
Sublinear Algorithms for Gap Edit Distance

Elazar Goldenberg
The Academic College of Tel Aviv-Yaffo

Israel
elazargo@mta.ac.il

Robert Krauthgamer
Weizmann Institute of Science

Israel
robert.krauthgamer@weizmann.ac.il

Barna Saha
University of California Berkeley

USA
barnas@berkeley.edu

Abstract—The edit distance is a way of quantifying
how similar two strings are to one another by counting
the minimum number of character insertions, deletions,
and substitutions required to transform one string into the
other. A simple dynamic programming computes the edit
distance between two strings of length n in O(n2) time,
and a more sophisticated algorithm runs in time O(n + t2)
when the edit distance is t [Landau, Myers and Schmidt,
SICOMP 1998]. In pursuit of obtaining faster running time,
the last couple of decades have seen a flurry of research
on approximating edit distance, including polylogarithmic
approximation in near-linear time [Andoni, Krauthgamer
and Onak, FOCS 2010], and a constant-factor approxima-
tion in subquadratic time [Chakrabarty, Das, Goldenberg,
Koucký and Saks, FOCS 2018].

We study sublinear-time algorithms for small edit dis-
tance, which was investigated extensively because of its
numerous applications. Our main result is an algorithm for
distinguishing whether the edit distance is at most t or at
least t2 (the quadratic gap problem) in time Õ( n

t + t3). This
time bound is sublinear roughly for all t in [ω(1), o(n1/3)],
which was not known before. The best previous algorithms
solve this problem in sublinear time only for t = ω(n1/3)
[Andoni and Onak, STOC 2009].

Our algorithm is based on a new approach that adap-
tively switches between uniform sampling and reading
contiguous blocks of the input strings. In contrast, all
previous algorithms choose which coordinates to query
non-adaptively. Moreover, it can be extended to solve the
t vs t2−ε gap problem in time Õ( n

t1−ε + t3).

Keywords-edit distance; sequence alignment; sublinear-
time algorithms; sampling algorithms;

I. INTRODUCTION

The edit distance (aka Levenshtein distance) [1] is a
widely used distance measure between pairs of strings
x, y over some alphabet Σ. It finds applications in sev-
eral fields like computational biology, pattern recogni-
tion, text processing, information retrieval and many
more. The edit distance between x and y, denoted by
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Δe(x, y), is defined as the minimum number of charac-
ter insertions, deletions, and substitutions needed for
converting x into y. Due to its immense applicabil-
ity, the computational problem of computing the edit
distance between two given strings x and y ∈ Σn is
of prime interest to researchers in various domains of
computer science. A simple dynamic program solves
this problem in time O(n2). Moreover, assuming the
strong exponential time hypothesis (SETH), there does
not exist any truly subquadratic algorithm for comput-
ing the edit distance [2], [3], [4], [5].

For many applications where the data is very large,
a quadratic running time is prohibitive, and it is highly
desirable to design faster algorithms, even approxi-
mate ones that compute a near-optimal solution. The
last couple of decades have seen exciting developments
in this frontier. In time Õ(n1+ε) for arbitrary ε > 0,
it is now possible to approximate the edit distance
within factor O(logO( 1

ε ) n) [6]. This bound was a cul-
mination of earlier results where the approximation
bound improved from O(

√
n) in linear time [7] to

O(n3/7) and n1/3+o(1) in quasi-linear time [8], [9],
to 2O(

√
log n log log n) in time O(n2O(

√
log n log log n)) [10].

Recently, a breakthrough by Chakrabarty, Das, Golden-
berg, Koucký and Saks [11] obtained the first constant
factor approximation algorithm for computing edit
distance with a subquadratic running time. However,
when restricted to strictly linear time algorithms, a√

n approximation still remains the best possible [7],
[12], [13]. In fact, when Δe(x, y) = t, the algorithm by
Landau, Myers and Schmidt runs in O(n+ t2) time [7].
Thus for t ≤ √

n, the edit distance can be computed
exactly in linear time. This algorithm has found wide-
spread applications [14], [15], [16], [17] and is also
known to be optimal under SETH.

Sublinear time: Following this quest for ever faster
algorithms, it is natural to seek sublinear-time ap-
proximation algorithms. We study the regime of small
edit distance t, which was investigated extensively in
the literature because of its high relevance to many
applications. In computational biology, for example, it
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is often only necessary to compare genomic sequences
that are highly similar and quickly get rid of sequences
that are far apart, e.g., some sequencing projects target
a strain or species that is closely related to an already-
sequenced organism [18]. A major difficulty is that
genomic sequences are comprised of highly repeti-
tive patterns (repeats) whose frequency and placement
contain important information about genetic variation,
gene regulation, human disease condition, etc. [19],
[20]. In a text corpora, detecting plagiarism and elim-
inating duplicates require identification of document
pairs that are small edit distance apart. These ap-
plications can benefit from super-fast algorithms that
answer whether the edit distance is below a threshold t
or above f (t) for some function f , known as the gap edit
distance problem. The goal here is to design algorithms
that are simultaneously highly efficient and have f (t)
as close to t as possible.

What is the right gap?: We focus on f (t) = t2, i.e.,
a quadratic gap as our main test case. This is perhaps
the most natural choice other than f (t) = Θ(t) (i.e.,
multiplicative approximation), and is also motivated
by known results for linear and sublinear time.

• In linear time, the algorithm of [7] can solve the t
vs t2 gap problem. So far, no linear-time algorithm
is known to beat this bound [12], [13]. Bar-Yossef,
Jayram, Krauthgamer and Kumar [8] introduced
the term gap edit distance and solved the t vs
t2 gap problem for non-repetitive strings. Their
algorithm computes a constant-size sketch but still
requires a linear pass over the data. This result was
later improved to hold for general strings [13] via
embedding into Hamming distance, but again in
linear time.

• The study of sublinear-time algorithms for edit
distance was initiated by Batu, Ergun, Kilian,
Magen, Raskhodnikova, Rubinfeld and Sami [21],
who designed an algorithm for the t vs Ω(n)
gap problem, thereby solving the quadratic gap
problem only for t = Ω(

√
n). Currently, the

best sublinear-time algorithm, by Andoni and
Onak [10], solves the t vs t2 gap problem for all
t = ω(n1/3). For t = n1/3+ε, their running time
is n1−3ε+o(1). Solving the quadratic gap problem
appears to become harder as t gets smaller be-
cause locating fewer edit operations will require
more queries, and the approximation factor t gets
smaller. (This is in contrast to the time bound
O(n + t2) of [7].)

A. Results

We design a sublinear time algorithm for the t vs
f (t) = t2 gap problem. Its running time is Õ( n

t + t3),

which is indeed sublinear for all t ∈ [ω̃(1), o(n1/3)].1

Theorem I.1. There exists an algorithm that, given as input
strings x, y ∈ {0, 1}n and an integer t ≤ √n, has query and
time complexity bounded by O(

n log n
t + t3), and satisfies the

following:
• If Δe(x, y) ≤ t/2 it outputs close with probability

1.
• If Δe(x, y) > 13t2 it outputs far with probability at

least 2/3.

Therefore, coupled with the result of [10], we get
sublinear time-complexity for the quadratic gap prob-
lem for t ∈ [ω̃(1), o(n1/3)] ∪ [ω(n1/3), n]. This leaves
a very interesting open question as to what happens
when t = Θ(n1/3).

