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Abstract. We study data-adaptive dimensionality reduction in the con-
text of supervised learning in general metric spaces. Our main statistical
contribution is a generalization bound for Lipschitz functions in metric
spaces that are doubling, or nearly doubling, which yields a new the-
oretical explanation for empirically reported improvements gained by
preprocessing Euclidean data by PCA (Principal Components Analy-
sis) prior to constructing a linear classifier. On the algorithmic front, we
describe an analogue of PCA for metric spaces, namely an efficient pro-
cedure that approximates the data’s intrinsic dimension, which is often
much lower than the ambient dimension. Our approach thus leverages
the dual benefits of low dimensionality: (1) more efficient algorithms, e.g.,
for proximity search, and (2) more optimistic generalization bounds.

1 Introduction

Linear classifiers play a central role in supervised learning, with a rich and el-
egant theory. This setting assumes data is represented as points in a Hilbert
space, either explicitly as feature vectors or implicitly via a kernel. A significant
strength of the Hilbert-space model is its inner-product structure, which has been
exploited statistically and algorithmically by sophisticated techniques from ge-
ometric and functional analysis, placing the celebrated hyperplane methods on
a solid foundation. However, the success of the Hilbert-space model obscures its
limitations — perhaps the most significant of which is that it cannot represent
many norms and distance functions that arise naturally in applications. For-
mally, metrics such as L1, earthmover, and edit distance cannot be embedded
into a Hilbert space without distorting distances by a large factor [1, 9, 25]. In-
deed, the last decade has seen a growing interest and success in extending the
theory of linear classifiers to Banach spaces and even to general metric spaces,
see e.g. [8, 16,22,23,33].

A key factor in the performance of learning is the dimensionality of the data,
which is known to control the learner’s efficiency, both statistically, i.e. sample
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complexity, and algorithmically, i.e. computational runtime. This dependence
on dimension is true not only for Hilbertian spaces, but also for general metric
spaces, where both the sample complexity and the algorithmic runtime can be
bounded in terms of the covering number or the doubling dimension [13,22].

In this paper, we demonstrate that the learner’s statistical and algorithmic
efficiency can be controlled by the data’s intrinsic dimensionality, rather than
its ambient dimension (e.g., the representation dimension). This provides rig-
orous confirmation for the informal insight that real-life data (e.g., visual or
acoustic signals) can often be learned efficiently because it tends to lie close to
low-dimensional manifolds, even when represented in a high-dimensional feature
space. Our simple and general framework quantifies what it means for data to
be approximately low-dimensional, and shows how to leverage this for computa-
tional and statistical gain.

Previous work has mainly addressed statistical efficiency in Hilbertian spaces.
Scholkopf, Shawe-Taylor, Smola, and Williamson [29] noted the folklore fact
that the intrinsic dimensionality of data affects the generalization performance
of SVM on that data, and they provided a rigorous explanation for this phe-
nomenon by deriving generalization bounds expressed in terms of the singular
values of the training set. These results are a first step towards establishing a
connection between Principal Components Analysis (PCA) and linear classifica-
tion (in fact SVM). However, their generalization bounds are somewhat involved,
and hold only for the case of zero training-error. Moreover, these results do not
lead to any computational speedup, as the algorithm employed is SVM, with-
out (say) a PCA-based dimensionality reduction. Other attempts to analyze the
statistical benefits of low intrinsic dimensionality include [5, 19], however this
phenomenon still lacks a simple explanation with user-friendly bounds.

Most generalization bounds depend on the intrinsic dimension, rather than
the ambient one, when the training sample lies exactly on a low-dimensional
subspace. This phenomenon is indeed immediate in generalization bounds ob-
tained via the empirical Rademacher complexity [3, 18], but we are not aware
of rigorous analysis that extends such bounds to the case where the sample is
“close” to a low-dimensional subspace.

Two geometric notions put forth by Sabato, Srebro and Tishby [28] for the
purpose of providing tight bounds on the sample complexity, effectually represent
“low intrinsic dimensionality”. However, these results are statistical in nature,
and do not address at all the issue of computational efficiency. Our notion of
low dimension may seem similar to theirs, but it is in fact quite different — our
definition depends only on the (observed) training sample, while theirs depend
on the data’s entire (unknown) distribution.

Our contribution. We present classification algorithms that adapt to the intrinsic
dimensionality of the data, and can exploit a training set that is close to being
low-dimensional for improved accuracy and runtime complexity. We start with
the scenario of a Hilbertian space, which is technically simpler. Let the observed
sample be (x1, y1), . . . , (xn, yn) ∈ RN×{−1, 1}, and suppose that {x1, . . . , xn} is
close to a low-dimensional linear subspace T ⊂ RN , in the sense that its distor-
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tion η = 1
n

∑
i ‖xi − PT (xi)‖22 is small, where PT : RN → T denotes orthogonal

projection onto T . We prove in Section 3 that when dim(T ) and the distortion
η are small, a linear classifier generalizes well regardless of the ambient dimen-
sion N or the separation margin. Implicit in our result is a tradeoff between
the reduced dimension and the distortion, which can be optimized efficiently by
performing PCA. To the best of our knowledge, our analysis provides the first
rigorous theory for selecting a cutoff value for the singular values, in any super-
vised learning setting. Algorithmically, our approach amounts to running PCA
with a cutoff value implied by Corollary 1, constructing a linear classifier on
the projected data (PT (x1), y1), . . . , (PT (xn), yn), and “lifting” this linear clas-
sifier to RN , with the low dimensionality of T being exploited to speed up the
classifier’s construction.

