is consistent with our current knowledge that
an Ω(

√
n) lower bound holds even for randomized al-

gorithms and when (1 + ε) is replaced by some large



constant. We present a communication complexity ap-
proach to proving this conjecture. Let CCtot

t (f) and
CCmax

t (f) denote the total and maximum communi-
cation complexity respectively of t-player protocols for
computing a function f . We define a primitive function
h where each player has a single number, and the players
have to decide whether the input string is a decreasing
sequence or whether it contains a large increasing se-
quence. Formally, given a string x = x1, . . . , xt over the
alphabet [m], the promise function h(x) is defined as
h(x) = 0 if lis(x) = 1 and h(x) = 1 if lis(x) > εt. Player
Pi is given the number xi. If we ignore the alphabet-
size, it is easy to show that CCtot

t (h) ≤ (1 − ε)t. We
conjecture that in fact this is tight and CCtot

t (h) = Ω(t).
Next we define a function g on t2 numbers which

is the OR of t disjoint copies of h. Consider the input
numbers arranged in a t × t array X = (xi,j) where
xi,j ∈ [m]. Define the function g as the OR of h applied
to every column of the matrix. Formally, g(X) =
∨t

j=1h(x1,j , . . . , xt,j). Player Pi receives the i-th row of
the matrix X as input. Computing g(X) is equivalent
to deciding whether the columns of X are all decreasing
or whether some column contains a large increasing
sequence. The naive protocol for g would be to run the
protocol for h independently for every column, giving
CCtot

t (g) = O(t2) and CCmax
t (g) = O(t). We conjecture

that this is tight and that CCmax
t (g) = Ω(t). This has

the flavor of a direct-sum result, but we unaware of any
prior work that applies to this setting. An Ω(t) lower
bound for CCmax

t (g) would imply Conjecture 4.3.

Lemma 4.4. CCmax
t (g) is a lower bound on the space

used by any one-pass deterministic streaming algorithm
that computes a (1 + ε) approximation to the LIS.

Proof. Given X = (xi,j), let σi,j = m(j−1)+xi,j giving
a t× t matrix σ = (σi,j). Consider the string of length
t2 obtained by ordering the elements of this array row-
wise. By abuse of notation, we will also call this string
σ. We claim that if g(X) = 0 then lis(σ) = t, and if
g(X) = 1 then lis(σ) ≥ (1 + ε)t.

It is clear that lis(σ) is at least t, since every row
is an increasing sequence. If g(X) = 0, then every
column of σ is decreasing. Hence lis(σ) contains at
most 1 element per column implying that lis(σ) = t.
On the other hand, assume that g(X) = 1 and the j-
th column of X has an increasing sequence of length
εt. Then the j-th column of σ has a corresponding
increasing sequence. Taking σ1,1, . . . , σ1,j−1 followed
by the increasing sequence from column j, followed by
σt,j+1, . . . , σt,t, we get an increasing sequence of length
(1 + ε)t.

Standard arguments show that a space s determin-
istic one pass algorithm giving a (1 + ε) approxima-

tion to the LIS will imply a one-way protocol for g
with CCmax

t (g) ≤ s. Player P1 computes the numbers
σ1,1, . . . , σ1,t and runs the streaming algorithm on it.
He passes the contents of the memory to P2 who runs
it on σ2,1, . . . , σ2,t and so on, which gives the desired
protocol. ¤

We use this approach to prove Conjecture 4.3
for a restricted yet natural class of algorithms. To
motivate this class of algorithms, consider the problem
of approximating the length of the LIS when the inputs
are real numbers. All our algorithms work in this
setting. For instance, ApproximateLIS will store the
array P ′(i) and the set S of indices. The space used
by the algorithm consist of two parts: a subset of the
input sequence, namely the array P ′, and some auxiliary
information, namely the set S. Measuring storage space
in terms of bit lengths is no longer meaningful, since the
inputs are real numbers. This motivates the following
definition:

Definition 4.5. (Natural Algorithm) A Natural
Algorithm for lis(σ) is a one-pass data stream algorithm
that stores some subset S of symbols from the input
string σ, as well as some auxiliary bits of information
A. The space used by the algorithm is |S|+ |A|.
Thus we charge a cost of only 1 unit for symbols of
the input string σ. However any additional storage
(auxiliary variables) is charged bitwise. We do not allow
the algorithm to store alphabet symbols that are not
part of the input σ, since this might allow the algorithm
to encode all its storage into a single number. All the
algorithms mentioned in this paper fit naturally in this
class, with essentially the same space bounds. In the
full version, we show

Theorem 4.6. Any deterministic Natural Algorithm
that computes a (1 + ε)-approximation to lis(σ) requires
space Ω(

√
n) for some constant ε > 0.
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