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Efficient Regression in Metric Spaces
via Approximate Lipschitz Extension

Lee-Ad Gottlieb and Aryeh Kontorovich and Robert Krauthgamer

Abstract—We present a framework for performing effi-
cient regression in general metric spaces. Roughly speak-
ing, our regressor predicts the value at a new point
by computing an approximate Lipschitz extension — the
smoothest function consistent with the observed data — af-
ter performing structural risk minimization to avoid over-
fitting. We obtain finite-sample risk bounds with minimal
structural and noise assumptions, and a natural runtime-
precision tradeoff. The offline (learning) and online (pre-
diction) stages can be solved by convex programming,
but this naive approach has runtime complexity O(n3),
which is prohibitive for large datasets. We design instead
a regression algorithm whose speed and generalization
performance depend on the intrinsic dimension of the
data, to which the algorithm adapts. While our main
innovation is algorithmic, the statistical results may also
be of independent interest.

I. INTRODUCTION

The classical problem of estimating a continuous-
valued function from noisy observations, known as re-
gression, is of central importance in statistical theory
with a broad range of applications, see e.g. [41], [7],
[38], [22], [20]. When no structural assumptions con-
cerning the target function are made, the regression
problem is termed nonparametric. Informally, the main
objective in the study of nonparametric regression is to
understand the relationship between the regularity con-
ditions that a function class might satisfy (e.g., Lipschitz
or Hölder continuity, or sparsity in some representation)
and the minimax risk convergence rates [47], [51]. A
further consideration is the computational efficiency of
constructing the regression function.

The general (univariate) nonparametric regression
problem may be stated as follows. Let (X , ρ) be a
metric space, and let H be a collection of functions
(“hypotheses”) h : X → [0, 1]. (Although in general,
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h need not be restricted to a bounded range, typical
assumptions on the diameter of X and the noise distri-
bution amount to an effective truncation [26], [36].) The
space X × [0, 1] is endowed with some fixed, unknown
probability distribution µ, and the learner observes n iid
draws (Xi, Yi) ∼ µ. The learner then seeks to fit the
observed data with some hypothesis h ∈ H so as to
minimize the risk, usually defined as the expected loss
E |h(X)− Y |q for (X,Y ) ∼ µ and some q ≥ 1. This is
known in machine learning theory as the agnostic setting.
The agnostic setting is considerably more general than
the additive (typically Gaussian) noise model prevalent
in statistics (see [42] for a recent paper on agnostic
regression).

We consider two kinds of risk: L1 (mean absolute)
and L2 (mean square). More precisely, for q ∈ {1, 2}
we associate to each hypothesis h ∈ H the empirical
Lq-risk

Rn(h, q) =
1

n

n∑
i=1

|h(Xi)− Yi|q , (1)

and the (expected) Lq-risk

R(h, q) = E |h(X)− Y |q =

∫
X×[0,1]

|h(x)− y|q dµ(x, y). (2)

It is well-known that h(x) = M[Y |X = x] (where
M is a median) minimizes R(·, 1) over all integrable
h ∈ [0, 1]X and h(x) = E[Y |X = x] minimizes R(·, 2).
However, these characterizations are of little practical
use as neither is computable without knowledge of µ.
Hence, the standard route is to minimize the regularized
empirical risk and provide generalization bounds for
this procedure. A naive implementation of this approach
requires solving a linear (or quadratic) program, which
incurs a prohibitive O(n3) time complexity.

Our contribution: Our approach to the regression
problem departs from that of classical statistics in several
important ways. Statistics has traditionally been more
concerned with establishing minimax risk rates than with
the computational efficiency (or even explicit construc-
tion) of the regression procedure. In contradistinction,



our framework involves a precision parameter η, which
controls the runtime-precision tradeoff. In particular, this
means that Bayes-consistency is not achievable for η >
0. Further, our results rely on the structure of the metric
space, but only to the extent of assuming that it has a low
“intrinsic” dimensionality. Specifically, we consider the
doubling dimension of X , denoted ddim(X ), which was
introduced by [19] based on earlier work of [1], [9], and
has been since utilized in several algorithmic contexts,
including networking, combinatorial optimization, and
similarity search, see e.g. [23], [46], [31], [5], [21],
[11], [10]. (A formal definition and typical examples
appear in Section II.) Following the work of [16] on
classification problems, our risk bounds and algorithmic
runtime bounds are stated in terms of the doubling
dimension of the data space and the Lipschitz constant
of the regression hypothesis, although neither of these
quantities need be known in advance. Note that any
continuous function can be uniformly approximated by
Lipschitz functions, with the Lipschitz constant as a
measure of regularity — to which our algorithm adapts
in a data-dependent fashion.

Our paper’s main contribution is computational. The
algorithm in Theorem III.1 computes an η-additive ap-
proximation to the Lipschitz-regularized empirical risk
minimizer in time η−O(ddim(X ))n ln3 n (recall η > 0
is a parameter that controls the desired precision). By
Theorem IV.1, this hypothesis can be evaluated on new
points in time η−O(ddim(X )) lnn. A novel feature of
our construction is the use of a spanner to reduce the
runtime of a linear program, and the spanner construction
in Appendix A is itself of independent interest, having
already been invoked in [13], [45]. We also present some
statistical risk bounds (culminating in Theorem V.1).

A simple no-free-lunch argument shows that it is
impossible to learn functions with arbitrary oscillation,
and hence Lipschitzness is a natural and commonly
used regularization constraint [47], [51], [43]. In this
sense, our work fits into the so-called luckiness paradigm
[44], of which SVM is a classic instance. Rather than
guaranteeing a priori Bayes-consistency or excess risk
bounds, luckiness bounds are data-dependent. Thus, in
the case of SVM, a lucky sample is one that admits a
large-margin separator; this in turn allows for optimistic
generalization bounds — as opposed to a less lucky
sample with a smaller margin and correspondingly more
pessimistic bounds. More recently, this data-dependent
approach was applied to general metric spaces [16] and
was later shown to be Bayes-consistent [28].

Our runtime and generalization bounds explicitly de-
pend on the doubling dimension of X , but as we discuss
in Remark 2, recent results with data-dependent general-

ization [17] renders our approach adaptive to the intrinsic
dimension of the samples, offering large savings when
the latter is even moderately smaller than the ambient
metric dimension.

Paper outline: We start by defining the basic
concepts in Section II. Our efficient model selection
procedure is described in Section III, and the prediction
algorithm (for a test point) is described in Section IV.
The risk guarantees of our method are provided in
Section V.

Related work: There are many excellent references
for classical Euclidean nonparametric regression assum-
ing iid noise, see for example [12], [20]. For metric
regression, a simple risk bound follows from classic
VC theory via the pseudo-dimension, see e.g. [40],
[48], [39]. However, the pseudo-dimension of many
natural function classes, including Lipschitz functions,
is infinite — yielding a vacuous bound. An approach
to nonparametric regression based on empirical risk
minimization, though only for the Euclidean case, may
already be found in [34]; see the comprehensive histori-
cal overview therein. Indeed, [20, Theorem 5.2] provides
a kernel regressor for Lipschitz functions that achieves
the minimax rate. Note however that (a) the setting is
restricted to Euclidean spaces; and (b) the runtime cost
of evaluating the hypothesis at a new point grows linearly
with the sample size (while our complexity is roughly
logarithmic).

More recently, risk bounds in terms of doubling
dimension and Lipschitz constant were given in [29].
These results assumed an additive noise model, and
hence are incomparable to ours. Following up, a re-
gression technique based on random partition trees was
proposed in [30], based on mappings between Euclidean
spaces and also assuming an additive noise model.
Another recent advance in nonparametric regression was
Rodeo [33], which escapes the curse of dimensionality
by adapting to the sparsity of the regression function. In
contrast, our results apply to general metric spaces and
exploit Lipschitz smoothness rather than sparsity.

