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PROXIMITY ALGORITHMS FOR NEARLY DOUBLING SPACES∗

LEE-AD GOTTLIEB† AND ROBERT KRAUTHGAMER‡

Abstract. We introduce a new problem in the study of doubling spaces: Given a point set S
and a target dimension d∗, remove from S the fewest number of points so that the remaining set has
doubling dimension at most d∗. We present a bicriteria approximation for this problem and extend
this algorithm to solve a group of proximity problems.
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1. Introduction. In the last few years, researchers have increasingly made use
of the doubling dimension in the design of algorithms. Analyzing algorithmic tasks
via the doubling dimension is natural for proximity problems such as nearest neighbor
search [33, 9, 15] and clustering [38, 4, 18] and for graph problems such as spanner
construction [19, 12, 17, 24, 25], the traveling salesman problem [38, 6], and rout-
ing [30, 37, 3, 32, 31]. The doubling dimension has proved to be a powerful tool in
embeddings [5, 26, 1, 2, 11, 8, 23] and has found applications in fields such as ma-
chine learning [10, 21]. Interestingly, the problem of computing the exact doubling
dimension of a point set is NP-hard. (This result seems to be folklore.) Yet this fact
has not deterred the development of algorithms that are based on the doubling di-
mension, partly because it can be approximated within a constant factor, and partly
because many of these algorithms function without explicit knowledge of the doubling
dimension—it appears only in the analysis.

However, a host of algorithms previously developed for spaces of bounded doubling
dimension—perhaps even the majority of them—suffer from a more serious problem:
They are not robust to severe yet infrequent irregularities in the space. The guarantees
provided by these algorithms are markedly degraded even if only a small subset of the
working set possesses high doubling dimension. This problem was noted, for example,
by [13], who instead defined a global notion of dimension (which can be thought of as
the average doubling dimension over the set) and developed an algorithm under this
new definition.

We pursue a different approach. We introduce the following key problem: Given
an n-point set S and a target dimension d∗, remove from S the fewest number of
points so that the remaining set has doubling dimension at most d∗ (or equivalently,
target doubling constant λ∗ = 2d

∗
). We thus call a data set nearly doubling if all but

a negligible fraction of the points have bounded doubling dimension.

A solution to this point removal problem yields a contribution in two related
areas. The first paradigm, broadly speaking, is outlier detection. In this scenario, the
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removed points are ignored and only the remaining points are processed. A direct
motivation for this model stems from the dimension induced clustering framework of
[20], which given a point set seeks a subset with low intrinsic dimension. Further
motivation stems from algorithms which have “slack”; that is, they give guarantees
for most but not all of the point set [32, 18]. These algorithm can be extended to
nearly doubling data sets by simply ignoring the removed points (i.e., throwing them
into the slack). The second paradigm is an original one: Here, both the removed
points and the remaining ones are processed, albeit by separate algorithms tailored
to the properties of the two point sets.

Results. The point removal problem is NP-hard, and it is not difficult to show that
the problem does not admit even an approximate multiplicative-factor solution (see
Lemma 2.1). However, we develop a framework that yields a bicriteria approximation
for this problem. In section 3, we present algorithms achieving the bounds listed
below, where we assume the algorithms have access to the point set and to an oracle
that answers in O(1) time a query asking for the distance between two points.

1. In time 2O(d∗)n4, the algorithm removes a number of points arbitrarily close
to optimal while obtaining doubling dimension 4d∗ +O(1) (Corollary 3.6).

2. In time 2O(d∗)n logα (where α is the aspect ratio of S), the algorithm removes
a number of points arbitrarily close to optimal while obtaining doubling di-
mension 10d∗ +O(1) (Corollary 3.8).

3. In time 2O(d∗)n log3 n, the algorithm removes a number of points arbitrarily
close to optimal while obtaining doubling dimension 12d∗ + O(1)
(Corollary 3.8).