We then develop this approach significantly beyond the Euclidean case, to
the much richer setting of general metric spaces. A completely new challenge that
arises here is the algorithmic part, because no metric analogue to dimension re-
duction via PCA is known. Let the observed sample be (x1, y1), . . . , (xn, yn) ∈
X × {−1, 1}, where (X , ρ) is some metric space,. The statistical framework pro-
posed by [22], where classifiers are realized by Lipschitz functions, was extended
by [13] to obtain generalization bounds and algorithmic runtime that depend
on the metric’s doubling dimension, denoted ddim(X ) (see Section 2 for defi-
nitions). The present work makes a considerably less restrictive assumption —
that the sample points lie close to some low-dimensional set. First, we establish
in Section 4 new generalization bounds for the scenario where there is a multiset
S̃ = {x̃1, . . . , x̃n} of low doubling dimension, whose distortion η =

∑
i ρ(xi, x̃i)

is small. In this case, the Lipschitz extension classifier will generalize well, re-
gardless of the ambient dimension ddim(X ); see Theorem 3. Next, we address
in Section 5 the computational problem of finding (in polynomial time) a near-
optimal point set S̃, given a bound on η. Formally, we devise an algorithm that
achieves a bicriteria approximation, meaning that ddim(S̃) and η of the reported
solution exceed the values of a target low-dimensional solution by at most a con-
stant factor; see Theorem 4. The overall classification algorithm operates by
computing S̃ and constructing a Lipschitz classifier on the modified training set
(x̃1, y1), . . . , (x̃n, yn), exploiting its low doubling dimension to compute a classi-
fier faster, using for example [13].

An important feature of our method is that the generalization bounds depend
only on the intrinsic dimension of the training set, and not on the dimension
of (or potential points in) the ambient space. Similarly, the intrinsic low dimen-
sionality of the observed data is exploited to design faster algorithms.

Related work. There is a plethora of literature on dimensionality reduction, see
e.g. [7, 21], and thus we restrict the ensuing discussion to results addressing
supervised learning. Previously, only Euclidean dimension reduction was con-
sidered, and chiefly for the purpose of improving runtime efficiency This was
realized by projecting the data onto a random low-dimensional subspace — a
data-oblivious technique, see e.g. [2, 26,27]. On the other hand, data-dependent
dimensionality reduction techniques have been observed empirically to improve
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or speed up classification performance. For instance, PCA may be applied as
a preprocessing step before learning algorithms such as SVM, or the two can
be put together into a combined algorithm, see e.g. [4, 10, 17, 31]. Remarkably,
these techniques in some sense defy standard margin theory because orthogonal
projection is liable to decrease the separation margin. Our analysis in Section 3
sheds new light on the matter.

There is little previous work on dimension reduction in general metric spaces.
MDS (Multi-Dimensional Scaling) is a generalization of PCA, whose input is
metric (the pairwise distances); however, its output is Euclidean and thus MDS
is effective only for metrics that are “nearly” Euclidean. [14] considered another
metric dimension reduction problem: removing from an input set S as few points
as possible, so as to obtain a large subset of low doubling dimension. While close
in spirit, their objective is technically different from ours, and the problem seem
to require rather different techniques.

2 Definitions and notation

Metric spaces. A metric ρ on a set X is a positive symmetric function satisfying
the triangle inequality ρ(x, y) ≤ ρ(x, z) + ρ(z, y); together the two comprise the
metric space (X , ρ). The Lipschitz constant of a function f : X → R, denoted by
‖f‖

Lip
, is defined to be the infimum L ≥ 0 that satisfies |f(x)− f(y)| ≤ L·ρ(x, y)

for all x, y ∈ X .

Doubling dimension. For a metric (X , ρ), let λX > 0 be the smallest value
such that every ball in X can be covered by λX balls of half the radius. λX
is the doubling constant of X , and the doubling dimension of X is defined as
ddim(X ) := log2(λX ). It is well-known that while a d-dimensional Euclidean
space, or any subset of it, has doubling dimension O(d); however, low doubling
dimension is strictly more general than low Euclidean dimension, see e.g. [15].
We will use |·| to denote the cardinality of finite metric spaces.

Rademacher complexity. For any n points Z1, . . . , Zn in some set Z and any
collection of functions G mapping Z to a bounded range, we may define the
Rademacher complexity of G evaluated at the n points: R̂n(G; {Zi}) = 1

n ·
E supg∈G

∑n
i=1 σig(Zi), where the expectation is over the iid random variables σi

that take on ±1 with probability 1/2. The seminal work of [3] and [18] established
the central role of Rademacher complexities in generalization bounds.