Our work was inspired by the paper of von Luxburg
and Bousquet [50], who established a connection be-
tween Lipschitz classifiers in metric spaces and large-
margin hyperplanes in Banach spaces, thereby providing
a novel generalization bound for nearest-neighbor clas-
sifiers. They developed a powerful statistical framework
whose core idea may be summarized as follows: to
predict the behavior at new points, find the smoothest
function consistent with the training sample, and then
extend the function to the new points. Since the regres-
sion function is defined implicitly by the labeled sample,
the work of [50] raises natural algorithmic issues, such
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as efficiently evaluating this function on test points (pre-
diction) and performing model selection (Structural Risk
Minimization) to avoid overfitting. Subsequent work
(by the current authors) [16] leveraged the doubling
dimension for both statistical and computational effi-
ciency, and designed an efficient classifier for doubling
metric spaces. Its key feature is an efficient algorithm to
optimize the balance between the empirical risk and the
penalty term for a given input. The present work extends
these techniques from binary classification to real-valued
regression, which presents a host of technical challenges.

II. TECHNICAL BACKGROUND

We use standard notation and definitions throughout.
The long-standing custom of ignoring measurability is-
sues in learning-theoretic papers is more than justified
in this case: we (effectively) only consider a class
of functions computable to fixed precision by a fixed
algorithm, and thus no loss of generality is incurred in
treating this set of functions as countable. We write ln
for the natural logarithm and logb to specify a different
base b.

Metric spaces, Lipschitz constants: A metric ρ on
a set X is a symmetric function that is positive (except
for ρ(x, x) = 0) and satisfies the triangle inequality
ρ(x, y) ≤ ρ(x, z) + ρ(z, y); together the two comprise
the metric space (X , ρ). The diameter of a set A ⊆ X
is defined by diam(A) = supx,y∈A ρ(x, y). There is no
loss of generality in assuming diam(X ) = 1 since we
can always scale the distances (when they are bounded).
The Lipschitz constant of a function f : X → R,
denoted ‖f‖Lip (or ‖f‖Lip(ρ) if we wish to make the metric
explicit) is defined to be the smallest L ≥ 0 such that
|f(x) − f(y)| ≤ Lρ(x, y) holds for all x, y ∈ X . In
addition to the metric ρ on X , we will endow the space
of all functions f : X → R with the L∞ metric:

‖f − g‖∞ = sup
x∈X
|f(x)− g(x)| .

A function is called L-Lipschitz if ‖f‖Lip ≤ L. We
will denote by HL the collection of all L-Lipschitz
functions X → [0, 1]. It will occasionally be convenient
to restrict this class to functions with ‖f‖Lip ≥ 1; the
latter collection will be denoted by HL≥1. This incurs
no loss of generality in our results, as our Structural Risk
Minimization procedure in general selects hypotheses
whose Lipschitz constant grows with sample size. (See
for example the risk bound presented at the beginning
of Section III.)

Minkowski sums and perturbations: If A,B are
two families of functions mapping X to R, then their
Minkowski sum is A ⊕ B := {a+ b : a ∈ A, b ∈ B}.

For η > 0, define JηK := [−η, η]
X . Hence, HL ⊕ JηK

represents the collection of all [0, 1]-valued L-Lipschitz
functions perturbed pointwise by at most η.

Doubling dimension: For a metric space (X , ρ),
let λ > 0 be the smallest value such that every ball
in X can be covered by λ balls of half the radius.
The doubling dimension of X is ddim(X ) = log2 λ.
A metric space (or family of metrics) is called doubling
if its doubling dimension is uniformly bounded. Note
that while a low Euclidean dimension implies a low
doubling dimension (Euclidean metrics of dimension d
have doubling dimension O(d)), low doubling dimension
is strictly more general than low Euclidean dimension.

Doubling metric spaces occur naturally in many data
analysis applications, including for instance the geodesic
distance of a low-dimensional manifold residing in a
possibly high-dimensional space assuming mild con-
ditions, e.g., on curvature. Some concrete examples
for doubling metric spaces include: (i) Rd for fixed
d equipped with an arbitrary norm, e.g. `p or a mix
between `1 and `2; (ii) the planar earthmover metric
between point sets of fixed size k [16]; (iii) the n-cycle
graph and its continuous version, the quotient R/Z, and
similarly bounded-dimensional tori. In addition, various
networks that arise in practice, such as peer-to-peer
communication networks and online social networks, can
be modeled reasonably well by a doubling metric space.

Graph spanner: A (1 + δ)-stretch spanner for a
graph G (which may have positive edge-lengths) is
a subgraph H that contains all nodes of G (but not
all edges), and ρH(u, v) ≤ (1 + δ)ρG(u, v) for all
u, v ∈ G, where ρG(u, v) denotes the shortest-path
distance between u and v in G (and similarly ρH(u, v)
for H). If a spanner H achieves this stretch bound even
when ρH is evaluated only on paths in H with at most k
edges, then H is called a (1 + δ)-stretch k-hop spanner
for G.

A spanner for a finite metric space X is defined by
viewing the metric space as a complete graph G on
the vertex set X , with edge-lengths corresponding to
distances in X . Doubling metrics are known to admit
good spanners [8], [21], [18]. We will use a specific
variant described in Appendix A.

III. REGRESSION ALGORITHM

Let us fix the user-specified parameters q ∈ {1, 2}
(risk type), δ > 0 (confidence level), and η > 0 (preci-
sion parameter). Given the training sample (Xi, Yi)i∈[n],
our goal is to construct a hypothesis h̃ : X → [0, 1]
with small expected risk R(h̃, q). Since the expected
risk cannot be computed exactly (it depends on the
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unknown distribution µ), we will instead seek to min-
imize an upper estimate of the risk. Theorem V.1 shows
that with probability at least 1 − δ, for all L̃ ≥ 1,
η̃ ∈ {η, 2η, . . . , ηb1/ηc, 1} and hypothesis h̃ ∈ HL̃⊕Jη̃K
(that is, h̃ is η̃-close to some L̃-Lipschitz function),

R(h̃, q) ≤ Rn(h̃, q) + 4(2q − 1)η̃ + (1 + o(1))

√
32 ln 8

(2q−1)η̃

n

(
16q3/2L̃

(2q − 1)η̃

)1+ddim(X )

+ 3

√
ln 4

δη

2n
.

Denote the RHS by Q(h̃, L̃, η̃); when L̃, η̃ are clear from
the context, it may be convenient to write just Q(h̃). In
this section, we design an algorithm to find a hypothesis
that approximately minimizes Q(h̃, L̃, η̃). (A technique
for quickly evaluating this hypothesis on new points is
presented in Theorem IV.1.)

Suppose that for some training sample, Q(·) is mini-
mized by some (h∗, L∗, η∗), where the minimum is taken
over η∗ ≥ 0, L∗ ≥ 1, and hypothesis h∗ : X → [0, 1]
that is η∗-close to some L∗-Lipschitz function.

Theorem III.1. There is an algorithm that, given a
precision parameter η ∈ (0, 1

4 ) and a training sample
(Xi, Yi) ∈ X × [0, 1], i ∈ [n], computes η̃ > 0, L̃ ≥ 1
and a hypothesis h̃ : X → [0, 1], h̃ ∈ HL̃ ⊕ Jη̃K that
satisfy

Q(h̃, L̃, η̃) ≤ Q(h∗, L∗, η∗) + η, (3)

in time η−O(ddim(X ))n ln3 n.

Remark 1. The role of the precision parameter η is to
facilitate the construction of an approximate Lipschitz
hypothesis with much greater efficiency than its exact
Lipschitz counterpart. The bound (3) shows that the com-
puted hypothesis h̃ is competitive not only against any
unperturbed Lipschitz hypothesis, but also against any
η∗-perturbed hypothesis. Moreover, the pointwise η∗-
perturbations might conspire to yield a lower empirical
risk than unperturbed hypotheses. Theorem III.1 shows
our approximate minimizer h̃ is competitive even against
an “optimally perturbed” hypothesis h∗.