Returning to the first motivating paradigm presented above, our algorithms solve
the clustering problem posed by [20]. (They provided heuristic solutions to this ques-
tion.) In section 4, we present algorithms that functionunder the secondparadigmdelin-
eated above—these algorithms process the removedpoints and the remaining ones using
separate techniques tailored to the properties of the two point sets. When the data set
is nearly doubling, or more precisely, when all but at most the square root of the num-
ber of points have bounded doubling dimension, we give near-linear time algorithms for
constructing (1 + ε)-stretch spanners, approximate minimum spanning trees (MSTs),
O(1)-query time distance oracles, and calculating approximate all points nearest neigh-
bor (i.e., calculating an approximate nearest neighbor for each point of the set).

2. Preliminaries. In this section we define doubling dimension and present
some basic hardness results. We then review point hierarchies for doubling spaces.

Doubling dimension. For a metric (X, d), let λ be the infimum value such that
every closed ball in X can be covered by λ closed balls of half the radius, where a
ball is centered at a point of the metric. λ is the doubling constant of X , and the
doubling dimension of X is dim(X) = log2 λ. A metric is doubling when its doubling
dimension is finite. It is a folklore result that determining the doubling constant (and
dimension) of a point set is an NP-hard problem. We formalize this result below.

Lemma 2.1. Given a metric (S, d), computing the doubling constant of S is
NP-hard.

Proof. The proof is a reduction from dominating set with bounded degree Δ,
which is known to be NP-hard [34, 14]. Let G = (V,E) be an input instance of
dominating set with degree Δ <

√|V | − 1. Note that the size of any dominating

set of G must then be greater than
√|V |. Create a set S containing |V | points, each

corresponding to a vertex in V . Let d(u, v) = 1
2 for u, v ∈ S if the corresponding

vertices have an edge in E, and let d(u, v) = 1 otherwise. The radius of S is 1.
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Now, any subset of S found in a closed ball of radius 1
2 contains at most Δ+1 <√|V | points, so the doubling constant of such a subset is less than

√|V |. However,
a minimum cover of the entire set S by closed balls of radius 1

2 is equivalent to a

minimum dominating set of V , which in particular is greater than
√|V |. It follows

that the doubling constant of S is determined by covering all of S and is thus equivalent
to computing a minimum dominating set of V .

Notice that the above reduction preserves hardness of approximation and that it
allows a degree bound that is not a constant, as long as Δ <

√|V | − 1. Approxi-
mating dominating set within a factor of Ω(ln |V |) in graphs of maximum degree
less than

√|V | − 1 is NP-hard. Indeed, the hardness of dominating set follows
from a simple reductions from set cover (see, e.g., [14]) and known hardness of
approximation results for the latter [36]. And our degree bound can be imposed via
a simple self-reduction: take the input graph instance, and replace it by a disjoint
union of |V |+ 1 copies of the instance, to obtain a graph on V ′ = |V |2 + |V | vertices
and maximum degree |V | − 1 <

√|V ′| − 1. It follows that the inapproximability
factor for our bounded-degree instances of dominating set remains proportional to
ln |V | = Ω(ln |V ′|). Altogether, we conclude that it is NP-hard to approximate the
doubling constant of an n-point metric within a factor of Ω(lnn). This problem does
admit a weak form of approximation—for example, a 2-approximation to the doubling
dimension (equivalently, the square of the doubling constant) can be determined by
the algorithm of Lemma 3.3 (see also [27, Theorem 9.1]).

A further consequence of Lemma 2.1 is that the problem of removing the minimum
number of points from a set S in order to obtain a set S′ with some target doubling
constant does not admit a multiplicative-factor approximation algorithm: That is, it
is NP-hard to distinguish the case where no points need be removed from the case
that one point must be removed.

Point hierarchies. Here, we define point hierarchies and describe three different
hierarchies that have appeared in the literature and will be utilized in this
paper.

Similar to what was described in [19, 33], a subset of points X ⊆ Y is an (r, s)-
discrete center set (or net in the terminology of [33]) of Y (r ≤ s) if it satisfies the
following properties:

(i) Packing: For every x, y ∈ X , d(x, y) ≥ r.
(ii) Covering: Every point y ∈ Y is strictly within distance s of some point x ∈ X :

d(x, y) < s.