3 Adaptive Dimensionality Reduction: Euclidean case

Consider the problem of supervised classification in RN by linear hyperplanes,
where N � 1. The training sample is (Xi, Yi), i = 1, . . . , n, with (Xi, Yi) ∈
RN ×{−1, 1}, and without loss of generality we take ‖Xi‖2 ≤ 1 and the hypoth-
esis class H = {x 7→ sgn(w · x) : ‖w‖2 ≤ 1}. Absent additional assumptions on
the data, this is a high-dimensional learning problem with a costly sample com-
plexity. Indeed, the VC-dimension of linear hyperplanes in N dimensions is N . If,
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however, it turns out that the data actually lies on a k-dimensional subspace of
RN , Massart’s lemma [24, Theorem 3.3] implies that R̂n(H) ≤

√
2k log(en/k)/n,

and hence a much better generalization for k � N . A more common distribu-
tional assumption is that of large-margin separability. In fact, the main insight
articulated in [6] is that data separable by margin γ effectively lies in an Õ(1/γ2)-
dimensional space.

In this section, we consider the case where the data lies “close” to a low-
dimensional subspace. Formally, we say that the data {Xi} is η-close to a sub-

space T ⊂ RN if 1
n

∑n
i=1 ‖PT (Xi)−Xi‖22 ≤ η (where PT (·) denotes the orthog-

onal projection onto the subspace T ). Whenever this holds, the Rademacher
complexity can be bounded in terms of dim(T ) and η alone (Theorem 1). As a
consequence, we obtain a bound on the expected hinge-loss (Corollary 1). These
results both motivate and guide the use of PCA for classification.

Theorem 1. Let X1, . . . , Xn lie in RN with ‖Xi‖2 ≤ 1 and define the function
class F = {x 7→ w · x : ‖w‖2 ≤ 1}. Suppose that the data {Xi} is η-close to some

subspace T ⊂ RN and η > 0. Then R̂n(F ; {Xi}) ≤ 17
√

dim(T )
n +

√
η
n .

We prove this theorem in the full version [12]. Notice that the Rademacher
complexity is independent of the ambient dimension N . Also note the tension
between dim(T ) and η in the bound above — as we seek a lower-dimensional
approximation, we are liable to incur a larger distortion.

Corollary 1. Let (Xi, Yi) be an iid sample of size n, where each Xi ∈ RN
satisfies ‖Xi‖2 ≤ 1. Then for all δ > 0, with probability at least 1− δ, for every
w ∈ RN with ‖w‖2 ≤ 1, and every k-dimensional subspace T to which the sample
is η-close, we have

E[L(w ·X,Y )] ≤ 1

n

n∑
i=1

L(w ·Xi, Yi) + 34

√
k

n
+ 2

√
η

n
+ 3

√
log(2/δ)

2n
,

where L(u, y) = |u|1{yu<0} is the hinge loss.

Proof. Follows from the Rademacher generalization bound [24, Theorem 3.1], the
complexity estimate in Theorem 1, and an application of Talagrand’s contraction
lemma [20] to incorporate the hinge loss. ut

Implicit in Corollary 1 is a tradeoff between dimensionality reduction and
distortion. Algorithmically, this tradeoff may be optimized using PCA. It suf-
fices to compute the singular value decomposition once, with runtime complexity
O(n3 + Nn2) [11]. Then for each 1 ≤ k ≤ N , we obtain the lowest-distortion
k-dimensional subspace T (k), corresponding to the top k singular values. We
then choose the value 1 ≤ k ≤ N which minimizes the generalization bound of
Corollary 1 and construct a low-dimensional linear classifier on the projected
data (PT (x1), y1), . . . , (PT (xn), yn), which is “lifted” to RN . Our generalization
bound holds in the original space RN even without the projection and lifting,
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although heuristically we expect improved perfmance for norm-regularized clas-
sifiers since now w is allowed to be large without “wasting” magnitude on irrel-
evant dimensions.

As PCA is already employed heuristically as a denoising filtering step in the
supervised classification setting [4, 17, 31], Corollary 1 provides apparently the
first rigorous theory for choosing the best cutoff for the PCA singular values.

4 Adaptive Dimensionality Reduction: Metric case

In this section we extend the statistical analysis of Section 3 from Euclidean
spaces to the general metric case. Suppose (X , ρ) is a metric space and we receive
the training sample (Xi, Yi), i = 1, . . . , n, with Xi ∈ X and Yi ∈ {−1, 1}. Follow-
ing [22] and [13], the classifier we construct will be a Lipschitz function (whose
predictions are computed via Lipschitz extension that in turn uses approximate
nearest neighbor search) — but with the added twist of a dimensionality reduc-
tion preprocessing step.