The rest of this section is devoted to proving The-
orem III.1 for q = 1 (Sections III-A and III-B) and
for q = 2 (Section III-C). We consider the n observed
samples as fixed values given as input to the algorithm
(as opposed to random samples), so we will denote
them (xi, yi) instead of (Xi, Yi). We will also restrict
our attention to hypotheses for which Q(·) < 1, since
otherwise our bounds are vacuous. Indeed, the minimizer
h∗ must satisfy this condition, which holds even for the
flat hypothesis mapping all points to 1

2 (for sufficiently
large n).

A. Motivation and construction

We wish to find an optimal perturbed hypothesis
h∗ ∈ HL∗≥1 ⊕ Jη∗K minimizing Q(·). Suppose that the
Lipschitz and perturbation constants L∗, η∗ of a mini-
mizer h∗ were known. Then the problem of computing
both h∗ and its empirical risk Rn(h∗, q) can be described
as the following optimization program where variables zi
representing the underlying smooth hypothesis of which
h∗ is an η∗-perturbation. Note that the optimization
program is a Linear Program (LP) when q = 1 and a
quadratic program when q = 2.

Minimize 1
n

∑
i∈[n] w

q
i

subject to |zi − zj | ≤ L∗ · ρ(xi, xj) ∀i, j ∈ [n]
wi ≥ |yi − zi| − η∗ ∀i ∈ [n]
0 ≤ zi ≤ 1 ∀i ∈ [n]
0 ≤ wi ≤ 1 ∀i ∈ [n]

(4)

After solving the program for variables zi, a minimizer
h∗ can easily be derived: If solution zi is less than yi
then h∗(xi) = min{zi+η∗, yi}, and otherwise h∗(xi) =
max{zi − η∗, yi}. It follows that h∗ could be computed
by first obtaining L∗ and η∗, and then solving the above
program. However, both computing L∗, η∗ and solving
the program appear to be expensive computations, which
motivates our approximate solution. Note that supplying
the LP with only a crude upper-bound on either L∗ or η∗

could yield a hypothesis with large Lipschitz constant or
perturbation, and potentially poor generalization bounds.
We show below how to derive relatively tight estimates
for L∗, η∗, and in Section III-B we show how to solve
the program quickly.

We first obtain a target perturbation constant η̄ that
“approximates” the unknown η∗. In particular, we dis-
cretize candidate values of η̄ to be of the form iη for
integral i ∈ [0, d1/ηe], and search over all these values.
(Recall that η is the input to Theorem III.1.) It follows
that there are only O(1/η) candidates for η̄, and that one
of these candidates satisfies η∗ ≤ η̄ < η∗ + η.

Next, we obtain a target Lipschitz constant L̄ that
approximates L∗. Recall that we have assumed that
L∗ ≥ 1, and also have that L∗ < n, as otherwise
the value of Q(h∗, L∗, η∗) is necessarily greater than
1. We discretize the candidate values of L̄ to be of
the form

(
1 + η

ddim(X )+1

)i
for integral i ≥ 0, and

search over all these values. It follows that there are
only O

(
ddim(X )

η lnn
)

discretized candidate values for
L̄, and that one of these candidates satisfies L∗ ≤ L̄ <(

1 + η
ddim(X )+1

)
L∗. We note that(

1 +
η

ddim(X ) + 1

)ddim(X )+1

≤ eη ≤ 1 + 2η.
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Now replace η∗, L∗ in program (4) with approxi-
mations η̄, L̄, and let the hypothesis h̄ be an optimal
solution for the modified program; this can only decrease
the objective, i.e., Rn(h̄, q) ≤ Rn(h∗, q). Recall that
Q(h∗) ≤ 1, and so by the definition of Q(·) and the
above bounds on η̄, L̄ we have

Q(h̄) < Q(h∗) · (1 + 2η) + 4η = Q(h∗) + 6η.

It remains to show that for each of the O
(

ddim(X )
η2 lnn

)
candidate pairs of L̄ and η̄, the modified linear program
may be solved quickly (within fixed precision), which
we do in Sections III-B and III-C.

B. Solving the linear program

We show how to approximately solve the modified
linear program, given target Lipschitz constant L̄ and
perturbation parameter η̄ (recall h̄ is an optimal solution
for this modified LP). Our solution will yield a hypoth-
esis h̃ satisfying

Q(h̃) ≤ Q(h̄) +O(η).

Reduced constraints: A central difficulty in obtain-
ing a near-linear runtime for LP (4) is that the number
of constraints is Θ(n2); in particular, there are Θ(n2)
constraints of the form |zi − zj | ≤ L̄ · ρ(xi, xj). We
show how to reduce the number of these constraints
(and only these constraints) to near-linear in n, namely,
η−O(ddim(X ))n. We will further guarantee that each
of the n variables zi appears in only η−O(ddim(X ))

constraints. Both these properties will prove useful for
solving the program quickly.

Recall that the purpose of the Θ(n2) constraints
is to ensure that the underlying hypothesis is smooth
in the sense that the target Lipschitz constant is not
violated between any pair of points. We show that this
property can be approximately maintained with many
fewer constraints. To see this, consider a 1 + δ stretch
spanner for the point set, with spanner edge-set E. We
claim that it suffices to enforce the Lipschitz condition
L̄ only on pairs that are endpoints in E: Let xk1 , xkj
be any pair that are not connecting by a single in E,
and let xk2 , . . . , xkj−1 be the vertices encountered on
the minimum stretch path in E connecting xk1 and xkj .
Then by the stretch guarantee of the spanner and the
Lipschitz condition on its endpoints we have

|yk1 − ykj |
ρ(xk1 , xkj )

≤
∑j−1
i=1 |yki − yki+1

|
ρ(xk1 , xkj )

≤
∑j−1
i=1 L̄ρ(xki , xki+1

)

ρ(xk1 , xkj )
≤
L̄(1 + δ)ρ(xk1 , xkj )

ρ(xk1 , xkj )
= (1 + δ)L̄.

More formally, the constraints are reduced as follows:
The spanner described in Appendix A has stretch 1 + δ,
degree δ−O(ddim(X )) and hop-diameter c′ lnn for some

constant c′ > 0, and can be computed quickly. Build
this spanner for the observed sample points {xi : i ∈
[n]} with stretch 1 + η2

2 (i.e., set δ = η2

2 ) and retain
a constraint in LP (4) if and only if its two variables
zi, zj correspond to two vertices connected by a spanner
edge (that is, edge (xi, xj) is found in spanner’s edge set
E). It follows from the bounded degree of the spanner
that each variable appears in η−O(ddim(X )) constraints,
which implies that a total of η−O(ddim(X ))n constraints
are retained. Constructing the spanner (and thus the LP)
takes time η−O(ddim(X ))n lnn. The complete analysis of
the Lipschitz guarantee appears below.

Fast LP-solver framework: To solve the modified
LP for fixed candidate values L̄ and η̄, we utilize the
framework presented by Young [53] for LPs of the fol-
lowing form: Given non-negative matrices P,C, vectors
p, c and precision β > 0, find a non-negative vector
x such that Px ≤ p and Cx ≥ c. Young shows that
if there exists a feasible solution to the input instance,
then a solution to a relaxation of the input program —
specifically, Px ≤ (1+β)p and Cx ≥ c — can be found
in time O(md(lnm)/β2), where m is the number of
constraints in the program and d is the maximum number
of constraints in which a single variable may appear. We
may assume that constraints of the form 0 ≤ zi ≤ 1 and
0 ≤ wi ≤ 1 can be satisfied exactly: Since yi ≤ 1, we
can always round down a solution variable to 1 without
affecting the quality of the solution.