We say that x covers y if x ∈ X , y ∈ Y and d(x, y) ≤ s. The previous conditions
require that the points of X be spaced out yet nevertheless cover all points of Y . A
hierarchy for a set S is a series of discrete center sets, where each level of the hierarchy
is a discrete center set of the level beneath it. The bottom level contains all points,
and the top level contains only a single point. For ease of presentation, we assume
throughout that the minimum interpoint distance in S is 1.

The first hierarchy we describe is that of [33]. The hierarchy is composed of levels
H2i (for integer i = 0, . . .), where each level H2i (i > 0) is a (2i, 2i)-discrete center
set for the previous level H2i−1 . (The subscript in the notation of the level indicates
that the packing and covering properties of subsequent levels grow by a factor of 2.)
The bottom level of the hierarchy is the set Y20=1 = S, and the top level is the set
Y2�log α� that contains only a single point. The construction supports insertions and
deletions to the hierarchy—and its subsequent repair—in time 2O(log λ) logα. (Recall
that α is the aspect ratio of S.)
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The second hierarchy is that of [24]. This hierarchy is similar to that of [33], but
level H2i is a (122

i, 2i)-discrete center set for H2i−1 . This hierarchy supports insertions

and deletions in 2O(log λ) log3 n amortized time, and so a series of n insertions and
deletions can be done deterministically in 2O(log λ)n log3 n time.

The third hierarchy is that of [15]. In this hierarchy, level H5i is a (155
i, 3

55
i)-

discrete center set for H5i−1 . (The packing and covering properties of subsequent
levels grow by a factor of 5.) The hierarchy supports insertions in time 2O(log λ) logn,
though points cannot be removed from within the hierarchy. A static hierarchy with
similar construction time was also presented in [28].

On top of these hierarchies, we define a parent-child relationship: Point y ∈ H2i

(or H5i) is the child of one of the points in H2i+1 (or H5i+1) that covers y. This
immediately defines an ancestral relationship as well.

3. Point removal algorithm. In this section, we present the bicriteria algo-
rithm for the problem of removing points to obtain a target doubling constant.1 The
construction, presented below, proceeds roughly as follows: We formulate the notion
of a “bad” witness set, which can be found efficiently and exists if and only if the
doubling constant is too large (to within some constant factors). Given this setup,
the algorithm is greedy: Repeatedly find such a witness set and remove it entirely.

We first define the density constant (in section 3.1) and explain the existence of
witness sets for the density constant. We show that it is NP-hard to locate a maximum
witness set, but we are able to give an approximation algorithm for locating witness
sets. In section 3.2, we use this approximation algorithm for witness sets to develop
a bicriteria point removal algorithm for achieving a target density constant. This
bicriteria algorithm in turn yields a bicriteria point removal algorithm for achieving a
target doubling constant. Finally, in section 3.3, we show how to improve the runtime
of the two bicriteria algorithms.

3.1. Density constant and witness sets. Let a closed ball B(x, r) ∈ S be
centered at point x and include all points of set S within distance r of x. We define
the density constant μ(S) of point set S as follows: μ(S) is the smallest number
such that every open r-radius ball of S (for every r) contains at most μ(S) points of
mutual interpoint distance greater than r/2. Clearly the doubling constant cannot be
greater than the density constant. Further, the density constant is not greater than
the square of the doubling constant (since μ(S) balls of radius r

4 are required to cover
these points). It follows that

√
μ(S) ≤ λ(S) ≤ μ(S).

Now, we consider the following point removal problem: Given a point set S and
a target density constant μ∗ ≤ μ(S), remove the minimum number of points from
S to obtain a set S∗ with density constant μ∗. (This problem can serve as a proxy
for the problem of removing points to obtain a target doubling constant.) However,
we demonstrate in Lemma 3.1 below that the problem of determining the density
constant of a point set S is NP-hard. An immediate consequence of Lemma 3.1 is
that the point removal problem to achieve a target density constant is NP-hard.

Lemma 3.1. Given a point set S, the problem of determining the density constant
of S is NP-hard.