In Section 4.1, we formalize the notion of “nearly” low-dimensional data in
a metric space and discuss its implication for Rademacher complexity. Given
S = {xi} ⊂ X , we say that S̃ = {x̃i} ⊂ X is an (η,D)-perturbation of S if∑n
i=1 ρ(xi, x̃i) ≤ η and ddim(S̃) ≤ D. If our data admits an (η,D)-perturbation,

we can prove that the Rademacher complexity it induces on Lipschitz functions
can be bounded in terms of η and D alone (Theorem 2), independently of the
ambient dimension ddim(X ). As in the Euclidean case (Theorem 1), Rademacher
estimates imply data-dependent error bounds, stated in Theorem 3.

In Section 4.3, we describe how to convert our perturbation-based Rademacher
bounds into an effective classification procedure. To this end, we develop a novel
bicriteria approximation algorithm presented in Section 5. Informally, given a
set S ⊂ X and a target doubling dimension D, our method efficiently computes
a set S̃ with ddim(S̃) ≈ D and approximately minimal the distortion η. As
a preprocessing step, we iterate the bicriteria algorithm to find a near-optimal
tradeoff between dimensionality and distortion. Having found a near-optimal
(η,D)-perturbation S̃, we employ the machinery developed in [13] to exploit its
low dimensionality for fast approximate nearest-neighbor search.

4.1 Rademacher bounds

We begin by obtaining complexity estimates for Lipschitz functions in (nearly)
doubling spaces. This was done in [13] in terms of the fat-shattering dimension,
but here we obtain data-dependent bounds by direct control over the covering
numbers. The proof appears in the full version [12].

Theorem 2. Let (X , ρ) be a metric space with diameter 1, and consider the
two n-point sets S, S̃ ⊂ X , where S̃ is an (ηnD/(D+1), D)-perturbation of S.
Let FL be the collection of all L-Lipschitz, [−1, 1]-valued functions on X . Then

R̂n(FL;S) = O
(
L(1+η)
n1/(D+1)

)
.
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4.2 Generalization bounds

For f : X → [−1, 1], define the margin of f on the labeled example (x, y) by
yf(x). The γ-margin loss, 0 < γ < 1, that f incurs on (x, y) is Lγ(f(x), y) =
min(max(0, 1−yf(x)/γ), 1), which charges a value of 1 for predicting the wrong
sign, charges nothing for predicting correctly with confidence yf(x) ≥ γ, and
for 0 < yf(x) < γ linearly interpolates between 0 and 1. Since Lγ(f(x), y) ≤
1{yf(x)<γ}, the sample margin loss lower-bounds the margin misclassification
error.

Theorem 3. Let FL be the collection of L-Lipschitz functions mapping the met-
ric space X of diameter 1 to [−1, 1]. If the iid sample (Xi, Yi) ∈ X × {−1, 1},
i = 1, . . . , n, admits an (ηnD/(D+1), D)-perturbation then for any δ > 0, with
probability at least 1− δ, the following holds for all f ∈ FL and all γ ∈ (0, 1):

P(sgn(f(X)) 6=Y ) ≤ 1
n

∑
i Lγ(f(Xi), Yi) +O

(
L(1+η)

γn1/(D+1) +
√

lg lg(1/γ)
n +

√
lg(1/δ)
n

)
.

Proof. We invoke [24, Theorem 4.5] to bound the classification error in terms of
sample margin loss and Rademacher complexity and the latter is bounded via
Theorem 2. ut

4.3 Classification procedure

Theorem 3 provides a statistical optimality criterion for the dimensionality-
distortion tradeoff.4 Unlike the Euclidean case, where a simple PCA optimized
this tradeoff, the metric case requires a novel bicriteria approximation algorithm,
described in Section 5. Informally, given a set S ⊂ X and a target doubling di-
mension D, our method efficiently computes a set S̃ with ddim(S̃) ≈ D, which
approximately minimizes the distortion η. We may iterate this algorithm over all
D ∈ {1, . . . , log2 |S|} — since the doubling dimension of the metric space (S, ρ)
is at most log2 |S| — to optimize the complexity5 term in Theorem 3.

Once a nearly optimal (ηnD/(D+1), D)-perturbation S̃ has been computed, we
predict the value at a test point x ∈ X by a thresholded Lipschitz extension from
S̃, which algorithmically amounts to an approximate nearest-neighbor classifier.
The efficient implementation of this method (as well as technicalities stemming
from its approximate nature) are discussed in [13]. Their algorithm computes
an ε-approximate Lipschitz extension in preprocessing time 2O(D)n log n and
test-point evaluation time 2O(D) log n + ε−O(D). The latter also allows one to
efficiently decide on which sample points (if any) the classifier should be allowed
to err, with corresponding savings in the Lipschitz constant6 (and hence lower
complexity).

4 Although the estimate in Theorem 2 was given as O(L(1 + η)/γn1/(D+1)) for read-
ability, its proof yields explicit, easily computable bounds.

5 Since L/γ multiplies (1 + η)/n1/(D+1) in the error bound, the optimization may be
carried out oblivious to L and γ.

6 The complexity term in Theorem 3 scales as L/γ, hence the final classifier can
be normalized to have Lipschitz constant 1 — so no further stratification over L is
necessary. We do, however, need to stratify over the doubling dimension D (see [30]).
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5 Approximating Intrinsic Dimension and Perturbation

In this section we consider the computation of an (η,D)-perturbation (of the
observed data) as an optimization problem, and design for it a polynomial-time
bicriteria approximation algorithm. As before, let (X , ρ) be a finite metric space.
For a point v and a point set T , define ρ(v, T ) = minw∈T ρ(v, w). Given two point
sets S, T , define the cost of mapping S to T to be

∑
v∈S ρ(v, T ).