Modifying the Lipschitz constraints: In utilizing
Young’s framework for our problem, we encounter a
difficulty that both the input matrices and output vector
must be non-negative, while our LP (4) has difference
constraints. To bypass this limitation, we first consider
the LP variables zi, and for each one introduce a new
variable 0 ≤ z̃i ≤ 1 and two new constraints:

zi + z̃i ≤ 1,

zi + z̃i ≥ 1.

These constrains require that z̃i = 1 − zi, but by the
relaxed guarantees of the LP solver, we have that in the
returned solution 1−zi ≤ z̃i ≤ 1−zi+β. This technique
allows us to introduce negated variables −zi into the
linear program, at the loss of additive precision.

Each retained spanner-edge constraint |zi − zj | ≤ L̄ ·
ρ(xi, xj) is replaced by a pair of constraints

zi + z̃j ≤ 1 + L̄ · ρ(xi, xj),

zj + z̃i ≤ 1 + L̄ · ρ(xi, xj)

Taken together, the above four constraints require that
1 + |zi − zj | ≤ 1 + L̄ · ρ(xi, xj). The modified program
is found in (5).
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Minimize 1
n

∑
i∈[n] wi

subject to 1 ≤ zi + z̃i ≤ 1 ∀i ∈ [n]
zi + z̃j ≤ L̄ · ρ(xi, xj) ∀(xi, xj) ∈ E
wi ≥ |yi − zi| − η̄ ∀i ∈ [n]
0 ≤ zi ≤ 1 ∀i ∈ [n]
0 ≤ z̃i ≤ 1 ∀i ∈ [n]
0 ≤ wi ≤ 1 ∀i ∈ [n]

(5)

Below we will address the objective function and the
related constraint wi ≥ |yi− zi| − η̄, and show that they
can be modified to fit into Young’s LP framework. But
first, we will show that our modification of the Lipshitz
constraints, along with the approximate guarantees of
the LP solver, still yield a hypothesis that is close to
Lipschitz:

Recall that in the returned solution of the LP solver,
zi ≤ 1, and so necessarily |zi − zj | ≤ 1. By the
approximate guarantees of the LP solver, we have that
in the returned solution to LP (5), each spanner edge
constraint will satisfy

|zi − zj | ≤ min{1,−1 + (1 + β)[1 + L̄ · ρ(zi, zj)]}
= min{1, β + (1 + β)L̄ · ρ(zi, zj)} (6)
≤ 2β + L̄ · ρ(zi, zj),

where the last inequality follows by splitting into two
cases, depending on whether L̄ · ρ(zi, zj) ≤ 1.

To obtain a similar bound for point pairs not connected
by a spanner edge: Let x1, . . . , xk+1 be a (1 + η2

2 )-
stretch k-hop spanner path connecting points x1 and
xk+1, for k ≤ c′ lnn; then the stretch guarantee implies
that

∑k
i=1 ρ(xi, xi+1) ≤ (1 + η2

2 )ρ(x1, xk+1). Using
the triangle inequality and (6), and recalling the relaxed
guarantees of the LP solver, we have that in the returned
solution to LP (5)

|z1 − zk+1| ≤ min{1,
∑k
i=1 |zi − zi+1|}

≤ min{1,
∑k
i=1[β + (1 + β)L̄ · ρ(xi, xi+1)]}

≤ min{1, βk + (1 + β)L̄ · (1 + η2/2) ρ(x1, xk+1)}
≤ min{1, β(k + 1) + (1 + η2/2)L̄ · ρ(x1, xk+1)}

≤ β(c′ lnn+ 1) +
η2

2
+ L̄ · ρ(x1, xk+1),

where the fourth and fifth inequalities each follow by
splitting into two cases.

Choosing β = η2

2c′ lnn+1 , we have that for all point
pairs in the returned solution to LP (5)

|zi − zj | ≤ η2 + L̄ · ρ(zi, zj).

Now let hz be the hypothesis mapping xi to the value
of zi in the returned solution of the modified LP (5).

In the original LP (4), the variables zi represented the
L∗-Lipschitz underlying function. In the solver solution
for LP (5), the variables zi are a 4η-perturbation of an
L̄-Lipschitz function:

Lemma III.2. With hz defined as above, hz ∈ HL̄ ⊕
J4ηK.

Proof: Let us construct a function h̃z as follows: Let
S be the sample points {xi}i∈[n], and extract from S

an η/L̄-net N .1 For every net-point v ∈ N set h̃z(v) =
hz(v)
1+η . Then extend hypothesis h̃z from N to all of the

sample S without increasing Lipschitz constant by using
the McShane-Whitney extension theorem [35], [52] for
real-valued functions.2 This completes the description of
h̃z .

We first show that ‖h̃z‖Lip ≤ L̄. Indeed, for every two
net-points v 6= v′ ∈ N we have ρ(v, v′) ≥ η/L̄ and so

|h̃z(v)− h̃z(v′)| = |h̃z(v)−h̃z(v′)|
1+η

≤ η2+L̄·ρ(v,v′)
1+η

≤ L̄ · ρ(v, v′).

It follows that h̃z indeed satisfies the L̄-Lipschitz con-
dition on the net-points. By the extension theorem, h̃z
achieves Lipschitz constant L̄ on all points of S.

It remains to show that ‖hz − h̃z‖∞ ≤ 4η: Consider
any point x ∈ S and its closest net-point v ∈ N ; then
ρ(x, v) < η/L̄ and we have

|hz(x)− h̃z(x)| ≤ |hz(x)− hz(v)|+ |hz(v)− h̃z(v)|+ |h̃z(v)− h̃z(x)|
< [η2 + L̄ · η

L̄
] + [1− 1

1+η ] + [η2 + L̄ · η
L̄

] · 1
1+η

< 4η,

and we conclude that hz is a 4η-perturbation of h̃z . �

Modifying the objective function: We now turn to
the constraints wi ≥ |yi − zi| − η̄ and the objective
function 1

n

∑
i∈[n] wi. Each LP constraint is replaced by

a constraint pair

wi + zi ≥ yi − η̄,
wi + z̃i ≥ 1− yi − η̄,

and together these require that wi ≥ |yi − zi| − η̄. Note
however that in the returned solution we are guaranteed
only that wi ≥ |yi − zi| − η̄ − β. Hence, the empirical

1The notion of a net referred to here means that (i) the distance
between every two points in N is at least η/L̄; and (ii) every point
in S is within distance η/L̄ from at least one point in N . It can be
easily constructed by a greedy process.

2The McShane-Whitney extension theorem says that for every metric
space M and subset N ⊂ M , every L-Lipschitz f : N → R can be
extended to all of M while preserving the L-Lipschitz condition.

6



error of the hypothesis is bounded by β + 1
n

∑
i∈[n] wi

instead of 1
n

∑
i∈[n] wi.

The objective function is replaced by the constraint

1

n

∑
i∈[n]

wi ≤ r,

where r itself it guessed by discretizing into multiples
of η — that is r̄ = iη2 for integral i ∈ [1, d1/η2e]
— which gives O(1/η2) candidate values for r. By
the discetization of r, the relaxed guarantees of the LP
solver, and the above bound on the empirical error, the
empirical error of the solution hypothesis h̃ is within an
additive term η2 + β + β < 2η2 of optimal. The final
program is found in (7).

Find 0 ≤ zi ≤ 1 ∀i ∈ [n]
0 ≤ z̃i ≤ 1 ∀i ∈ [n]
0 ≤ wi ≤ 1 ∀i ∈ [n]

subject to 1 ≤ zi + z̃i ≤ 1 ∀i ∈ [n]
zi + z̃j ≤ L̄ · ρ(xi, xj) ∀(xi, xj) ∈ E∑
i wi ≤ r̄ ∀i ∈ [n]

wi + zi ≥ yi − η̄ ∀i ∈ [n]
wi + z̃i ≥ 1− yi − η̄ ∀i ∈ [n]

(7)

Correctness and runtime analysis: Consider the
choice of L̄, η̄, closest to the values L∗, η∗, and recall
that for these values there exists a hypothesis h̄ ∈
HL̄≥1 ⊕ Jη̄K satisfying

Q(h̄, L̄, η̄) < Q(h∗, L∗, η∗) + 6η.