Our algorithm has two more nice features. First,
sometimes one also requires that the algorithm finds
an alignment of two strings: x and y, i.e., a series of edit
operations that transform x into y. Our algorithm can
succinctly represent an alignment in Õ(t2) bits even
though it runs in sublinear time. Second, the algorithm
can be easily extended to solve the t vs f (t) = t2−ε

gap problem by paying slightly higher in the running
time/query complexity: Õ( n

t1−ε + t3).
Previous Work: Batu et al.’s algorithm distinguishes

t = nα vs f (t) = Ω(n) in O(nmax{2α−1,α/2}) time for
any fixed α > 1 [21]. Their approach crucially de-
pends on f (t) = Ω(n) and cannot distinguish between
(say) n0.1 and n0.99. The best sublinear-time algorithm
known for gap edit distance, by Andoni and Onak [10],
distinguishes between t = nα vs f (t) = nβ for β > α in
time O(n2+α−2β+o(1)). For the quadratic gap problem,
i.e., β = 2α, this time bound is O(n2−3α+o(1)), which
becomes worse as t gets smaller (as discussed earlier).
For example, when t = n1/4, the known algorithm is
not sublinear, whereas ours runs in time Õ(n3/4).

Presence of repeated patterns make the gap edit
distance problem significantly difficult to approximate.
When no repetition is allowed, the state-of-the-art
sublinear-time algorithms of [22] for the Ulam metric
(edit distance with no repetition, which obviously re-
quires a large alphabet) distinguish between t vs Θ(t)
in O( n

t +
√

n) time, achieving a bound that is similar
to the folklore sampling algorithm for approximating
Hamming distance. There is a long line of work on edit
distance and related problems, aiming to achieve fast
running time [22], [23], [24], [25], [26], low distortion
embedding [27], [28], [13], [29], small space complexity
[13], [29], [8] and parallel algorithms [30]. The work
of Andoni, Onak and Krauthgamer [6] achieves a sub-
linear asymmetric query complexity for approximating

1Throughout, the tilde notation Õ(·) and ω̃(·) hide factors that are
polylogarithmic in n.
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edit distance; however it does not lead to any sublinear
time algorithm since one of the strings must be read
in its entirety.

B. Techniques
As a warmup, we start with a simple algorithm that

has asymmetric query complexity – it queries Õ( n
t )

positions in x, but may query the entire string y. This
is comparable to the Hamming metric, where simply
querying Õ( n

t ) positions uniformly at random in x and
the same positions in y, suffice to solve t vs Θ(t) gap.
However, this simple uniform sampling fails miserably
to estimate edit distance, even when there is a single
character insertion or deletion. Our simple algorithm
reads Õ( n

t ) random positions in x, but since xi might
be matched to any yi+d, d ∈ [−t.. + t], our algorithm
has to read the entire string y. (In this outline, we call
d a shift, and later call it a diagonal.)

Even when the entire string y is known, we cannot
hope that this approach distinguishes better than t vs
f (t) = t2. To see this, consider two scenarios. In one
scenario, y is obtained from x via t2 substitutions. Since
the algorithm samples x at a rate of 1

t , we expect
to see about t of these substitutions. In an alternative
scenario, x is partitioned into t substrings of length n

t ,
and y is obtained from x by a circular shift by one po-
sition of each of the t parts (substrings). Now, the edit
distance between x and y is at most 2t, and assuming
the sample of x contains at least one symbol from each
part of x, the best alignment of the sampled x with y
will still constitute of O(t) insertions/deletions. These
two cases will be indistinguishable to an algorithm that
aligns the samples in x with the string y, and thus
the best separation possible in this approach is t vs
f (t) = t2.

To avoid sampling the entire string y, one may
need to sample x at a lower rate or to sample x
non-uniformly in contiguous positions (blocks). In the
former case, the separation between t and f (t) will
only increase. In the latter case, an algorithm that
samples (say) n

t2 blocks of length O(t) in x can be
shown to solve only a t vs t2 gap even for Hamming
distance, and for edit distance we will need f (t) = t3.

In order to overcome these barriers, we employ both
contiguous sampling and uniform sampling together,
and in fact switch between them adaptively. The con-
tiguous sampling suggests plausible shifts that a low-
cost alignment may use. These plausible shifts are then
checked probabilistically through uniform sampling.
However, if we need to check every plausible shift
via uniform sampling, the query (and time) complex-
ity will again become linear. A technical observation
based on [31] helps us here — if two substrings can
be matched under two distinct shifts d and d′, then

the substrings must have a repeated pattern. In other
words, the substrings are periodic with a pattern of
length |d− d′|. The crux is that instead of checking each
shift individually, we instead check for this repeated
pattern via uniform sampling. When we witness a
deviation from the periodicity (e.g., change in pattern),
we execute a fast test to identify all shifts that “see”
a mismatch (and increase our estimate of their cost).
We alternate between the non-uniform and uniform
sampling at an appropriate rate to achieve the desired
query complexity and the running time.

In contrast, all previous sublinear/sampling algo-
rithms, including [21], [10], [6], [22] choose which
coordinates to query non-adaptively.

Organization: Section II lays the groundwork for
our main algorithm. It starts by introducing (in Sec-
tion II-A) the concept of a grid graph, which represents
the edit distance as a shortest-path computation in a
graph. It then describes (in Section II-B) the uniform
sampling technique, which can be viewed as sampling
of the grid graph, leading to a simple algorithm with
asymmetric query complexity.

Section III presents our main result. It starts with a
method (in Section III-A) that computes a shortest path
using a more selective scan of the grid graph. It then
describes (in Section III-C) our main algorithm, which
combines the aforementioned techniques of sampling
the grid graph and of scanning it more selectively.

II. PRELIMINARIES: THE GRID GRAPH AND UNIFORM
SAMPLING

Notation: Let x ∈ Σn be a string of length n over
alphabet Σ. For a set S ⊆ [n], we denote by xS the
restriction of x to positions in S (in effect, we treat S
as if it is ordered in the natural order). Oftentimes, S is
contiguous (i.e., an interval) and then xS is a substring
of x. For d ∈ [−n..n] and a set S ⊆ [n] we define S +
d := {s + d : s ∈ S}. As usual, [i..j] denotes {i, . . . , j}
for integers i, j.

A string x ∈ Σn is called periodic with period length
m < n and period pattern p ∈ Σm if x = p�n/m	 ◦ q,
where q = p[1..(n mod p)] and ◦ means concatenation of
strings. Here and throughout we assume that (n mod
p) returns a value in the range [1..p] (rather than [0..p−
1] as usual).

A. Edit Distance as a Shortest Path in a Grid Graph

Given an input x, y ∈ {0, 1}n to the edit distance
problem, it is natural to consider the following directed
graph Gx,y, which we refer to as the grid graph. It has
vertex set [0..n]× [−n..n], The graph has the following
weighted edges (provided both endpoints are indeed
vertices):
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(i) Deletion edges: (i, d)→ (i + 1, d− 1) with weight
1 corresponding to a character deletion.

(ii) Insertion edges: (i, d) → (i, d + 1) with weight 1
corresponding to character insertions.

(iii) Matching/substitution edges: (i, d) → (i + 1, d)
with weight either 0 or 1 depending on whether
xi+1 = yi+d+1 or not. Such an edge corresponds
to a character match/substitution.

See Figure 1 for illustration. Throughout, we call i the
row and d the diagonal of a vertex (i, d), and refer to
weight also as cost.

We assign to each vertex (i, d) a cost c(i, d) ac-
cording to the shortest path (meaning of minimum
total weight) from (0, 0) to (i, d). The following two
lemmas can be easily proven using standard dynamic
programming arguments; we omit the details.