Define the Low-Dimensional Mapping (LDM) problem as follows: Given a
point set S ⊆ X and a target dimension D ≥ 1, find T ⊆ S with ddim(T ) ≤
D such that the cost of mapping S to T is minimized.7 An (α, β)-bicriteria
approximate solution to the LDM problem is a subset V ⊂ S, such that the cost
of mapping S to V is at most α times the cost of mapping S to an optimal T
(of ddim(T ) ≤ D), and also ddim(V ) ≤ βD. We prove the following theorem.

Theorem 4. The Low-Dimensional Mapping problem admits an (O(1), O(1))-
bicriteria approximation in runtime 2O(ddim(S))n+O(n log4 n), where n = |S|.

In presenting the algorithm, we first give in Section 5.2 an integer program
(IP) that models this problem. We show that an optimal solution to the LDM
problem implies a solution to the IP, and also that an optimal solution to the
integer program gives a bicriteria approximation to the LDM problem (Lemma
2). However, finding an optimal solution to the IP seems difficult; we thus relax in
Section 5.3 some of the IP constraints, and derive a linear program (LP) that can
be solved in the runtime stated above (Lemma 4). Further, we give a rounding
scheme that recovers from the LP solution an integral solution, and then show
in Lemma 3 that the integral solution indeed provides an (O(1), O(1))-bicriteria
approximation, thereby completing the proof of Theorem 4.8

5.1 Preliminaries

Point hierarchies. Let S be a point set, and assume by scaling it has diameter 1
and minimum interpoint distance δ > 0. A hierarchy S of a set S is a sequence
of nested sets S0 ⊆ . . . ⊆ St; here, t = dlog2(1/δ)e and St = S, while S0

consists of a single point. Set Si must possess a packing property, which asserts
that ρ(v, w) ≥ 2−i for all v, w ∈ Si, and a c-covering property for c ≥ 1 (with
respect to Si+1), which asserts that for each v ∈ Si+1 there exists w ∈ Si with
ρ(v, w) < c · 2−i. Set Si is called a 2−i-net of the hierarchy. Every point set S
possesses one or more hierarchies for each value of c ≥ 1. We will later need
the following lemma, which extracts from an optimal solution a more structured
sub-solution.

7 The LDM problem differs from k-median (or k-medoid) in that it imposes a bound
on ddim(T ) rather than on |T |.

8 We remark that the presented algorithm has very large (though constant) approx-
imation factors. The introduced techniques can yield much tighter bounds, by cre-
ating many different point hierarchies instead of only a single one. We have chosen
the current presentation for simplicity.
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Lemma 1. Let S be a point set, and let S be a hierarchy for S with a c-covering
property. For every subset T ⊂ S with doubling dimension D := ddim(T ), there
exists a set T ′ satisfying T ⊆ T ′ ⊆ S, and an associated hierarchy T ′ with the
following properties:

1. ddim(T ′) ≤ D′ := log2(23D + 1) = 3D + o(1).
2. Every point v ∈ T ′i is 4c-covered by some point in T ′i−1, and 5c-covered by

some point of T ′k for all k < i.
3. T ′ is a sub-hierarchy of S, meaning that T ′i ⊆ Si for all i ∈ [t].

Proof. First take set T and extract from it an arbitrary c-covering hierarchy T
composed of nets Ti. Note that each point v ∈ Ti is necessarily within distance
2c · 2−i of some point in Si: This is because v exists in St, and by the c-covering
property of S, v ∈ St must within distance

∑i
j=t c·2−j = 2c·2−i−c·2−t < 2c·2−i

of some point w ∈ Si.
We initialize the hierarchy T ′ by setting T ′0 = S0. Construct T ′i for i > 0

by first including in T ′i all points of T ′i−1. Then, for each v ∈ Ti, if v is not
within distance 2c · 2−i of a point already included in T ′i , then add to T ′i the
point v′ ∈ Si closest to v. (Recall from above that ρ(v, v′) < 2c · 2−i.) Clearly,
T ′ inherits the packing property of hierarchy S. Further, since T obeyed a c-
cover property, the scheme above ensures that any point w ∈ S′i must be within
distance 2c · 2−i + c · 2−i+1 + 2c · 2−i+1 ≤ 4c · 2−i+1 of some point in T ′i−1, and
within distance 2c · 2−i + 2c · 2−k + 2c · 2−k ≤ 5c · 2−k of some point in any T ′k,
k < i.