As shown above, running program (7) on this L̄, η̄, we
obtain a hypothesis h̃ ∈ HL̄⊕ J4η + η̄K whose empirical
risk is within an additive term 2η2 of the empirical risk
of the optimal h∗. It follows that

Q(h̃, L̄, 4η + η̄) ≤ Q(h̄, L̄, η̄) + 2η2 + 4η ≤ Q(h∗, L∗, η∗) + 11η.

The result claimed in Theorem III.1 is achieved, up
to scaling η, i.e., applying the above for η = η1/11,
by exhaustively trying all pairs of candidates L̄, η̄ and
picking the pair that minimizes Q(·).

We turn to analyze the algorithmic runtime. Re-
call that the spanner can be constructed in time
O(η−O(ddim(X ))n lnn). Young’s LP solver [53] is in-
voked on O

(
η−2ddim(X ) lnn

)
pairs of L̄, η̄ and

O(1/η2) candidate values of r̄, for a total of
O
(
η−4ddim(X ) lnn

)
times. To determine the runtime

per invocation, recall that each variable of the pro-
gram appears in d = η−O(ddim(X )) constraints, im-
plying that there are in total m = η−O(ddim(X ))n
constraints. Since we set β = O(η2/ lnn), we
have that each call to the solver takes time

O(md(lnm)/β2) ≤ η−O(ddim(X ))n ln2 n, and the to-
tal runtime is η−O(ddim(X ))n ln3 n. This completes the
proof of Theorem III.1 for q = 1.

C. Solving the quadratic program

We proceed to the case of a quadratic loss function,
i.e., q = 2 in our original program (4). A recent line
of work on fast solvers for Laplacian systems and for
electrical flows, see e.g. [49, Sections 3 and 11], provides
powerful algorithms that can speed up Laplacian-based
machine-learning tasks [54]. However, these algorithms
are not directly applicable here, because our quadratic
program (4) contains hard non-quadratic constraints to
enforce a Lipschitz-constant bound L∗. In fact, our
program can be viewed as minimizing simultaneously
the `∞-Laplacian on the graph edges and some `2-
Laplacian related to the point values. See also [32]
for a discussion of Lipschitz extension on graphs and
additional references.

Our approach is to modify the methodology we de-
veloped above for linear loss, to cover the case of a
quadratic loss function 1

n

∑
i w

2
i . Specifically, we in-

troduce variables vi ≥ w2
i , and replace the objective

function with 1
n

∑
i vi. It remains to show how to model

the constraints vi ≥ w2
i .

First consider a parabola y = x2, and note that a line
y = (2a)x − a2 is tangent to the parabola, intersecting
it at x = a. Hence, the constraint vi ≥ w2

i can be
approximated by a constraint set vi ≥ (2a)wi − a2

for a = iη and integral i ∈ [0, b1/ηc]. These lines
have slope in the range [0, 2], and so the approximation
may cause the value of vi to be underestimated by
2η. This is in addition to the previous underestimate
of wi, and by the above scaling of η this maintains
the asymptotic error guarantee of the theorem. Turning
to the runtime analysis, the replacement of a single
constraint by O(1/η) new constraints does not change
the asymptotic runtime.

IV. APPROXIMATE LIPSCHITZ EXTENSION

In this section, we show how to evaluate our hypoth-
esis on a new point. We take the underlying smooth
hypothesis on set S implicit in Lemma III.2 — call it
h̃z(·) — and we wish to evaluate a minimum Lipschitz
extension of h̃z on a new point x /∈ S. That is,
denoting S = {x1, . . . , xn}, we wish to return a value

y = h̃z(x) that minimizes max
i∈[n]

|y − h̃z(xi)|
ρ(x, xi)

. By the

McShane-Whitney extension theorem, the extension of
h̃z to the new point does not increase the Lipschitz
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constant of h̃z , and so the risk bound in Theorem V.1
applies.3

First note that the Lipschitz extension label y of
x /∈ S will be determined by a pair of points of S:
There exist points xi, xj ∈ S, one with label greater
than y and one with a label less than y, such that the
Lipschitz constant of x relative to each of these points
(that is, L = h̃z(xi)−y

ρ(x,xi)
=

y−h̃z(xj)
ρ(x,xj)

) is maximum over the
Lipschitz constant of x relative to any point in S. Hence,
y cannot be increased or decreased without increasing
the Lipschitz constant with respect to one of these points.
Hence, an exact Lipschitz extension may be computed
in Θ(n2) time in brute-force fashion, by enumerating
all point pairs in S, calculating the optimal Lipschitz
extension for x with respect to each pair alone, and
then choosing the candidate value for y with the highest
Lipschitz constant. However, we demonstrate that an
approximate solution to the Lipschitz extension problem
can be obtained more efficiently.

Theorem IV.1. An η-additive approximation to the Lip-
schitz extension problem on a function f : S → [0, 1]

can be computed in time
(

1
η

)−O(ddim(X ))

lnn.

Proof: The algorithm is as follows. Round up all
labels f(xi) to the nearest multiple of jη/2 (for any
integer 0 ≤ j ≤ 2/η), and call the new label function
f̃ . We seek the value of f̃(x), the value at point x
of the optimal Lipschitz extension function f̃ . Trivially,
f(x) ≤ f̃(x) ≤ f(x) + η/2. Now, if we were given
for each j the point with label jη/2 that is the nearest
neighbor of x (among all points with this label), then
we could run the brute-force algorithm described above
on these 2/η points in time O(1/η2) and compute
f̃(x). However, exact metric nearest neighbor search
is potentially expensive, and so we cannot find these
points efficiently. We instead find for each j a point
x′ ∈ S with label f̃(x′) = jη/2 that is a (1 + η

2 )-
approximate nearest neighbor of x among points with
this label. (This can be done by presorting the points of
S into 2/η buckets based on their f̃ label, and once x is
received, running on each bucket a (1 + η

2 )-approximate
nearest neighbor search algorithm due to [11] that takes
(1/η)O(ddim(X )) lnn time.) We then run the brute force
algorithm on these 2/η points in time O(1/η2). The
nearest neighbor search achieves approximation factor

3Theorems IV.1 and V.1 are “local” in the following sense. At a test
point x, Theorem IV.1 returns the value h(x), where h : X → [0, 1]
is an η-perturbed L-Lipschitz function. At a different test point x′,
a different h′ : X → [0, 1] is evaluated. There is no consistency
requirement between h and h′ — there need not exist any η̄-perturbed
L-Lipschitz function h′′ such that h′′(x) = h(x) and h′′(x′) =
h′(x′).

1 + η
2 , implying a similar multiplicative approximation

to L, and thus also to |y − f(x′)| ≤ 1, which means
at most η/2 additive error in the value y. We conclude
that the algorithm’s output solves the Lipschitz extension
problem within additive approximation η. �

V. RISK BOUNDS

The algorithm in Section III produces a hypothesis
h : X → [0, 1],4 which is an η̄-perturbation of some
hypothesis in HL (the notation there was h̃ and L̃).
Recalling the definitions of empirical risk and expected
risk in (1) and (2), this section is devoted to proving that
with high probability, R(h, q) is not much greater than
Rn(h, q).

Theorem V.1. Fix q ∈ {1, 2}, η ∈ (0, 1], and η̄ ∈
{η, 2η, . . . , ηb1/ηc, 1}. Then for all δ > 0, with proba-
bility at least 1−δ, the following holds uniformly for all
L ≥ 1 and all h ∈ HL ⊕ Jη̄K:

R(h, q) ≤ Rn(h, q) + 4(2q − 1)η̄ +

√
32 ln 8

(2q−1)η̄

n

(
16q3/2L

(2q − 1)η̄

)1+ddim(X )

+

√
ln log2(2L1+ddim(X ))

n
+ 3

√
ln 4

δη

2n
.