1One could alternatively consider a different goal of achieving a target doubling constant by
altering a minimum number of interpoint distances (rather than points). Similar problems have been
considered in the context of property testing; see, for example, [35].
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Proof. The proof is a reduction from the maximum independent set problem

with bounded degree Δ [34]. Let G = (V,E) be an input instance of the maximum

independent set problem with degree Δ <
√|V |. Note that the size of any

maximal independent set for G is greater than
√|V |. Create a set S containing |V |

points, each corresponding to a vertex in V . Let d(u, v) = 1
2 for u, v ∈ S (and an

infinitely small ε) if the corresponding vertices have an edge in E, and let d(u, v) = 1
otherwise. The radius of S is 1.

Now, any subset of S found in a closed ball of radius 1
2 contains fewer than

√|V |
points (since the degree of V is less than

√|V |), so the density constant of any subset
of points of S that all fall in a ball of radius 1

2 and have interpoint distance greater

than 1
4 is less than

√|V |. However, the maximum number of points in all of S with

interpoint distance greater than 1
2 is necessarily greater than

√|V |. It follows that
determining the density constant of S is equivalent to determining the maximum
independent set in V .

Note that the reduction preserves hardness of approximation: It is NP-hard to
approximate the density constant of a point set S within a factor of |S| 12−ε (this
follows easily from [29]).

It follows from Lemma 3.1 that the point removal problem to achieve a target den-
sity constant is NP-hard. Further, this problem does not even admit a multiplicative-
factor approximation algorithm: It is NP-hard to distinguish the case where no points
need be removed from the case where one point must be removed. However, we can
approximate the density constant of a point set, as in Lemma 3.3 below. We will first
require a definition.

Definition 3.2. Given a point set S, a witness set S′ ⊂ S is a set of points
contained in a closed ball of radius r with mutual interpoint distance greater
than r

2 .
Comment. The existence of a witness set S′ ⊂ S implies that μ(S) ≥ |S′|.

The notion of a witness set exists for the density constant, but a similar notion
does not exist for the doubling constant. That is, the addition of points to a set
S with doubling constant λ(S) may in fact result in a set with somewhat lower
doubling constant than λ(S). For example, the metric space defined by the four
vectors (1, 1), (1,−1), (−1, 1), (−1,−1) equipped with �2 distances has doubling con-
stant four, since the points can be covered by a ball of radius 2

√
2 centered at any of

these points, while the minimum interpoint distance in the set is 2. Yet the metric
space defined by the same vectors along with (1, 0), (−1, 0) has doubling constant
three, since the new points can serve as centers of smaller balls each covering three
points. However, adding new points can decrease the doubling dimension by at most
a constant factor, because in a set of interpoint distance at least r, each point must
be found in a different r

4 -radius ball, irrespective of the addition of new points. This
disparity underlies our decision to define the density constant.

Lemma 3.3. Given an n-point set S with minimum interpoint distance 1, there
exists an O(2O(log μ(S))n3) time algorithm that locates a witness set of size �√μ(S)	.

Proof. Note that there are O(n2) interpoint distances in S, so there exist O(n2)
distinct balls of S, and of course each is of size O(n). For each ball B(x ∈ S, r),
we greedily build the point hierarchy of [33] consisting of three radii levels {r, r

2 ,
r
4},

where level r contains only one point. This can be done in time 2O(logμ)n per ball
(where μ = μ(S)), yielding a total runtime of O(2O(log μ)n3).

Now there must exist in S a point set S′ of size exactly μ with radius r and
minimum interpoint distance greater than r/2 for some r. In the hierarchy for the
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ball that contains S′ (and possibly contains other points as well), exactly one of the
following must hold:

(i) Level r
2 contains at least �√μ	 points; it follows that these points are con-

tained in a ball of radius r and have minimum interpoint distance greater
than r

2 , so that they are a witness set. Or,
(ii) Level r

2 contains fewer than �√μ	 points. Now, since the μ points of S′ have
minimum distance r

2 , they must be covered by distinct points of level r
4 , so

there must exist more than μ points in level r
4 . It follows that some point of

level r
2 covers more than

√
μ points of level r

4 . These points have minimum
interpoint distance greater than r

4 and are found in a set of radius less than
r
2 , so they are a witness set.