Turning to the dimension, T possessed dimension D, and T ′ may be viewed
as ‘moving’ each net point a distance strictly less than 2c·2−i, which can increase
the dimension by a multiplicative factor of 3. Further, the retention of points of
each T ′i−1 in T ′i can add 1 to the doubling constant, as an added point may be
the center of a new ball of radius 2i. ut

5.2 An integer program

The integer program below encapsulates a near-optimal solution to LDM, and
will be relaxed to a linear program in Section 5.3. Denote the input by S =
{v1, . . . , vn} and D ≥ 1, and let S be a hierarchy for S with a 1-covering property.
We shall assume, following Section 5.1, that all interpoint distances S are in the
range [δ, 1], and the hierarchy possesses t = dlog2(1/δ)e levels. We construct
from an optimal IP solution a subset S′ ⊂ S equipped with a hierarchy S ′ that
is a sub-hierarchy of S; we will show in Lemma 2 that S′ constructed in this way
is indeed a bicriteria approximation to the LDM problem.

We introduce a set Z of 0-1 variables for the hierarchy S; variable zij ∈ Z
corresponds to a point vj ∈ Si. Clearly |Z| ≤ nt. The IP imposes in Constraint
(1) that zij ∈ {0, 1}, intended to be an indicator variable for whether vj appears

in S′i (level i of the hierarchy S ′ of S′). The IP requires in Constraint (2) that zij ≤
zi+1
j , which enforces the nested property in the hierarchy S ′. When convenient,

we may refer to distance between variables where we mean distance between
their corresponding points.
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Let us define the i-level neighborhood of a point vj to be the net-points of Si
that are relatively close to vj . Formally, when vj ∈ Si, let Eij ⊆ Z include all

variables zik for which ρ(vj , vk) ≤ e ·2−i, for e := 7. If vj /∈ Si, then let w ∈ Si be
the nearest neighbor of vj in Si (notice that ρ(vj , w) < 2·2−i), and define Eij ⊆ Z
to include all variables zik for which ρ(w, vk) ≤ e · 2−i. We similarly define three
more neighbor sets: F ij ⊆ Z for f := 12, Gij ⊆ Z for g := 114, and Hi

j ⊆ Z for

h := f + g = 126. The IP imposes on F ij , G
i
j , H

i
j (or the corresponding points in

S′) the packing property for doubling spaces of dimension D′ := log2(23D + 1)
of the form

∑
z∈F i

j
z ≤ (2f)D

′
, see Constraints (4)-(6). The IP imposes also

covering property, as follows. Constraint (3) requires that
∑
z∈Ei

j
z ≥ ztj , which

implies that every vj ∈ S′i is (e+ 2)-covered by some point in S′k for all k < i.
We further introduce a set C of n cost variables cj , intended to represent the

point mapping cost ρ(vj , T
′), and this is enforced by Constraints (7)-(8). The

complete integer program is as follows.

min
∑
j

cj

s.t. zij ∈ {0, 1} ∀zij ∈ Z (1)

zij ≤ zi+1
j ∀zij ∈ Z (2)∑

z∈Ei
j

z ≥ ztj ∀i, ztj ∈ Z (3)

∑
z∈F i

j

z ≤ (2f)D
′

∀i, vj ∈ S (4)

∑
z∈Gi

j

z ≤ (2g)D
′

∀i, vj ∈ S (5)

∑
z∈Hi

j

z ≤ (2h)D
′

∀i, vj ∈ S (6)

ztj +
cj
δ ≥ 1 ∀vj ∈ S (7)

ztj +
cj
2−i +

∑
z∈F i

j

z ≥ 1 ∀i, vj ∈ S (8)

∑
z∈F i

j

z ≥ 1
(2f)D′

∑
z∈Fk

j

z ∀i < k, vj ∈ S (9)

Recall that T is the optimal solution for the low-dimensional mapping prob-
lem on input (S,D), and let C∗ be the cost of mapping S to T . Let T ′ be the
set given by Lemma 1, and the cost of mapping S to T ′ cannot be greater than
C∗. The following lemma proves a bi-directional relationship between the IP and
LDM, relating IP solution S′ to LDM solutions T .9

9 Constraints (6) and (9) are not necessary for the purposes of the following lemma,
but will later play a central role in the proof of Lemma 3.
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Lemma 2. Let (S,D) be an input for the LDM problem.

(a). Then T ′ yields (in the obvious manner) a feasible solution to the IP of cost
at most C∗.

(b). A feasible solution to the IP with objective value C yields S′ that is a bicrite-
ria approximate solution to LDM, with ddim(S′) ≤ (3 log 228)D + o(1) and
cost of mapping S to S′ at most 32C.

Proof. For part (a), we need to show that assigning the variables in Z and C
according to T ′ yields a feasible solution with the stated mapping cost. Note that
T ′ is nested, so it satisfies Constraint (2). Further, the doubling dimension of T
implies that all points obey packing constraints (4)-(6). The covering properties
of T ′ are tighter than those required by Constraint (3). Constraints (7)-(8) are
valid, because if ztj = 0, then necessarily ρ(vj , T

′) must be large enough to satisfy
these constraints.