The proof of Theorem V.1 proceeds in two conceptual
steps. We first bound the covering numbers for classes of
Lipschitz functions (in Section V-A) and then use those
to estimate Rademacher complexities (in Section V-B).

A. Covering numbers for Lipschitz function classes

We begin by obtaining complexity estimates for Lip-
schitz functions in doubling spaces. In the conference
version [15] this was done in terms of the fat-shattering
dimension, but here we obtain considerably simpler
and tighter bounds by direct control over the covering
numbers.

The following variant of the classic “covering numbers
by covering numbers” estimate [24] was proved together
with Roi Weiss (cf. [27, Lemma 2]):

Lemma V.2. Let FL be the collection of L-Lipschitz
functions mapping the metric space (X , ρ) to [0, 1]. Then
the covering numbers of FL may be estimated in terms
of the covering numbers of X :

N (ε,FL, ‖·‖∞) ≤
(

8

ε

)N (ε/8L,X ,ρ)

.

4 Since Yi ∈ [0, 1], there is no loss in assuming that the hypothesis
also has this range; this is trivially ensured by a truncation, which
preserves the Lipschitz constant.
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Hence, for doubling spaces with diam(X ) = 1,

lnN (ε,FL, ‖·‖∞) ≤
(

16L

ε

)ddim(X )

ln

(
8

ε

)
.

Proof: Fix a covering of X consisting of |N | =
N (ε/8L,X , ρ) balls {U1, . . . , U|N |} of radius ε′ =

ε/8L and choose |N | points N = {xi ∈ Ui}|N |i=1. We
will construct an ε-cover F̂ =

{
f̂1, . . . , f̂|F̂ |

}
as follows.

At every point xi ∈ N , we choose f̂(xi) to be some
multiple of 2Lε′ = ε/4, while maintaining ‖f̂‖Lip ≤ 2L.
Construct a 2L-Lipschitz extension for f̂ from N to all
over X (such an extension always exists, [35], [52]).

We claim that every f ∈ FL is close to some f̂ ∈ F̂ ,
in the sense that ‖f − f̂‖∞ ≤ ε. Indeed, every point
x ∈ X is ε′-close to some point xN ∈ N , and since f
is L-Lipschitz and f̂ is 2L-Lipschitz,

|f(x)− f̂(x)| ≤ |f(x)− f(xN )|+ |f(xN )− f̂(xN )|+ |f̂(xN )− f̂(x)|
≤ L · ρ(x, xN ) + ε/4 + 2L · ρ(x, xN ) = ε.

It is easy to verify that |F̂ | ≤ (8/ε)|N |, since by
construction, the functions f̂ are determined by their
values on N . This provides a covering of FL using |F̂ |
balls of radius ε.

The bound for doubling spaces follows immediately
by applying the so-called doubling property (see for
example [31]) and the diameter bound, to obtain

N (ε,X , ρ) ≤
(

2

ε

)ddim(X )

.

�

Let us consider two additional properties that a metric
space (X , ρ) might possess:

1) (X , ρ) is connected if for all x, x′ ∈ X and all
ε > 0, there is a finite sequence of points x =
x1, x2, . . . , xm = x′ such that ρ(xi, xi+1) < ε for
all 1 ≤ i < m.

2) (X , ρ) is centered if for all r > 0 and all A ⊂ X
with diam(A) ≤ 2r, there exists a point x ∈ X
such that ρ(x, a) ≤ r for all a ∈ A.

The estimate in Lemma V.2 may be improved for
doubling spaces that are additionally connected and
centered, as follows.

Lemma V.3 ([24]). If (X , ρ) is connected and centered,
then, for constant ddim(X ),

lnN (ε,FL, ‖·‖∞) = O

((
L

ε

)ddim(X )

+ ln

(
1

ε

))
.

B. Rademacher complexities

The (empirical) Rademacher complexity [4], [25] of a
collection of functions F mapping some set Z to R is
defined, with respect to a sequence Z = (Zi)i∈[n] ∈ Zn,
by

R̂n(F ;Z) = E

[
sup
f∈F

1

n

n∑
i=1

σif(Zi)

]
, (8)

where the expectation is over the σi, which are iid with
P(σi = +1) = P(σi = −1) = 1/2.

To any collection G of hypotheses mapping X to R,
we associate the q-loss class, whose members map X×R
to R. The latter is denoted by q ◦ G and defined to be

q ◦ G = {f : (x, y) 7→ |g(x)− y|q ; g ∈ G} . (9)

It will also be convenient to define the auxiliary metric
space (Z, dq), where Z = X × [0, 1] and

dq((x, y), (x′, y′)) =
(
ρ(x, x′)q + |y − y′|q

)1/q
. (10)

Let us recall the relevance of Rademacher complexi-
ties to risk estimates [37, Theorem 3.1]: for every δ > 0,
we have that, with probability at least 1− δ,

R(g, q) ≤ Rn(g, q) + 2R̂n(q ◦ G;Z) + 3

√
ln(2/δ)

2n
, (11)

holds uniformly over all g ∈ G, where Z = (Xi, Yi)i∈[n]

is the training sample.
The following simple and well-known estimate of

Rademacher complexity is obtained via covering num-
bers; see, e.g., [3, Theorem 1.1] for the proof of a closely
related fact.

Lemma V.4. For all function classes F ⊂ [0, 1]Z , all
Z ∈ Zn, and all ε > 0,

R̂n(F ;Z) ≤ ε+

√
2 lnN (ε,F , ‖·‖∞)

n
.

Having reduced the problem to one of estimating
covering numbers, we would like to invoke results from
Section V-A, such as Lemma V.2. The following result
sheds light on the relation between HL and its loss class.
Its proof appears in Appendix B.

Lemma V.5. Let (Z, dq) be as defined in (10) and q ∈
{1, 2}. The following relations hold:
(i) if f ∈ q ◦ HL≥1 with witness h ∈ HL≥1, then
‖f‖Lip(dq ) ≤ q3/2 ‖h‖Lip(ρ),

(ii) ddim(Z, dq) ≤ 2 + 2ddim(X , ρ).

We are ready to prove an “unperturbed” version of
Theorem V.1, as follows.
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Theorem V.6. For q ∈ {1, 2}, L ≥ 1, and 0 < δ <
1, with probability at least 1 − δ, the following holds
uniformly over all h ∈ HL:

R(h, q)−Rn(h, q) ≤ 3

√
ln 2

δ

2n
+ 2 inf

ε>0

ε+

√
2ln 8

ε

n

(
16q3/2L

ε

)1+ddim(X )
 .(12)

Proof: Let Z = (Xi, Yi)i∈[n] be the training sample
and fix some L ≥ 1 and ε > 0. We begin by applying
(11) to G = HL, and get that with probability at least
1− δ, uniformly for all hypotheses h ∈ HL,

R(h, q) ≤ Rn(h, q) + 2R̂n(q ◦ (HL);Z) + 3

√
ln(2/δ)

2n
.

Further,

R̂n(q ◦ (HL);Z) ≤ ε+

√
2 lnN (ε, q ◦ HL, ‖·‖∞)

n

≤ ε+

√√√√2
(

16q3/2L
ε

)2+2ddim(X )

ln 8
ε

n

= ε+

√
2ln 8

ε

n

(
16q3/2L

ε

)1+ddim(X )

,(13)

where the first inequality follows from Lemma V.4 and
the second one by applying the covering number estimate
in Lemma V.2 to q ◦ HL, after the appropriate “conver-
sion” of Lipschitz constants and doubling dimensions
furnished by Lemma V.5. �

For completeness, we relate the empirical risk to the
optimal risk.

Corollary V.7. Fix q ∈ {1, 2}, L ≥ 1, and 0 < δ < 1,
and define

R̂n(q) := inf
h∈HL

Rn(h, q),

R∗(q) := inf
h∈HL

R(h, q).