Lemma II.1. One can compute the cost of every vertex in
the grid graph by scanning the vertices in row order (i.e.,
from 0 to n) and inside each row scanning the diagonals
in order from −n to n. Moreover, computing the cost of
each vertex (i, d) requires inspecting only 3 earlier vertices,
namely, (i− 1, d), (i− 1, d + 1) and (i, d− 1).

Lemma II.2. There is a one-to-one correspondence between
paths from (0, 0) to (i, d) to alignments from x[1..i] into
y[1..i+d] (an alignment is a set of character deletions, inser-
tions and substitutions that converts one string to the other).
Moreover, each path’s weight is equal to the corresponding
alignment’s cost, and thus

c(i, d) = Δe(x[1..i], y[1..i+d]).

Observe that when the edit distance is bounded by
a parameter t, the optimal path goes only through
vertices in [0..n]× [−t..t], and thus the algorithm can
be restricted to this range. We sometimes refer to the
two vertices (0, 0) and (n, 0) as the source and sink,
respectively.

B. Uniform Sampling of the Rows (and Asymmetric Query
Complexity)

As a warm-up, we now describe a simple ran-
domized algorithm that, given as input two strings
x, y ∈ {0, 1}n and a parameter t ≤ √

n, distin-
guishes (with high probability) whether Δe(x, y) ≤ t or
Δe(x, y) = Ω(t2). The algorithm has asymmetric query
complexity: it queries x at a rate of log n

t but may query
y in its entirety.

This algorithm is based on a sampled version of the
grid graph, denoted GS, constructed as follows. First,
pick a random set S ⊆ [n] where each row i ∈ [n] is
included in S independently with probability log n

t , and
add also row 0 to S. Let s = |S| and denote the rows in
S by 0 = i1 < · · · < is. Now let the vertex set of GS be

S× [−t..t]∪{(n, 0)}, and connect each vertex (ij, d), for
ij ∈ S and d ∈ [−t..t], to the following set of vertices
(provided they are indeed vertices): (i) (ij+1, d) with
weight �{xij+1 �=yij+d+1}; and (ii) (ij, d + 1) with weight

1 and (iii) (ij+1, d− 1) with weight 1. Finally, connect
each vertex (is, d) to the sink (n, 0) with an edge of
weight |d|.

The algorithm constructs GS and then computes the
shortest path from (0, 0) to (n, 0). If its cost is at
most t then the algorithm outputs close, otherwise
it outputs far.

Lemma II.3. For all x, y ∈ Σn,
• if Δe(x, y) ≤ t then with probability 1 the algorithm

outputs close;
• if Δe(x, y) > 6t2 then with probability at least 2/3 the

algorithm outputs far.

We sketch here the proof, deferring details to Ap-
pendix A.

Close case Δe(x, y) ≤ t: It suffices to show that for
every source-to-sink path τ in Gx,y (the original grid
graph) there is in GS a corresponding source-to-sink
path τS that has the same or lower cost. To do this,
start by letting τS visit the same set of vertices as τ
visits in row 0, starting of course at the source (0, 0),
and then extend τS iteratively from row ij to ij+1, as
follows. Denote the last vertex visited by τS on row ij
by (ij, dS), and the vertices visited by τ on row ij+1 by
(ij+1, d) . . . , (ij+1, d+ �). Now if dS ≤ d+ �, then extend
τS by appending (ij+1, dS) . . . , (ij+1, d + �). Otherwise,
extend it by appending (ij+1, d − 1). Finally, after τS
visits row iS, extend it by appending the sink (n, 0).

Denote by cGx,y(·) the cost of a path in Gx,y, and by
cGS(·) the cost of a path in GS. We can then prove that
cGS(τS) ≤ cGx,y(τ), see Claim A.1 for details.

Far case Δe(x, y) ≥ 6t2: We need the next claim,
which follows easily by the independence in sampling
rows to S. Let ΔH(·, ·) denote the Hamming distance
between two strings.

Claim II.4. Fix x, y ∈ Σn, i ∈ [n] and d ∈ [−t..t]. Let
i′ ≥ i be the minimum such that

ΔH(x[i..i′ ], y[i..i′ ]+d) ≥ 3t,

and let H =
{

j ∈ [i..i′] : xj �= yj+d

}
be the corresponding

set of Hamming errors. If no such i′ exists then set i′ = ∞.
Define B(i, d) to be the event that i′ < ∞ and that no

row from H is sampled, i.e., H ∩ S = ∅. Then

Pr[B(i, d)] ≤
(

1− log n
t

)3t
<

1
3n(2t + 1)

.

By a union bound over the set of all possible rows
i and diagonals d, we get that except with probability

1104



(i, d)

(i− 1, d + 1)

(i, d− 1)

(i− 1, d− 1)
(i− 1, d)

(i, d + 1)

(i + 1, d + 1)
(i + 1, d)

(i + 1, d− 1)

Figure 1. A typical vertex in Gx,y has 3 incoming and 3 outgoing edges. Thick edges have cost 1 corresponding to deletion/insertion, dashed
edges have cost 0/1 corresponding to substitution.

n(2t + 1) 1
3n(2t+1) ≤ 1

3 , none of the events B(i, d) hap-
pens. We conclude the proof by showing that when-
ever this happens, every path in GS from the source
(0, 0) to the sink (n, 0) has cost strictly larger than t,
and therefore our algorithm outputs far.

C. Generalized Grid Graph

It is instructive, and in fact needed for the algorithm
we describe in Section III-C, to consider the following
generalization of GS (and of Gxy). A generalized grid
graph has the same vertices and edges as GS (which
was defined in Section II-B), except that the edges
of type (iii) have arbitrary weights from the domain
{0, 1}. This is in contrast to GS, where all these weights
are derived from the two strings x, y and thus have
various correlations, e.g., a single xij affects the weight
of many edges. The next lemma shows that such
graphs have a lot of structure.

Lemma II.5. Consider a generalized grid graph and denote
its rows sequentially by 0, 1, 2, . . . , |S| − 1. Then the cost
difference between a vertex (i, d) and its in-neighbors is
bounded by:

0 ≤ c(i, d)− c(i− 1, d) ≤ 1 (1)
−1 ≤ c(i, d)− c(i, d− 1) ≤ 1 (2)
−1 ≤ c(i, d)− c(i− 1, d + 1) ≤ 1 (3)

Proof: The three upper bounds are immediate from
the triangle inequality, hence we only need to prove the
three lower bounds.

We prove the lower bound in (1) by induction on the
grid vertices (i, d) in lexicographic order (i.e., their row
is the primary key and their diagonal is secondary). For
the inductive step, consider (i, d) and assume the lower
bound holds for all previous vertices. The cost of (i, d)
is the minimum of three values coming from its in-
neighbors, and at least one of these values is tight. We
thus have three cases. In the first one, the value coming
from in-neighbor (i− 1, d) is tight, then c(i, d)− c(i−

1, d) ∈ {0, 1} and we are done. The second case is when
the value coming from in-neighbor (i, d − 1) is tight.
Using this fact, applying the induction hypothesis to
(i, d− 1), and then the upper bound in (2), we have

c(i, d) = c(i, d− 1)+ 1 ≥ c(i− 1, d− 1)+ 1 ≥ c(i− 1, d),

as required. The third case, where the value coming
from in-neighbor (i− 1, d + 1) is tight, is proved simi-
larly, and this concludes the proof of (1).