Comment. The algorithm of Lemma 3.3 yields a 2-approximation to the doubling
dimension of S.

Lemma 3.3 shows that the density constant can be approximated. In the next
section, we will use this tool to develop a bicriteria algorithm for the problem of
removing points to obtain a target density constant. This will in turn allow us to
develop a bicriteria algorithm for the problem of removing points to obtain a target
doubling constant. However, for the purposes of efficient algorithmic runtime, we
need to introduce a slightly stronger variant of Lemma 3.3, as follows.

Lemma 3.4. Given an n-point set S with minimum interpoint distance 1 and a
parameter μ′ ≤ μ(S), there exists an 2O(logμ′)n4 time algorithm that locates a maximal
collection of distinct witness sets each of size �√μ′	.

Proof. The construction is similar to the one presented in the proof of Lemma 3.3.
We identify all O(n2) balls, and for each ball B(x, r) we build the top three levels of its
hierarchy. The hierarchy of [33] for constant levels supports insertions and deletions
in time 2O(logμ′), so a single hierarchy can be constructed in time 2O(logμ′)n, and all
O(n2) hierarchies in time 2O(logμ′)n3.

If during the construction of the three-level hierarchy for B(x, r), we find that
a newly inserted point implies a witness set of size �√μ′	—that is, either level r

2
contains �√μ′	 points or a point of level r

2 covers �√μ′	 points—then we output the
witness set as an element of the collection and delete the points of this witness set
from all O(n2) ball hierarchies, in total time 2O(logμ′)n2 per point.

When a point is deleted from the hierarchy, it is possible that a previously con-
sidered point not placed in the top three levels can now be entered there. Therefore,
after the deletion of a point we reconsider all (nondeleted) points and attempt to
insert them into O(n2) ball hierarchies, in total time 2O(logμ′)n3 per deleted point.
This implies a final runtime of 2O(logμ′)n4.

3.2. Bicriteria algorithm. Given Lemma 3.4, we prove the following theorem,
which is a bicriteria algorithm for the problem of removing points to achieve a target
density constant. A corollary of this theorem gives a bicriteria algorithm for the
problem of removing points to achieve a target doubling constant.

Theorem 3.5. Given a point set S with density constant μ(S) and a target
density constant μ∗, let k∗ = k∗(S, μ∗) be the minimum number of points that must
be removed from S to obtain a set S∗ ⊂ S with density constant μ∗. Then there exists
a 2O(logμ∗)n4 time algorithm that removes k′ ≤ cμ∗+1

(c−1)μ∗+1 · k∗ points from S (for any

desired c ≥ 1) and yields a point set S′ with density constant μ(S′) ≤ (cμ∗)2.
Proof. We first prove the theorem for c = 1. We run the algorithm of Lemma 3.4

to find a collection of distinct witness sets of size exactly μ∗ + 1. Remove these sets
from S. It follows that the resulting set S′ has density constant at most (μ∗)2. Now,
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in the optimal solution S∗, at least one of the points in each witness set must be
removed. Hence, the algorithm removes k′ ≤ (μ∗ + 1)k∗ points.

Turning to c > 1, we run the algorithm of Lemma 3.4 to find a collection of
distinct witness sets of size exactly cμ∗ + 1. Remove these sets from S. It follows
that the resulting set S′ has density constant at most (cμ∗)2. Now, if our algorithm
has removed a witness set of size m, then in the optimal solution at least m − μ∗

of these points must have been removed. It follows that the algorithm removes k′ ≤
cμ∗+1

cμ∗+1−μ∗ k
∗ = cμ∗+1

(c−1)μ∗+1 · k∗ points from S.

This algorithm for the density constant implies a similar one for the doubling
constant.