Then

R̂n(q)−R∗(q) ≤ 3

√
ln 2

δ

2n
+ 2 inf

ε>0

ε+

√
2ln 8

ε

n

(
16q3/2L

ε

)1+ddim(X )


holds with probability at least 1− δ.

Proof: It will be convenient to denote the right-
hand side of (12) by ∆(δ) and to assume, without
loss of generality, the existence of minimizers ĥn and
h∗ of Rn(·, q) and R(·, q), respectively, over HL; this
is justified via a standard approximation argument. A
standard symmetrization argument (e.g., swapping Φ(S)

and Φ(S′) in [37, Eq. (3.6)]) shows that the estimate of
Theorem V.6 holds in the other direction as well:

P
(

sup
h∈HL

Rn(h, q)−R(h, q) > ∆(δ)

)
≤ δ.

Now using the fact that ĥn is a minimizer,

R̂n(q)−R∗(q) = Rn(ĥn, q)−R(h∗, q)

≤ Rn(h∗, q)−R(h∗, q),

whence

P
(
R̂n(q)−R∗(q) ≤ ∆(δ)

)
≥ 1− δ.

�

To extend Theorem V.6 to perturbed hypotheses, we
will need the following decomposition, whose proof
appears in Appendix B.

Lemma V.8. If η > 0 and H is any collection of
functions mapping X to [0, 1], then

q ◦ (H⊕ JηK) ⊆ (q ◦ H)⊕ J(2q − 1)ηK .

Corollary V.9. For q ∈ {1, 2}, L ≥ 1, η > 0, and
0 < δ < 1, with probability at least 1− δ, the following
holds uniformly over all h ∈ HL ⊕ JηK:

R(h, q) ≤ 4(2q − 1)η +Rn(h, q) +

√
8ln 8

(2q−1)η

n

(
16q3/2L

(2q − 1)η

)1+ddim(X )

+ 3

√
ln(2/δ)

2n
.

Proof: For any sequence Z = (Xi, Yi)i∈[n], we have

R̂n(q ◦ (HL ⊕ JηK);Z) ≤ R̂n((q ◦ HL)⊕ J(2q − 1)ηK ;Z)

≤ R̂n(q ◦ HL;Z) + (2q − 1)η

≤ 2(2q − 1)η +

√
2ln 8

(2q−1)η

n

(
16q3/2L

(2q − 1)η

)1+ddim(X )

,

where the first inequality follows from Lemma V.8, the
second from the sub-additivity of Rademacher complex-
ities ([6, Theorem 3.3]), and the third from (13) (with
ε = (2q−1)η). Invoking (11) to bound the risk in terms
of R̂n completes the proof. �

Proof: [Proof of Theorem V.1] In light of Corol-
lary V.9, it only remains to extend the risk bound
from a fixed (L, η̄) to hold uniformly over all L ≥ 1
and η̄ ∈ {η, 2η, . . . , ηb1/ηc, 1}. This is carried out
via a standard stratification argument, such as the one
given in [37, Theorem 4.5]. To stratify over L, take
ρ−1 = L1+ddim(X ) in (4.42) ibid., we have that with
probability at least 1− δ,

R(h, q) ≤ Rn(h, q) +
4

ρ
R̂n(q ◦ H1;Z) +

√
ln log2

2
ρ

n
+ 3

√
ln 2

δ

2n
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holds uniformly over all h ∈
⋃
L≥1HL. As in the proof

of Corollary V.9, the cumulative effect of η̄-perturbation
is an additive error term of 4(2q−1)η̄. To stratify over η̄,
notice that η̄ is chosen from an a-priori fixed set of size
d1/ηe ≤ 2/η — and so taking a union bound amounts
to replacing δ by δη/2. �

Remark 2. The runtime guarantees of Theorems III.1
and IV.1, as well as the risk bound of Theorem V.1,
all depend exponentially on the doubling dimension of
the metric space X , hence even a modest dimensionality
reduction yields dramatic savings in algorithmic and
sample complexities. This was exploited in [17], which
develops a technique that may roughly be described as a
metric analogue of PCA. A set X = {x1, . . . , xn} ⊂ X
inherits the metric ρ of X and hence ddim(X) ≤
2ddim(X ) is well-defined [14, Lemma 6.6]. Let us say
that X̃ = {x̃1, . . . , x̃n} ⊂ X is an (α, β)-perturbation
of X if 1

n

∑n
i=1 ρ(xi, x̃i) ≤ α and ddim(X̃) ≤ β.

Intuitively, the data is “essentially” low-dimensional if
it admits an (α, β)-perturbation with small α, β, which
leads to improved Rademacher estimates.

The data-dependent nature of R̂n was used in [17] to
develop generalization bounds that can exploit data that
is essentially low-dimensional in the above sense. That
paper dealt with the binary classification setting, and the
technique was applied to the multiclass case by [27]. The
same dimensionality reduction technique applies just as
directly in our context of regression (the proof is deferred
to Appendix B).

Theorem V.10. Let Z = (X,Y ) ∈ Xn × [0, 1]n be the
training sample and suppose that X admits an (α, β)-
perturbation X̃ . Then, for L ≥ 1,

R̂n(q ◦ (HL ⊕ JηK);Z) ≤ 2(2q − 1)η + q3/2Lα+

√
2ln 8

(2q−1)η

n

(
16q3/2L

(2q − 1)η

)1+β

.

A key feature of the bound above is that it does not
explicitly depend on ddim(X ) (the dimension of the
ambient space) or even on ddim(X) (the dimension of
the data).
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APPENDIX

A. A small-hop spanner

In this section, we prove the following theorem. See
Section II for the definition of a spanner.

Theorem A.1. Every finite metric space X on n
points admits a (1 + δ)-stretch spanner with de-
gree δ−O(ddim(X )) (for 0 < δ ≤ 1

2 ) and hop-
diameter O(lnn), that can be constructed in time
δ−O(ddim(X ))n lnn.

Gottlieb and Roditty [18] presented for general metrics
a (1 + δ)-stretch spanner with degree δ−O(ddim(X )) and
construction time δ−O(ddim(X ))n lnn, but this spanner
has potentially large hop-diameter. Our goal is to modify
this spanner to have low hop-diameter, without signifi-
cantly increasing the spanner degree. Now, as described
in [18], the points of X are arranged in a tree of degree
δ−O(ddim(X )), and a spanner path is composed of three
consecutive parts: (a) a path ascending the edges of the
tree; (b) a single edge; and (c) a path descending the
edges of the tree. We will show how to decrease the
number of hops in parts (a) and (c). Below we will prove
the following lemma.

Lemma A.2. Let T be a tree containing directed child-
parent edges (n = |T |), and let p be the degree of T .
Then T may be augmented with directed descendant-
ancestor edges to create a DAG G with the following
properties: (i) G has degree p + 3; and (ii) The hop-
distance in G from any node to each of its ancestors is
O(lnn).

Note that Theorem A.1 is an immediate consequence
of Lemma A.2 applied to the spanner of [18]. It remains
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only to prove Lemma A.2, for which we will need the
following preliminary lemma.

Lemma A.3. Consider an ordered path on nodes
x1, . . . , xn. Let these nodes be assigned positive weights
wi = w(xi), and let the weight of the path be W =∑n
i=1 w(xi). there exists a DAG G on these nodes with

the following properties:
1) Edges in G always point to the antecedent node

in the ordering.
2) The hop-distance from any node xi to the root node

x1 is not more than O(ln W
wi

).
3) The hop-distance from any node xi to an an-

tecedent xj is not more than O(ln W
wi

+ ln W
wj

).
4) G has degree 3.