The lower bound in (2) follows easily by using the
upper bound in (3) and then the monotonicity prop-
erty (1), we indeed obtain c(i, d− 1) ≤ c(i− 1, d) + 1 ≤
c(i, d) + 1. The lower bound in (3) follows similarly
c(i− 1, d + 1) ≤ c(i− 1, d) + 1 ≤ c(i, d) + 1.

III. SUBLINEAR ALGORITHM FOR QUADRATIC GAP

In this section we present our main sublinear algo-
rithm, which combines two techniques. The first one,
explained in Section II, is to sample uniformly rows in
the grid graph Gx,y and compute a shortest path in the
resulting (sampled) graph GS. The second technique
scans the grid graph more selectively in the sense of
skipping some vertices in an adaptive manner. While
this technique is known, e.g., from [7], our version
(presented in Section III-A) differs from previous work
because it scans the graph row by row. We then
explain (in Section III-B) our main technical insight that
allows to adaptively switch between the two afore-
mentioned techniques, which correspond to uniform
sampling and reading contiguous blocks (from x, y).
We are then ready to present the algorithm itself (in
Section III-C), followed by an analysis of its correctness
and time/query complexity (in Section III-D), and a
discussion of some extensions.

A. Selective Scan of the Grid Graph

We will make use of a technique developed in [32],
[7], [33], [34] that scans the grid graph Gx,y more
selectively, and yet is guaranteed to compute a shortest
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path from (0, 0) to (n, 0). By itself, this technique does
not yield asymptotic improvement over a naive scan
of all the vertices, however it is crucial to our actual
algorithm (and also to the algorithm of [7], which uses
a variant of this technique where the grid graph is
scanned in “waves” rather than row by row). Along the
way, we introduce three notions (dominated, potent
and active) that may apply to a diagonal d at row i,
i.e., to a vertex (i, d). To simplify the exposition, we
do not discuss all the boundary cases, and objects that
do not exist (like row −1 or character xn+1) should be
ignored (e.g., omitted from a minimization formula).

Dominated vertices: Let (i, d) be a vertex in Gx,y of
cost h = c(i, d). If any of its in-neighbors (i, d− 1) and
(i − 1, d + 1) has cost h − 1 then we say that (i, d) is
dominated by that in-neighbor.

The following observation may allow us to “skip”
a dominated vertex when computing a shortest path.
Suppose that (i, d) is dominated by (i, d− 1), see Fig-
ure 2 for illustration (when dominated by (i− 1, d+ 1),
an analogous argument applies). If diagonal d− 1 has
a match at row i + 1, defined as xi+1 = yi+1+(d−1),
then there exists a shortest path to (i+ 1, d) that avoids
vertex (i, d), by going for example through (i, d− 1)→
(i + 1, d− 1) → (i + 1, d). Notice that vertex (i + 1, d)
must be dominated too. If, however, diagonal d− 1 has
a mismatch at row i + 1, defined as xi+1 �= yi+1+(d−1),
then it might be that every shortest path to (i + 1, d)
passes through (i, d). Notice that now (i + 1, d) may or
may not be dominated.

Potent vertices: To formalize the above observation,
we now define potent vertices and assert that it suffices
to inspect only such vertices.

Definition III.1. We say that diagonal d is potent at row
i if it satisfies the two requirements:
• if (i, d) is dominated by (i, d− 1), then we require that

diagonal d− 1 is potent at row i and has a mismatch
at row i + 1; and

• if (i, d) is dominated by (i− 1, d + 1) then we require
that diagonal d + 1 is potent at row i − 1 and has a
mismatch at row i.

Notice that if (i, d) is not dominated, then both
requirements are vacuous, and thus (i, d) is potent. In
particular, the source (0, 0) is not dominated and thus
potent.

The three lemmas below show that information
whether vertices are potent is very useful for comput-
ing shortest paths from the source, i.e., vertex costs.
Informally, the first lemma shows that our algorithm
can restrict its attention to paths that consist of potent
vertices (at least one, because the source is potent by
definition) followed by non-potent vertices (zero or
more). In particular, for a potent vertex, the path to

it passes only through potent vertices. The next two
lemmas show that information whether a vertex is
potent or not can sometimes make the computation
of vertex costs trivial. The proofs of all three lemmas
appear in Appendix A.

Lemma III.2. Every vertex in the grid graph Gx,y has
a shortest path from (0, 0), in which non-potent vertices
appear only after potent vertices.

Lemma III.3. If (i, d) is non-potent, then c(i + 1, d) =
c(i, d).

Lemma III.4. Suppose (i, d) is potent. If (i + 1, d) has a
mismatch, then c(i + 1, d) = c(i, d) + 1. Otherwise (it has
a match), c(i + 1, d) = c(i, d) and (i + 1, d) is potent.

Remark III.5. Lemmas III.2, III.3 and III.4 hold also for a
generalized grid graph (as defined in Section II-C).

The next challenge is to find the potent vertices
algorithmically without scanning the entire grid graph.

Active vertices: We now describe an algorithm that
computes iteratively for each row i = 0, 1, . . . , n a list
Di of diagonals that we call active diagonals. The idea
is that Di will be a superset of the potent diagonals at
row i, and that scanning each list Di will create Di+1
for the next row. However, this description is an over-
simplification, because Di itself might change while
being scanned, as explained next.

Formally, the algorithm starts with the following
initialization. It sets D0 = {0} and every other list
Di = ∅. It then creates an array cA to store the costs of
every diagonal (at the current row, see more below),
and sets cA[d] = |d| for every d ∈ [−n..n].

The algorithm then iterates over the rows i =
0, 1, . . . , n, where each iteration i scans Di in increasing
order. To process each scanned d ∈ Di, the algorithm
first determines whether (i, d) is potent using Defini-
tion III.1, except for vertex (0, 0) which is potent by
definition. This requires comparing the cost of (i, d)
to its two in-neighbors. 2 We show in Lemma III.7
that at this point we have: cA[d] = c(i, d), cA[d− 1] =
c(i + 1, d− 1), and cA[d + 1] = c(i, d + 1). In order to
check whether (i, d) is potent, we need the values of
c(i, d− 1) and c(i− 1, d+ 1) along with the information
whether (i, d− 1) and (i− 1, d+ 1) are potent. By main-
taining cA[d] values for the last two computed rows
and two simple boolean arrays to indicate whether
a diagonal d′ is potent at the current row and the
previous row (by default a diagonal is not potent),
the necessary information to compute whether (i, d)
is dominated and potent is available to us.

2If an in-neighbor does not exist (e.g., out of range), we consider
it to be non-dominating.
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c(i, d) = hc(i, d− 1) = h− 1

c(i + 1, d) = h

0/1

c(i + 1, d− 1) = h− 1

0

c(i, d) = hc(i, d− 1) = h− 1

c(i + 1, d) = h

0

c(i + 1, d− 1) = h

1

Figure 2. When (i, d) is dominated by (i, d− 1), diagonal d− 1 can have a match at row i + 1 (shown on left) or a mismatch (on right).
Edges used by a shortest path to (i + 1, d) are drawn as solid, and other edges are dashed.

If (i, d) is dominated, the algorithm further checks
whether each dominating in-neighbor is potent and
whether it has a mismatch at the relevant row.Now
cA is updated: if (i, d) is determined to be potent and
(i + 1, d) has a mismatch, then cA[d] is incremented by
1.