Corollary 3.6. Given a point set S with doubling constant λ(S) and a target
doubling constant λ∗, let m∗ = m∗(S, λ∗) be the minimum number of points that must
be removed from S to obtain a set S∗ with doubling constant λ∗. Then there exists

an 2O(log λ∗)n4 time algorithm that removes m′ ≤ c(λ∗)2+1
(c−1)(λ∗)2+1 ·m∗ points from S (for

any desired c ≥ 1) and yields a point set S′ with doubling constant λ(S′) ≤ (c(λ∗)2)2.
Proof. Recall that

√
μ(S) ≤ λ(S) ≤ μ(S), and note that a set with doubling

constant λ∗ has density constant at most (λ∗)2. We apply the algorithm of Theo-
rem 3.5 with target density constant μ∗ = (λ∗)2, and so the resulting set has doubling
constant at most (cμ∗)2 ≤ (c(λ∗)2)2.

3.3. Improved runtime. While the bicriteria algorithms implied by Theo-
rem 3.5 and Corollary 3.6 provide a powerful trade-off for the two point removal
problems, the algorithmic runtime may be undesirable for some applications. Here
we present bicriteria algorithms that feature near-linear runtime at the expense of
slightly higher dimension.

Theorem 3.7. Given a point set S with density constant μ(S) and a target
density constant μ∗, let k∗ = k∗(S, μ∗) be the minimum number of points that must
be removed from S to obtain a set S∗ with density constant μ∗. Then there exists

(i) an algorithm that runs in 2O(logμ∗)n logα time that removes k′ ≤ cμ∗+1
(c−1)μ∗+1 ·

k∗ points from S (for any desired c ≥ 1) and yields a point set S′ with density
constant μ(S′) ≤ (cμ∗)5;

(ii) an algorithm that runs in 2O(logμ∗)n log3 n time that removes k′ ≤ cμ∗+1
(c−1)μ∗+1 ·

k∗ points from S (for any desired c ≥ 1) and yields a point set S′ with density
constant μ(S′) ≤ (cμ∗)6.

Proof. We begin by building the hierarchy of [33] for S, inserting one point at a
time. Now, if a point insertion causes a point of level H2i to possess more than (cμ∗)5

neighbors in H2i within distance 32 · 2i, then we can find a witness set: By building
a hierarchy for just the neighbor set on distances {32 · 2i, 16 · 2i, 8 · 2i, 4 · 2i, 2 · 2i, 2i},
we locate in the neighbor set some witness set of size at least cμ∗. (That is, some
point in the neighbor set hierarchy must cover cμ∗ + 1 points one level down, and
these points form a witness set for S.) As before, the points of the witness set are
then deleted from the hierarchy of S. The algorithm terminates with set S′ when no
more witness sets can be found. This can all be done in 2O(logμ∗)n logα time. The
analysis for near-optimality of removed points is the same as above.

It is only left to show that the resulting set cannot have density constant greater
than (cμ∗)5: Suppose in contradiction that S′ contained a witness set of size greater
than (cμ∗)5 with diameter r and minimum interpoint distance r

2 . Now, each point of
the witness set appears in H1, the bottom level of the full hierarchy, and a geometric
series argument gives that the distance between each point and its ancestor in level
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H2i is less than 2i+1. Hence, the distance between the level H2i ancestors of two
different points of the witness set is greater than r

2 −2i+2 and less than r+2i+2. Now
let j be the index for which r > 2j ≥ r

2 . Let i = j − 3, so that the distance between
the ancestors of two points is greater than r

2 − 2j−1 > 0 (and so at least 2i) and less
than r + 2j−1 ≤ 5

2 · 2j = 20 · 2i. This contradicts the assumption that there does
not exist in the hierarchy a set of more than (cμ)5 points within radius 32 · 2i and
minimum interpoint distance 2i.

The runtime of 2O(logμ∗)n log3 n can be achieved by using the hierarchy of [24]
instead of the hierarchy of [33]. (Note, however, that the semidynamic hierarchy of
[15] or the static hierarchy of [27] are not sufficient for our purposes.) The analysis is
similar.

The above point removal algorithm for the density constant implies a similar one
for the doubling constant.