We then claim that Constraint (9) is actually extraneous for this IP, since
it is trivially satisfied by any hierarchy possessing (e + 2)-covering (Constraint

(3)): Since F kj contains at most (2f)log(2
3d+1) non-zero variables (Constraint

(4)), Constraint (9) simply means that if F kj contains at least one non-zero

variable, then so does F ij . But if F kj contains a non-zero variable, then this
variable is necessarily (e + 2)-covered by some non-zero variable in hierarchical
level i. Further, the non-zero covering variable must be in F ij , since F ij contains

all variables within distance f · 2−i − 2 · 2−i > (e+ 2) · 2−i of vj .

Turning to the IP cost, a point vj included in T ′ clearly implies that cj = 0.
For a point vj not included in T ′ (ztj = 0) Constraint (7) requires that cj ≥ δ,
but this is not greater than ρ(vj , T

′). If in addition
∑
z∈F i

j
z = 0 for a minimal

i, then by Constraint (8), we must assign cost cj = 2−i. We will show that
cj ≤ ρ(vj , T

′). In what follows, let vk be the closest neighbor to vj in T ′, and
let 2−p ≤ ρ(vj , vk) < 2−(p−1). We demonstrate that when i < p, vj does not
incur the cost of constraint (8): vk is (e+ 2)-covered by some point w ∈ T ′i , and
so ρ(vj , w) ≤ ρ(vj , vk) + ρ(vk, w) ≤ 2−p+1 + (e + 2) · 2−i ≤ (e + 3) · 2−i. Now,
the distance from vj to the closest point in Si is less than 2 · 2−i, so w is within
distance (e+3) ·2−i+2 ·2−i = (e+5) ·2−i = f ·2−i of the center point of F ij , and

so w’s variable is included in F ij . It follows that
∑
z∈F i

j
z ≥ 1, and so Constraint

(8) does not impose a cost when i < p. We conclude that cj ≤ ρ(vj , S
′).

We proceed to prove part (b), and show that S′ has the stated dimension and
cost. Concerning the dimension, recall first that every point vj ∈ S′t is within
distance (e+ 2) · 2−i of some point in S′i. Consider a ball of radius 2(e+ 2) · 2−i
centered at any point v ∈ S′i, and we will show that this large ball can be
covered by a fixed number of balls of half-radius (e+ 2) · 2−i centered at points
of S′i: Each point covered by the large ball is also covered by a half-radius ball
centered at some point w ∈ S′i, and clearly ρ(v, w) ≤ 3(e+ 2) · 2−i < g · 2−i. By
Constraint (5), there are at most (2g)3D+o(1)) net-points of S′i within distance

11



3(e+ 2) · 2−i of v, and this implies a doubling dimension of log(23D + 1) log 2g =
(3 log 228)D + o(1).10

Turning to mapping cost, we will demonstrate that for set S′, ρ(vj , S
′) ≤

32cj . As above, let vk be the closest neighbor to vj in S′, and let 2−p ≤ ρ(vj , vk) <
2−(p−1). We will show that whenever i ≥ p+ 5, vj incurs the cost of constraint
(8) (and recall that by Constraint (7), cj ≥ δ): The distance from vj to any
point of F ik is at most 2 · 2−i + f · 2−i ≥= (f + 2) · 2i. Since the distance from
vj to vk is as least 2−p = 32 · 2−i > (f + 2) · 2−i, no point of F ik is contained in
S′i. It follows that

∑
z∈F i

j
z = 0, and so cj must be set equal to at least 2−i. We

conclude that cj ≥ 1
32ρ(vj , S

′). ut

5.3 A linear program

While the IP gives a good approximation to the LDM problem, we do not know
how to solve this IP in polynomial time. Instead, we create an LP by relaxing
the integrality constraints (1) into linear constraints zij ∈ [0, 1]. This LP can
be solved quickly, as shown in Section 5.4. After solving the LP, we recover a
solution to the LDM problem by rounding the Z variables to integers, as follows:

1. If ztj ≥ 1
2 , then ztj is rounded up to 1.

2. For each level i = 0, . . . , t: Let F i be the set of all neighborhoods F ij . Extract

from F i a maximal subset F̂ i whose elements obey the following: (i) For each
F ij ∈ F̂ i there is some k ≥ i such that

∑
z∈Fk

j
z ≥ 1

4 . (ii) Elements of F̂ i

do not intersect. For each element F ij ∈ F̂ i, we round up to 1 its center zil
(where vl is the nearest neighbor of vj in Si), as well as every variable zkl
with k > i.

3. All other variables of Z are rounded down to 0.

These rounded variables Z correspond (in an obvious manner) to an integral
solution S′′ with hierarchy S ′′. The following lemma completes the first half of
Theorem 4.

Lemma 3. S′′ is a (336, 4 log2 252+o(1))-bicriteria approximate solution to the
LDM problem on S.

Proof. Before analyzing S′′, we enumerate three properties of its hierarchy S ′′.
(i) Nested. When a variable of level i is rounded up in rounding step 2, all
corresponding variables in levels k > i are also rounded up. This implies that
S ′′ is nested.