If (i, d) is not potent, then d is discarded from Di, and
the algorithm proceeds to scan the next diagonal in Di.
Otherwise, i.e., (i, d) is potent, the algorithm adds d to
Di+1 (because it may be potent at row i + 1), and then
checks whether (i+ 1, d) has a mismatch; if it has, then
d + 1 is added to Di and d− 1 added to Di+1 (because
these vertices may be potent). Observe that processing
d ∈ Di may cause adding to Di diagonal d + 1, which
obviously should be processed next; this means that
Di is scanned adaptively, but still in increasing order.

The correctness of this procedure is based on the next
two lemmas, whose proofs appear in Appendix A.

Lemma III.6. In this procedure, every potent vertex (i, d)
is eventually inserted to Di. Moreover, at the end of iteration
i (scanning Di), the diagonals in Di represent exactly the
potent vertices at row i.

Lemma III.7. Prior to iteration i + 1 (or equivalently after
iteration i), every cA[d′] stores the value c(i + 1, d′). More
precisely, after processing diagonal d ∈ Di, each cA[d′] has
value c(i, d′) for d′ > d and c(i + 1, d′) for d′ ≤ d.

B. Transitioning between Sampling Modes
Recall that the algorithm presented in Section II-B

has asymmetric query complexity — it samples string
x uniformly at rate log n

t but may query the entire string
y, as it compares each sampled coordinate xi against
yi+d for all possible d ∈ [−t..t]. In order to improve the
query complexity to Õ( n

t + t3) and prove Theorem I.1,
our algorithm will alternate between uniform sam-
pling and contiguous (non-uniform) sampling. How-
ever, during the sampling mode, it is still prohibitive to
compare each sampled coordinate xi against yi+d for all
possible d ∈ [−t..t]. Instead, we would like to leverage
the information given by Di. If |Di| = 1, it suffices to
compare xi against yi+d only for the single d ∈ Di.
And if |Di| > 1, then Lemma III.8 (part a) below
guarantees that both x and y follow the same periodic
pattern (coming into the current row), in which case

we switch to uniform sampling, and merely “verify”
that the periodicity continues (in the next rows) by
comparing these samples to our pattern. Obviously,
this verification is probabilistic, but by Claim II.4, with
high probability it holds up to O(t) Hamming errors
(equivalently, character substitutions). When we see a
sample that deviates from the periodicity in either x or
y, we recompute Di and start over, using Lemma III.8
(part b) to argue that almost all diagonals in Di “must
see” edit operations, which “count against” our budget
of t edit operations.

Lemma III.8. Let x, y ∈ Σn, let i ∈ [n] and let D ⊆
[−t..t] be a set of diagonals of size |D| > 1. Define g =
gcd{d − d′ : d > d′ ∈ D}, p = x[i−g+1..i] and m =
maxD −minD.
(a) If

∀d ∈ D, x[i−2m+1..i] = y[i−2m+1..i]+d (4)

then x[i−2m+1..i] and y[i−2m+1+minD..i+maxD] are both
periodic with the same period pattern p.

(b) Assume the conclusion of part (a) holds (i.e.,
x[i−2m+1..i] and y[i−2m+1+minD..i+maxD] are both pe-
riodic with same period pattern p) but either xi+1 �=
p1 or yi+1+maxD �= p1 (observe that p1 =
p(i+1−2m+1) mod g). Then each diagonal in D except
perhaps at most one, has a mismatch in at least one of
the m rows i + 1, . . . , i + m.

The proof of this lemma appears in Section III-D,
after the description of our algorithm. We remark that
part (a) has been established in [31] and was used there
for a different purpose.

C. Our Sublinear Algorithm

At a high level, the algorithm first picks a random
set S ⊆ [n], by including in S each row independently
with probability log n

t , and then proceeds in rounds,
where each round processes one row. When a round
processes row i ∈ [n], we will say that it scans row i, as
it will process some (but not all) of its vertices (i, d),
always in increasing order of d. We shall also call it
round i (although it need not be the i-th round).

The algorithm has two modes of scanning the rows,
called contiguous and sampling. Roughly speaking, the
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sampling mode scans only sampled rows, i.e., i ∈ S,
and at each such round it reads only two characters
xi and yi+d for a single active diagonal d ∈ Di.
These two characters are compared not to each other
(unless |Di| = 1), but rather to a pattern determined
in previous rounds. The goal is to examine whether
a certain periodicity in x and y is broken, in which
case the algorithm switches to the contiguous mode.
Observe that the sampling mode is rather lightweight
– it scans rows at a rate of 1/t and performs minimal
computation per row.

In contrast, the contiguous mode scans the rows one
by one, and at each such round i, it compares xi to yi+d
for every active diagonal d ∈ Di.

This mode is applied in bulks of at least O(t)
consecutive rows, until in a bulk of O(t) the set of
active diagonals does not change (which means that
none of the active diagonals sees a mismatch along
these lines). In the case that the set of active diagonals
does not change we deduce a periodicity structure on
the corresponding parts of x and y and the algorithm
switches to the sampling mode.

We can now describe the algorithm in full detail.
Let i1 < . . . < i|S| denote the rows selected into S.
While scanning the rows, the algorithm maintains a
counter, i for the current row initialized to i = i1. as
the algorithm is started in the sampling mode. The
algorithm maintains also two lists of diagonals, Di of
active diagonals at the current round i and Dnext that is
constructed for the next round (which is either i + 1 or
the next row in S, depending on the mode), initialized
to Di1 = {0} and Dnext = ∅. During its execution, the
algorithm computes and stores an array cA to store an
estimate of cost of every diagonal at the current row. It
is initialized by setting cA[d] = |d| for every d ∈ [−t..t].

The Contiguous Mode: In the contiguous mode, the
algorithm scans the rows one by one. At each round i
in this mode, the algorithm scans the active diagonals
d ∈ Di in increasing order, and each such d is processed
as follows. If cA(d) > t − |d| then this diagonal d is
ignored, i.e., its processing is concluded. Otherwise,
the algorithm checks whether diagonal d is potent for
row i, as defined in Definition III.1 but with respect
to cost function cA (instead of c), implemented by
comparing cA[d] to the value of cA[d+ 1] and cA[d− 1]
in previous rows.3 If d is indeed potent, then it is added
to Dnext, and if in addition, xi+1 �= yi+d+1, then d + 1
is added to Di and d− 1 is added to Dnext and cA[d]
is incremented by 1. This completes the processing of
d ∈ Di.

3This check is implemented similarly to Section III-A, by main-
taining the costs computed in the previous two rows and the list of
potent diagonals at those rows.

When the algorithm finishes scanning Di, it has
to decide about the next round. If along the last
2(maxDi−minDi) rows there exists a row i′, in which
a mismatch was found at some diagonal d ∈ Di′ , then
the algorithm increments i by 1, sets Di = Dnext and
Dnext = ∅, and proceeds to the next round (for this
new value of i), staying in the contiguous mode.

Otherwise (no mismatch was found along these
rows), the algorithm prepares to switch to the sampling
mode by computing three variables:

g = gcd{d− d′}d �=d′∈Di

ipat = i− 2(maxDi −minDi) + 1,
p = x[ipat..ipat+g−1],

and then increases i to the next row in S (smallest one
after the current i), sets Di = Dnext and Dnext = ∅, and
proceeds to the next round (for this new value of i) but
in the sampling mode.

The Sampling Mode: In the sampling mode, the
algorithm processes only sampled rows i ∈ S. The
sampling mode performs one of two checks, either
periodicity check or shift check, depending on whether
|Di| > 1 or not.