Corollary 3.8. Given a point set S with doubling constant λ(S) and a target
doubling constant λ∗, let m∗ = m∗(S, λ∗) be the minimum number of points that must
be removed from S to obtain a set S∗ with doubling constant λ∗. Then there exists

(i) an algorithm that runs in 2O(log λ∗)n logα time that removes m′ ≤ c(λ∗)2+1
(c−1)(λ∗)2+1 ·

m∗ points from S (for any desired c ≥ 1) and yields a point set S′ with dou-
bling constant λ(S′) ≤ (c(λ∗)2)5;

(ii) an algorithm that runs in 2O(log λ∗)n log3 n time that removes m′ ≤ c(λ∗)2+1
(c−1)(λ∗)2+1 ·

m∗ points from S (for any desired c ≥ 1) and yields a point set S′ with dou-
bling constant λ(S′) ≤ (c(λ∗)2)6.

4. Applications. The algorithms of section 3 are given a point set S and remove
from S a set R, resulting in a set S′ = S − R of low doubling constant (λ∗)O(1). If
|R| = O(n1/2) (that is, S is nearly doubling), we can use techniques from [25, 7] to
construct near-linear runtime algorithms for spanners and fast distance oracles.

We first review the spanner of [25] in section 4.1 and then present the near-linear
algorithms in section 4.2

4.1. Spanner review. We review the (1 + ε)-stretch spanner presented in [25]
(which itself draws on the work of [19]). This spanner is constructed as follows. Given
a point set S, the point hierarchy of [15] is constructed for S. Recall that each point
p ∈ H5i (for all i) is assigned as the child of a single point q ∈ H5i+1 that covers
p (that is, the distance from p to q is at most 5i+1). We add to the spanner edges
connecting each parent-child pairs; these are the parent-child edges. Next, we add
to the spanner edges to connect all point pairs p, q ∈ H5i (for all i) if p and q are
c-neighbors, that is, if d(p, q) ≤ c5i for c = 25

ε + 45
2 . These are the lateral edges.

Notice that the lateral edges of level H5i are much longer than the parent-child edges
of that level (by a factor of Θ(1/ε)). The entire construction can be done in time
2O(log λ(S))n logn+ ε−O(log λ(S)).

It was shown in [25] that given two points p, q ∈ S, there exists a simple spanner
path that connects p, q and has stretch at most (1+ ε). Let p′, q′ ∈ H5j be the lowest
ancestral c-neighbors of p, q ∈ H1. (That is, j is the smallest index for which p′ and q′,
the respective ancestors of p and q in H5j , are c-neighbors.) The low stretch spanner
path is the path that begins at p ∈ H1, follows a series of parent-child edges up to
p′ ∈ H5j , a single lateral edge to q′H5j , and a series of parent-child edges down to
q ∈ H1. The length of this path is dominated by the length of the single lateral edge:
The length of the lateral edge is Θ(5j/ε), while the length of all other edges in the
path are bounded by two geometric series that each sum to O(5j). This implies a
(1 + ε)-stretch spanner path for the pair p, q.
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More precisely, d(p, p′) ≥ ∑j
k=1 5

k < 5
45

j (and similarly for d(q, q′)), and so
the spanner path distance from p, q is less than d(p′, q′) + 5

25
j. At the same time,

d(p, q) ≥ d(p′, q′) − d(p, p′) − d(q, q′) > d(p′, q′) − 5
25

j, implying a spanner stretch

less than
d(p′,q′)+ 5

2 5
j

d(p′,q′)− 5
25

j = 1 + 5·5j
d(p′,q′)− 5

25
j . The proof is completed by demonstrating

that d(p′, q′) > 5·5j
ε + 5

25
j : Consider points p′′, q′′ ∈ H5j−1 , the respective children of

p′, q′ ∈ H5j that are ancestors of p, q ∈ H1. Since p
′′, q′′ are not connected by a lateral

edge, we have that d(p′′, q′′) > c5j−1, and so d(p′, q′) ≥ d(p′′, q′′)−d(p′, p′′)−d(q′, q′′) >
c5j−1 − 2 · 5j = 5·5j

ε + 5
25

j.

4.2. Near-linear algorithms. In this section we present near-linear algorithms
for nearly-doubling spaces. We have the following theorem.