Proof: [Proof of Lemma A.3] The construction is
essentially the same as in the biased skip-lists of Bagchi
et al. [2]. Let x1 and xn be the left and right end
nodes of the path, and let the other nodes be the middle
nodes. Partition the middle nodes into two child subpaths
{x2, . . . , xi} (the left child path) and {xi+1, . . . , xn−1}
(the right child path), where xi is chosen so that the
weight of the middle nodes of each child path is not
more than half the weight of the middle nodes of the
parent path. (If the parent path has three middle nodes
or fewer, then there will be a single child path.) The child
paths are then recursively partitioned, until the recursion
reaches paths with no middle nodes.

The edges are assigned as follows. A right end node
of a path has two edges leaving it. One points to the
left end node of the path (unless the path has only one
node). The other edge points to the right end node of the
right (or single) child path. A left end node of a path has
one edge leaving it: If this path is a right child path, the
edge points to the left sibling path’s right end node. If
this path is a left or single child path, then the edge
points to the parent’s left end node. The lemma follows
via standard analysis. �

We are now ready to prove Lemma A.2, which would
conclude the proof of Theorem A.1.

Proof: [Proof of Lemma A.2] Given tree T , de-
compose T into heavy paths: A heavy path is one
that begins at the root and continues with the heaviest
child, the child with the most descendants. In a heavy
path decomposition, all off-path subtrees are recursively
decomposed. For each heavy path, let the weight of each
node in the path be the number of descendant nodes in
its off-path subtrees. For each heavy path, we build the
weighted construction of Lemma A.3.

Now, a path from node u ∈ T to v ∈ T traverses a set
of at most dlnne heavy paths, say paths P1, . . . , Pj . The

number of hops from u to v is bounded by O(ln w(P1)
w(u) +(∑j

i=1 ln w(Pi−1)
w(Pi)

)
+ln n

w(v) ) = O(lnn), and the degree
of G is at most p+ 3. �

B. Rademacher-complexity proofs

Proof: [Proof of Lemma V.5] Suppose that h : X →
[0, 1] with ‖h‖Lip = L, f(x, y) = |h(x)− y|q , and
(Z, dq) is the metric space defined in (10). To prove
(i), we consider the cases q = 1, 2 separately. For q = 1,

|f(x, y)− f(x′, y′)| = ||h(x)− y| − |h(x′)− y′||
≤ |(h(x)− y)− (h(x′)− y′)|
≤ |h(x)− h(x′)|+ |y − y′|
≤ Lρ(x, x′) + |y − y′|
≤ max {1, L} (ρ(x, x′) + |y − y′|)(14)
= max {1, L} d1((x, y), (x′, y′)),

which proves the claim for this case. Now consider the
case q = 2 and recall the following basic fact: if ϕ maps
E ⊂ Rk to R, then

sup
x6=x′∈E

|ϕ(x)− ϕ(x′)|
‖x− x′‖2

≤ sup
z∈E
‖∇ϕ(z)‖2 .

Let us take ϕ[0, 1]2 → R to be ϕ(h, y) = (h − y)2,
which satisfies

max
(h,y)∈[0,1]2

‖∇ϕ(h, y)‖2 = 23/2.

It follows that

|f(x, y)− f(x′, y′)| =
∣∣(h(x)− y)2 − (h(x′)− y′)2

∣∣
≤ 23/2

(
(h(x)− h(x′))2 + (y − y′)2

)1/2
≤ 23/2

(
(Lρ(x, x′))2 + (y − y′)2

)1/2
≤ 23/2 max {1, L} d2((x, y), (x′, y′)),

which completes the proof of (i).
To prove (ii), we will show that

λ(Z, dq) ≤ 4λ(X , ρ)2, (15)

where λ(·) is the doubling constant of a given metric
space. Consider the case q = 1, put a = λ(X , ρ), and
fix any d1-ball B ⊂ Z with diameter r. Define the
coordinate projections π1 : Z → X and π2 : Z → [0, 1]
in the obvious way and assume without loss of generality
that π2(B) ⊂ [b, b+ r). Now partition B into 4 subsets
based on the second coordinate:

Bi =

{
z ∈ B : π2(z) ∈

[
b+

i

4
, b+

i+ 1

4

)}
for i = 0, 1, 2, 3.
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By definition of the doubling constant, each π1(Bi) ⊂
X can be covered by a2 balls V ⊂ X of diameter at most
r/4 under the metric ρ. It follows by construction that
each Bi can be covered by a2 sets of the form

V × [b+ i/4, b+ (i+ 1)/4),

each of d1-diameter at most r/2. Hence, any ball in Z
can be covered by 4a2 balls of half the diameter, and so
the claim is proved for q = 1. To handle the case q = 2,
observe that

d2((x, y), (x′, y′)) ≤ d1((x, y), (x′, y′))

for all (x, y), (x′, y′) ∈ Z . This proves (ii). �

Proof: [Proof of Lemma V.8] Let h̃(x) = h(x)+δ(x),
with ‖δ‖∞ ≤ η be an η-perturbed version of h, with the
corresponding f̃(x, y) = |h(x)− y|q . Consider the case
q = 1. Then∣∣∣f(x, y)− f̃(x, y)

∣∣∣ =
∣∣∣|h(x)− y| − |h̃(x)− y|

∣∣∣
≤

∣∣∣(h(x)− y)− (h̃(x)− y)
∣∣∣

= |h(x)− h̃(x)| = |δ(x)| ≤ η,

which proves this case. For q = 2, we have∣∣∣f(x, y)− f̃(x, y)
∣∣∣ =

∣∣∣(h(x)− y)2 − (h̃(x)− y)2
∣∣∣

=
∣∣[h(x) + δ(x)− y]2 − [h(x)− y]2

∣∣
= δ(x) |2h(x) + δ(x)− 2y| ≤ 3η,

since 0 ≤ h, y, δ ≤ 1. �

Proof: [Proof of Theorem V.10] Put Z̃ = (X̃, Y ).
For Xi ∈ X , X̃i ∈ X̃ , and f ∈ q ◦ HL, define δi(f) =
f(Xi, Yi)− f(X̃i, Yi). As in the proof of Corollary V.9,
we have

R̂n(q ◦ (HL ⊕ JηK);Z) ≤ R̂n(q ◦ HL;Z) + (2q − 1)η.

Further,

R̂n(q ◦ HL;Z) = E

[
sup

f∈q◦HL

1

n

n∑
i=1

σif(Xi, Yi)

]

= E

[
sup

f∈q◦HL

1

n

n∑
i=1

σi

(
f(X̃i, Yi)− δi(f)

)]

≤ R̂n(q ◦ HL; Z̃) + E

[
sup

f∈q◦HL

1

n

n∑
i=1

σiδi(f)

]
.

The first term is estimated by the same calculation as in
the proof of Theorem V.6:

R̂n(q ◦ (HL); Z̃) ≤ (2q − 1)η +

√
2 lnN ((2q − 1)η, q ◦ HL, ‖·‖∞)

n

≤ (2q − 1)η +

√
2

n

(
16q3/2L

(2q − 1)η

)1+β (
ln

8

(2q − 1)η

)1/2

.

To bound the second term, invoke Lemma V.5(i) to
conclude that

|δi| =
∣∣∣f(Xi, Yi)− f(X̃i, Yi)

∣∣∣ ≤ q3/2Lρ(Xi, X̃i).

Hence,

E

[
sup

f∈q◦HL

1

n

n∑
i=1

σiδi(f)

]
≤ sup

f∈q◦HL

1

n

n∑
i=1

∣∣∣f ′(Xi, Yi)− f ′(X̃i, Yi)
∣∣∣

≤ n−1q3/2L

n∑
i=1

ρ(Xi, X̃i) ≤ q3/2Lα.

�

14


	Introduction
	Technical background
	Regression algorithm
	Motivation and construction
	Solving the linear program
	Solving the quadratic program

	Approximate Lipschitz extension
	Risk bounds
	Covering numbers for Lipschitz function classes
	Rademacher complexities

	References
	Appendix
	A small-hop spanner
	Rademacher-complexity proofs