(i) Periodicity check: This check is applied only if
|Di| > 1. The algorithm first checks whether both xi+1
and yi+maxDi+1 are equal to p(i−ipat+1) mod g. If both
match (are equal), the algorithm finds the next row inext
in S (smallest one after the current i), sets Dinext = Di,
increases i to inext, and proceeds to the next round (for
this new value of i), still in the sampling mode (to
perform a periodicity check because again |Di| > 1).

Otherwise (at least one of the two comparisons
fails), the algorithm employs binary search to detect
a row j ∈ [ipat + 2(maxDi −minDi)..i] with a “period
transition”, defined as j satisfying the two conditions:

1) for all j′ ∈ [j − 2(maxDi −minDi)..j], we have
xj′ = yj′+maxDi

= p(j′−ipat) mod g; and
2) either xj+1 or yj+maxDi+1 is not equal to

p(j+1−ipat) mod g.

We later prove that such a j must exist. The algorithm
then finds all the diagonals d ∈ Di that have a mis-
match in at least one row in the range [j..j + maxDi −
minDi]. Lemma III.8 shows that this event (at least
one mismatch) must occur for all the diagonals in Di
except perhaps one diagonal, which we denote by d∗
(if exists). Now the algorithm sets

∀d ∈ Di, d �= d∗, cA[d] = cA[d] + 1; (5)

and adds d, d + 1, and d− 1 to Dnext.
If d∗ exists, the algorithm further samples a new set

S∗ ⊆ [ipat..i] at rate log n
t , and for each row j′ ∈ S∗

it compares xj′ to yj′+d∗ . If no mismatch is found in
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S∗, then the algorithm adds d∗ to Dnext. Otherwise (a
mismatch is found), it sets cA[d∗] = cA[d∗] + 1 and
adds d∗, d∗ + 1, and d∗ − 1 to Dnext.

Finally, the algorithm increments i by 1, sets Di =
Dnext and Dnext = ∅, and proceeds to the next round
(for this new value of i) but in the contiguous mode.

(ii) Shift check: This check is applied only if |Di| =
1; let d be the unique diagonal in Di. The algorithm
compares xi+1 and yi+1+d. If they match (are equal),
the algorithm increases i to the next row in S (smallest
one after the current i), sets Di = {d} and proceeds
to the next round (for this new value of i), still in the
sampling mode (to perform a shift check because again
|Di| = 1).

Otherwise (they do not match), the algorithm sets
cA[d] = cA[d] + 1 and adds d, d + 1, and d− 1 to Dnext.
The algorithm then increments i by 1, sets Di = Dnext
and Dnext = ∅, and proceeds to the next round (for
this new value of i) but in the contiguous mode.

Stopping Condition: The algorithm halts and out-
puts far if at any point the value of cA[0] reaches t+ 1.
If the algorithm completes processing the rows (the last
one is in S or in [n], depending on the mode), and still
cA[0] ≤ t, then the algorithm halts and outputs close.

D. Analysis

Let us start by proving lemma III.8. For convenience,
let us restate it:

Lemma (III.8). Let x, y ∈ Σn, let i ∈ [n] and let D ⊆
[−t..t] be a set of diagonals of size |D| > 1. Define g =
gcd{d − d′ : d > d′ ∈ D}, p = x[i−g+1..i] and m =
maxD −minD.
(a) If

∀d ∈ D, x[i−2m+1..i] = y[i−2m+1..i]+d (6)

then x[i−2m+1..i] and y[i−2m+1+minD..i+maxD] are both
periodic with the same period pattern p.

(b) Assume the conclusion of part (a) holds (i.e.,
x[i−2m+1..i] and y[i−2m+1+minD..i+maxD] are both pe-
riodic with same period pattern p) but either xi+1 �=
p1 or yi+1+maxD �= p1 (observe that p1 =
p(i+1−2m+1) mod g). Then each diagonal in D except
perhaps at most one, has a mismatch in at least one of
the m rows i + 1, . . . , i + m.

Proof: To prove the first part, consider two di-
agonals d1 < d2 in D. We can see that x[i−2m+1..i]
has period length d2 − d1, by using (6) twice (for all
relevant positions j)

∀j ∈ [i− 2m+ 1..i− (d2− d1)], xj = yj+d2 = xj+(d2−d1)
.

Now use the fact that if a string s is periodic with
two period lengths l �= l′, then it is also periodic with

period length gcd{l, l′}.4 It follows that x has period
length g = gcd{d− d′ : d > d′ ∈ D}, hence its period
pattern is p = x{i−g+1,...,i}.

By applying a similar argument to y, we obtain that
it too has period length g, and its period pattern is
y[i+maxD−g+1..i+maxD]. Moreover, by applying (6) to
d = maxD we see that the period patterns of x and of
y are equal

p = x[i−g+1..i] = y[i+maxD−g+1..i+maxD].

Let us now prove the second part. Assume first that
xi+1 �= p1. Then for every diagonal d ∈ D \ {maxD}
we have yi+d+1 = yi+minD+1 = p1 (because d−minD
is a multiple of the period g and all these positions are
inside the periodic part of y), and we see that diagonal
d has a mismatch at row i + 1.

Next, assume that xi+1 = p1 �= yi+maxD+1. Let ix ≥
i + 1 be the smallest row “deviating” from the pattern
p, i.e., xix �= p(ix−i) mod g, letting ix = ∞ if no such row
exists. Our assumption implies that actually ix > i + 1.
We proceed by a case analysis.

If ix ≥ i + 1 + (maxD −minD), then we can show
that every diagonal d ∈ D \ {minD} has a mismatch at
row i+ 1+(maxD− d). Indeed, x is periodic up to that
row because i + 1 + (maxD − d) < i + 1 + (maxD −
minD) ≤ ix, and thus

xi+1+maxD−d = xi+1 = p1 �= yi+1+maxD .

And since 0 ≤ maxD − d < m, the row with the mis-
match is indeed in the claimed range i + 1, . . . , i + m.

Otherwise, we have i + 1 < ix < i + maxD −
minD + 1. For every d ∈ D satisfying d > d′ :=
i + 1 + maxD − ix there is a mismatch at row i + 1 +
maxD− d as x is still periodic at that position because
i + 1 + maxD − d < i + 1 + maxD − d′ = ix, and thus

xi+1+maxD−d = xi+1 = p1 �= yi+1+maxD .

For every d ∈ D satisfying d < d′, we have a mismatch
at row ix, because x is not periodic at ix and thus xix �=
p(ix−i) mod g, while y is still periodic at position ix + d <
ix + d′ = i + 1 + maxD and thus

yix+d = p(ix+d−(i+minD)) mod g = p(ix−i) mod g �= xix .

In both cases, d > d′ and d < d′, the mismatched
row is indeed in the claimed range i + 1, . . . , i + m,
and together the two cases include all but at most one
diagonal in D.

We show next that when the algorithm is in the
sampling mode and executes a binary search to find

4To see this, use Bézout’s identity to write gcd{l, l′} = tl + t′ l′ for
integers t, t′, then show that sj = sj+tl+t′ l′ by a sequence of |t|+ |t′ |
equalities, ordered so as to stay inside s.
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Figure 3. Matching the strings along different diagonals d1, d2.
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Figure 4. Red lines represent mismatches on diagonals d > d′, and blue lines represent mismatches on diagonals d < d′

a period transition, then it always succeeds.