Theorem 4.1. There exists an algorithm that, given point sets S′ and R (|R| =
O(

√|S′|)), builds a (1+ ε)-stretch spanner for S = S′ ∪R (n = |S|) with ε−O(log λ∗)n

edges in 2O(log λ∗)n logn+ ε−O(log λ∗)n time.
Proof. We first construct the full graph for R, which is a 1-stretch spanner of

O(n) edges for these points, in time O(R2) = O(n). We then construct a (1 + ε)
spanner for S′ in the manner described above, in time 2O(log λ∗)n logn+ ε−O(log λ∗)n.
It is left only to guarantee (1 + ε) stretch between the points of S′ and R. To this
end, for each point p ∈ R we locate the lowest hierarchical level H2i of S′ in which
p is covered and connect p to its covering point with a parent-child edge and to all
points of levels H2i and below within distance c2i using lateral edges. As in [25], there
are ε−O(log λ) edges incident on p, and this construction mimics an actual insertion
of p into the hierarchy, which can be done in time 2O(log λ∗) logn + ε−O(log λ∗) per
insertion. It follows that there exists low stretch paths connecting p ∈ R to all points
of S′.

The following corollary is a consequence of the spanner construction of Theo-
rem 4.1.

Corollary 4.2. There are algorithms that, given point sets S′ and R (|R| =
O(

√|S′|)), compute

(i) a (1 + ε)-approximation to the MST for S, in time 2O(log λ∗)n logn +
ε−O(log λ∗)n,

(ii) a (1+ε)-approximation to all points nearest neighbor in time 2O(log λ∗)n logn+
ε−O(log λ∗)n,

(iii) a (1 + ε)-approximate distance oracle that supports distance queries in O(1)
expected time with storage 2O(log λ∗ log log λ∗)n+ ε−O(log λ∗)n and construction
time 2O(log λ∗)n logn+ 2O(log λ∗ log log λ∗)n+ ε−O(log λ∗)n.

Proof. (i) Given the above (1 + ε)-stretch spanner, an MST for the spanner can
be constructed by running Prim’s algorithm while storing the edges in a Fibonacci
heap. For a spanner of n points and ε−O(log λ∗)n edges, this can all be done in
time O(n log n) + ε−O(log λ∗)n [16], so the total runtime is dominated by the spanner
construction.

The MST for the spanner is a 1 + ε approximation to the MST for S. Let E be
the edge set constructed as follows. For each edge e connecting points p, q in the MST
of S, add to E all edges of the minimum weight spanner path connecting p, q (not
already added to E). Clearly, E spans all points of S, while the sum of edge weights
in E is at most 1 + ε times the weight of the MST. The MST of the spanner must
possess this weight guarantee as well.

(ii) A (1 + ε)-approximate nearest neighbor for each point p may be found by
consulting the spanner edges incident on p and choosing the closest incident point.
This can be maintained in O(1) time per edge insertion.
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(iii) A (1 + ε)-approximate distance oracle with expected O(1) query time for
doubling spaces was presented in [7]. This oracle was built on the spanner of [25]
described above. The structure records the exact distance between any pair of points
that are connected in the spanner. For query points p and q, the algorithm simply
locates the lowest ancestral c-neighbors p′, q′ of p, q, and returns their distance. (Recall
that p′, q′ are connected by a lateral edge, so their true distance is recorded in the
spanner.) It follows from the spanner analysis above that the distance between p′ and
q′ is a (1 + ε)-approximation to the distance between p and q.

We extend the construction of [25] to the spanner in the proof of Theorem 4.1:
We record the distance between any pairs of points that are connected in the spanner
of the proof of Theorem 4.1. It follows that the distance between any pair p, q ∈ R is
recorded explicitly. For all pairs p, q ∈ S′, a search for the lowest ancestral c-neighbors
of p and q returns an approximation for the distance between p and q. For points
p ∈ R and q ∈ S′, their distance can similarly be derived via a search for the lowest
ancestral c-neighbors: If p and q are themselves c-neighbors, then they were connected
by a spanner edge (in the construction for the proof of Theorem 4.1) and their distance
is stored explicitly. Otherwise, we query the oracle for the lowest c-neighbor of q and
the parent of p (that is, the point in S′ that covers p).
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