(ii) Packing. We will show that after the rounding, the number of 1-valued
variables found in each Gij is small. By Constraint (5), the sum of the pre-

rounded variables zik ∈ Gij is at most (2g)D
′
. If i = t, then step 1 rounds up only

10 Choosing g = 3(e+ 2) would give a tighter bound, but the current value of g will be
useful later.
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variables ztk of value 1
2 and higher, so after this rounding step Gtj contains at

most 2 · (2g)D
′

points of S′′t . For general i ∈ [t], variables of Gij may be rounded
up due to rounding step 2 acting on level i. This step stipulates that a variable
zil ∈ Gij may be rounded up if zil is the center of a distinct subset F il ∈ F̂ i.
Inclusion in F̂ i requires

∑
z∈Fk

l
z ≥ 1

4 for some k ≥ i, and so Constraint (9)

implies that
∑
z∈F i

l
z ≥ 1

4(2f)D′
. Now, since zil is in both Gij and F il , all points

in F il are within distance g+f = h of the center of Gij , and so by Constraint (6)

rounding step 2 may place at most 4(2f)log(2
3D+1) · (2h)log(2

3D+1) = (2h)4D+o(1)

points of S′′i into the ball.

Further, rounding step 2 acting on levels k < i may add points to ball Gij .

Since points in each nested level k possess packing 2−k, and the radius of our
ball is at most g · 2i, levels k ≤ i − log g can together add just a single point.
Levels i− log g < k < i may each add at most (2h)4D+o(1) additional points to
Gij , accounting for (2h)4D+O(1) total points. It follows that the total number of

points in the ball is bounded by (2h)4D+O(1).

(iii) Covering. We first consider a variable ztj rounded up in rounding step 1,
and show it will be (3f + 2)-covered in each level S′′i of the hierarchy. Since
ztj ≥ 1

2 , Constraint (3) implies that for the pre-rounded variables,
∑
z∈F i

j
z ≥∑

z∈Ei
j
z ≥ 1

2 . By construction of rounding step 2, a variable of F ij or one in a

nearby set in F̂ i is rounded to 1, and the distance of this variable from vj is less
than (3f + 2) · 2−i.

We turn to a variable zij rounded to 1 in step 2, and demonstrate that it

is 3f -covered in each hierarchy level k < i. Since zij was chosen to be rounded,

there must exists k ≥ i with
∑
z∈Fk

j
z ≥ 1

4 , and so a variable in every set Fhj (or

in a nearby set in F̂h) for all h < k must be rounded as well. It follows that zij is

3f -covered by a variable in each set Fhj (or in a nearby set in F̂h) for all h < i.

Having enumerated the properties of the hierarchy, we can now prove the
doubling dimension of S′′. Take any ball B of radius 2(3f + 2) · 2−i centered at
a point of S′′i . Since every point of S′′k is (3f + 2)-covered by some point in S′′i ,
the points of S′′k covered by B are all covered by a set of balls of radius (3f + 2)
within distance 3(3f + 2) · 2−1 = g · 2−1 of the center point. By the packing
property proved above, there exist fewer than (2h)4D+o(1) such points, implying
a doubling dimension of 4D log 252 + o(1).

It remains to bound the mapping cost. By Lemma 2(a), the cost of an optimal
LP solution is at most 32C∗. Consider the mapping cost of a point vj . If the
corresponding variable ztj was rounded up to 1 then the mapping cost ρ(vj , S

′′) =
0 ≤ cj , i.e., at most the contribution of this point to the LP objective. Hence,
we may restrict attention to a variable ztj <

1
2 that was subsequently rounded

down. We want to show that ρ(vj , S
′′) is not much more than the LP cost cj .

First, cj ≥ δ
2 by Constraint (7). Now take the highest level i for which cj <

2−i

4 ;
by Constraint (8), it must be that

∑
z∈F i

j
≥ 1

4 . Then by rounding step 2, a
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variable within distance (3f + 2) · 2−i = 38 · 2−i of vj must be rounded up.

Hence, the LP cost cj ≥ 2−i−1

4 = 2−i

8 is at least 1/304-fraction of the mapping
cost ρ(vj , S

′′). Altogether, we achieve an approximation of 32+304 = 336 to the
optimal cost. ut

5.4 LP solver

To solve the linear program, we utilize the framework presented by [32] for LPs
of following form: Given non-negative matrices P,C, vectors p, c and precision
β > 0, find a non-negative vector x such that Px ≤ p (LP packing constraint)
and Cx ≥ c (LP covering constraint). Young shows that if there exists a fea-
sible solution to the input instance, then a solution to a relaxation of the in-
put program, specifically Px ≤ (1 + β)p and Cx ≥ c, can be found in time
O(mr(logm)/β2), where m is the number of constraints in the program and r
is the maximum number of constraints in which a single variable may appear.
In [12], we show how to model our LP in a way consistent with Young’s frame-
work, with m = O(t2n+ n log n), r = O(1), and β = O(1/(t log n)). This yields
an algorithm that achieves the approximation bounds of Lemma 3 with the run-
time claimed by Theorem 4. Lemma 4 below completes the proof of Theorem 4.

Lemma 4. An algorithm realizing the bounds of Lemma 3 can be computed in
time 2O(ddim(S))n+O(n log4 n).
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