Claim III.9. Suppose at round i the algorithm stays at the
sampling mode performing a periodicity check and it detects
a period violation, that is either xi+1 �= p(i+1−ipat) mod g or
yi+maxD+1 �= p(i+1−ipat) mod g, then:

1) There exists a row j ∈ [ipat + 2(maxD −minD)..i]
with a period transition, that is,

∀j′ ∈[j− 2(maxD −minD)..j],
xj′ = yj′+maxD = p(j′−ipat) mod g and

either xj+1 �= p(j+1−ipat) mod g

or yj+maxD+1 �= p(j+1−ipat) mod g

2) Let j be the row from the previous item, then for all
d ∈ D but perhaps at most one diagonal d∗, there
exists a row j′ ∈ [j..j + maxD −minD] such that
xj′ �= yj′+d.

Proof: We first prove part (1). Since the algo-
rithm enters the sampling mode only after on the
last 2(maxD − minD) (where D denotes the set
of potent diagonals when the algorithm enters the
sampling mode) no mismatch has occurred for each
d in the potent diagonals, then our set D satisfies
the condition of Lemma III.8 at row ipat. Note that
by Lemma III.4, the set D did not change. By the
lemma we get x[ipat..ipat+2(maxD−minD)] = p ◦ · · · ◦ p
and y[ipat..ipat+2(maxD−minD)]+maxD = p ◦ · · · ◦ p. Since
at row i + 1 at least one of the values xi+1, yi+maxD+1

does not match the corresponding character in p, then
between i and ipat, there exists an index j on which we
have a period transition.

Part (2) follows directly by the second item of
Lemma III.8.

Correctness Analysis: We now analyze the correct-
ness of the algorithm in the two cases, close that is
Δe(x, y) ≤ t/2 and far that is Δe(x, y) > 13t2, more
specifically we prove the following lemmas:

Lemma III.10. Let x, y ∈ {0, 1}n. If Δe(x, y) ≤ t/2 then
with probability 1 the algorithm outputs close.

Lemma III.11. If Δe(x, y) > 13t2 then with probability at
least 2/3 the algorithm outputs far.

E. Proof of Close Case Δe(x, y) ≤ t/2

Proof of Lemma III.10: Let x, y be such that
Δe(x, y) ≤ t/2. We show that with probability 1 the
algorithm outputs close. For this sake, we build a
grid graph G′ = (V′, E′) and define a new cost function
c′ : E′ → N ∪ {0}. We show that there exists a path
connecting the sink and the source in G′ whose cost c′
is at most t/2. The set V′ will include all the vertices
that the algorithm scans. Then, we define a new cost
function, denoted cALG on the E′. We claim that the
costs assigned by the algorithm are consistent with
cALG. Finally, we connect the costs c′ and cALG.

Graph Construction.: The graph is built as follows:
Recall S denote the sampled rows by the algorithm.
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Let S′ be the set of rows i such that either i ∈ S or the
algorithm scans the row i during the contiguous mode
or i is a row that the algorithm scans after finding a
period transition during binary search or during a shift
check. We set

V′ = S′ × [−t..t] ∪ {(0, 0), (n, 0)}.

Let us describe the cost c′ for each edge in G′. Let
i ∈ S′. Let us first deal with the boundaries. We connect
(0, 0) to (i1, 0) where i1 is the smallest row in S′ by an
edge of cost 0. Let i|S′ | be the largest row in S′, we
connect each vertex (i|S′ |, d), into (n, 0) by an edge of
cost |d|.

Let i ∈ S′ which is not the last row in S′ and let inext
be the next row in S′. Each vertex (i, d) is connected
to:

(i, d)→ (i, d + 1),
(i, d)→ (inext, d− 1) and
(i, d)→ (inext, d).

The first two edges are associated with cost 1. The cost
of (i, d)→ (inext, d) is defined as: �{xi+1 �=yi+d+1}.

Corollary III.12. For every path τ in Gx,y from (0, 0) to
(n, 0), there exists a corresponding path τS in G′ from (0, 0)
to (n, 0) such that c′(τS) ≤ c(τ).

This follows directly by Claim A.1. Next we would
like to connect the costs cA and c′. For this sake we
first define a cost function cALG on the edge set E′ and
then claim it is consistent with the costs assigned by
the algorithm.

Defining cALG: We define a cost function cALG on
the edges of G′ as follows.

Let i ∈ S′. Let us first deal with the boundaries. We
connect (0, 0) to (i1, 0) where i1 is the smallest row in
S′ by an edge of cost 0. Let i|S′ | be the largest row in
S′, we connect each vertex (i|S′ |, d), into (n, 0) by an
edge of cost |d|.

Let i ∈ S′ which is not the last row in S′ and let
inext be the next row in S′. The edges (i, d) → (i, d +
1), (inext, d + 1)→ (i, d) are associated with cost 1. The
cost of (i, d)→ (inext, d) is defined as follows:

Case 1: i is a contiguous round: Then its cost is
�xi+1 �=yi+d+1

.
Case 2: i is a sampling round: If the consistency

check passes then the cost is 0. Otherwise, recall that
the algorithm first detects a row j on which there is a
period transition and then finds all the diagonals d ∈ D
that have a mismatch in at least one row in the range
[j..j + maxD−minD]. For each of these diagonals we
assign cALG((i, d)→ (inext, d)) = 1. Recall that if d does
not have a mismatch in either of these rows in this
range, then the algorithm samples another set S∗ and

checks whether d has a mismatch in S∗. If the later
test passes then the cost is 0 and otherwise it is 1. For
the rest of the diagonals (d /∈ D) we set cALG((i, d) →
(inext, d)) = 0.

We next connect cA and cALG, for this we extend
cALG to V′ by setting cALG(v) as the shortest path cost
(with respect to cALG) connecting (0, 0) and (i, d). We
next prove:

Lemma III.13. Let i be a row scanned by the algorithm,
prior to iteration inext (or equivalently after iteration i),
every cA[d′] stores the value cALG(inext, d′). More precisely,
after processing diagonal d ∈ Di, each cA[d′] has value
cALG(i, d′) for d′ > d and cALG(inext, d′) for d′ ≤ d.

Proof: To prove the lemma we use the following
definition: We say that diagonal d is cALG-potent at row
i if it satisfies the two requirements:
• if (i, d) is dominated by (i, d− 1) (with respect to

cALG), then we require that diagonal d− 1 is potent
at row i and cALG((i, d− 1) → (inext, d− 1)) = 1;
and

• if (i, d) is dominated by (ilast − 1, d + 1) then we
require that diagonal d + 1 is potent at row ilast
and cALG((ilast, d + 1)→ (i, d + 1)) = 1, where ilast
is the largest row in S′ smaller than i.

We prove only the first assertion, as the second
one is an immediate consequence of it. The proof
is by induction on the grid vertices (i, d) ∈ V′ in
lexicographic order (i.e., their row is the primary key
and their diagonal is secondary). The base case is the
time before processing vertex (0, 0); at this time, cA
stores its initial values, i.e., cA[d] = |d|, which is equal
to c(0, d) for all d ≥ 0. For d < 0, the base case is the
time before processing (−d, d), because we should only
consider vertices reachable from (0, 0); at this time,
cA[d] = |d| is still the initialized value and it is equal
to c(d,−d) = −d.

For the inductive step, we need to show cA[d] is
updated according to cALG. But using the induction hy-
pothesis, we only need to show cA[d] is updated from
cALG(i, d) to cALG(inext, d). To this end, suppose first
that vertex (i, d) is non-potent. Then by Lemma III.3
we have cALG(i + 1, d) = cALG(i, d), (regardless of the
cost cALG((i, d)→ (inext, d))) and the algorithm indeed
does not modify cA[d]. Suppose next (i, d) is potent:
Observe that the algorithm increases cA[d] by 1 only
if cALG((i, d) → (inext, d)) = 1, in which case by
Lemma III.4 we have: cALG(inext, d) = cALG(i, d) + 1,
so by the induction hypothesis cA[d] is incremented
to the correct value. On the other hand, the algorithm
does not change the value of cA[d] by 1 if cALG((i, d)→
(inext, d)) = 0, in which case by Lemma III.4 we have
cALG(inext, d) = cALG(i, d), and again by the induction
hypothesis cA[d] matches the correct value.
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By abusing notations, we define a cost function c′
on the vertices of V′ by setting c′(v′) as the cost of
shortest path connecting (0, 0) and v′, for each v′ ∈ V′.

Finally we connect the cost c′ and cALG, namely: Let
τS be a shortest path in G′ with respect to the cost
function c′ connecting (0, 0) and (n, 0). We conclude
the proof by claiming cALG(τS) ≤ 2c′(τS).

Claim III.14. cALG(τS) ≤ 2c′(τS).

Proof: The proof proceeds by induction on the rows
in S′. In particular, we show that for each row i ∈ S′
and each diagonal d traversed by τS at row i, we have:
cALG(i, d) ≤ 2c′(i, d). The base case is i = 0, the only
diagonal τS traverses at row 0 is 0 for the cost is 0 with
respect to cALG, c′.

The induction step: let i ∈ S′, let (ilast, dlast) be the
last vertex on τS before moving to row i, and let (i, d)
be the first diagonal that τS traverses at row i (observe
that dlast ∈ {d + 1, d}). We first prove that cALG(i, d) ≤
2c′(i, d). Then we prove it for the rest of the diagonals
traversed by τS at row i.

Case 0- (dlast �= d): In this case, c′(i, d) −
c′(ilast, dlast) = 1. Since for each neighboring diag-
onal the difference in cALG cost is at most 1, then
cALG(i, d) ≤ cALG(ilast, dlast) + 1, the claim follows.

Case 1- i is a contiguous round:
Case 1.2.1- (dlast = d) and (ilast, dlast) is cALG-potent:

In this case cALG(i, d) − cALG(ilast, dlast) = c′(i, d) −
c′(ilast, dlast) = �xilast+1 �=yilast+dlast+1

, the claim follows.
Case 1.2.2-(dlast = d) and (ilast, dlast) is not

cALG-potent: In that case from Lemma III.3,
cALG(ilast, dlast) = cALG(i, d). In c′ the difference
between the costs may be either 0 or 1, the claim
follows.

Case 2- i is a sampling round:
Case 2.1- (dlast = d), i is a sampling round and

the periodicity check passes at row i: Observe that
the cost cALG is not incremented over the last row in
either of the diagonals at row i. While in c′ it may be
increased, the claim follows.

Case 2.2- (dlast = d), i is a sampling round and the
periodicity check fails at row i: If (ilast, dlast) is non-
potent then the proof follows by the argument used in
case 1.2.2. Let us prove the claim for the case (ilast, dlast)
being potent. In this case the algorithm performs a
binary search to detect a period transition at row j.
The algorithm sets cALG(i, d) = cALG(ilast, d) + 1 if
diagonal d has a mismatch at some row j′ ∈ [j..j +
maxD −minD]. For the special diagonal d∗ that has
no mismatch at none of the rows j′, the algorithm
samples another set S′ and increments the cost if it
finds a mismatch along one of the rows in S′.

Let us first analyze the diagonals d that have a
mismatch at some row j′: Recall that ipat is the first row

on which the algorithm switched to sampling mode.
First observe that � ∈ [ipat..i) we have: cALG(�, d) =
cALG(ilast, dlast) since the costs were not incremented.

If τS passes through (j′, d), then c′(j′, d) was incre-
mented by 1, while in cALG(j′, d), it was not incre-
mented at row j′ and only at row i. So the contribution
of the mismatch with respect to both cost functions is
the same. If τS was not traversing through (j′, d): At a
later row j′′, τS transits to diagonal d and pays a cost
1 for the transition. In cALG we pay for this transition
twice: once at the transition row, and second time at
row i (note that each such a transition is counted only
once). The claim follows. The analysis of the special
diagonal d∗ follows by the same argument.

If τS traverses other diagonals at row i then with
respect to c′ it pays a cost 1 on each diagonal transition.
However, on cALG we may pay either 0 or 1 cost.
Therefore, the claim holds for all vertices at τS touching
row i.

We conclude the proof by claiming that the algo-
rithm outputs close. By Corollary III.12, in G′ there
exists a shortest path to the sink of cost ≤ t/2 with
respect to the cost c′. Therefore, by Claim III.14 there
exists a shortest path to the sink of cost ≤ t with respect
to the cost cALG. By Lemma III.13 after processing the
last row of S′ the cost of cA[0] equals to the cost of
the shortest path to (i|S′ |, 0) is at most t. Therefore, by
monotonicity the cost along cA[0] does not exceed t
and the algorithm outputs close. This completes the
proof of Lemma III.10.

F. Proof of Far Case Δe(x, y) > 13t2

For the purposes of analysis, we think of the algo-
rithm as first independently sampling two sets S1, S2,
where each set Sj, j = 1, 2 is drawn such that each row
is inserted into Sj independently with probability log n

t .
While staying at the sampling mode, the algorithm
uses S1 for periodicity check and the set S2 for shift
check.

To conclude the proof we rely on the following claim,
which is a variant of Claim II.4. Roughly speaking, we
define bad events to capture scenarios in which the
algorithm might fail, either that on a sampling round
on a single diagonal we skip too many mismatches,
or if we have one diagonal we skip too many period
violations.

Claim III.15. Let x, y ∈ Σn let i ∈ [n], and let Sj ⊆
[n], j = 1, 2 be sets drawn by including each row in S
independently with probability log n

t .
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Let g ≤ 2t + 1, p ∈ {0, 1}g and d ∈ [−t..t]. Let:

id,i = min
r≥i

ΔH(x[i..r], y[i..r]+d) > 4t,

Id,i =
{

j ∈ [i..id,i] : xj �= yj+d

}
;

ix,p,i = min
r≥i

ΔH(x[i..r], p∗) > 4t,

Ix,p,i =
{

j ∈ [i..ix,p,i] : xj �= pj−i mod p

}
;

iy,p,i = min
r≥i

ΔH(y[i..r], p∗) > 4t,

Iy,p,i =
{

j ∈ [i..iy,p,i] : yj �= pj−i mod p

}
;

where ΔH(x[i..r], p∗) is the Hamming distance between x[i..r]
and the corresponding periodic string with period pattern p
of length r− i. If in either of the above definitions no such
r exists, we set id,i, ix,p,i, iy,p,i = ∞.

We define an event BS(i, d) as the event where id,i �= ∞
and S ∩ Id,i = ∅, similarly we define BS(i, x, p) as the
event where ix,p,i �= ∞ and S ∩ Ix,p,i = ∅ (and BS(i, y, p)
is defined similarly). Then:

Pr[BS(i, d)] <
1

9n(2t + 1)

and similarly Pr[BS(i, x, p)], Pr[BS(i, y, p)] are at most
1

9n(2t+1) .

The proof of Claim III.15 follows immediately by
Chernoff bound. Let us conclude the proof using the
claim. First by union bound on the set of all possible
rows and diagonals we get that except with probability
n(2t + 1) 1

3n(2t+1) ≤ 1
9 , none of the events BS1(i, d)

happens. Moreover, using a union bound on the value
of all possible i ≥ 2t + 1 and j ∈ [0..2t + 1] we have
that that except with probability 2(n(2t+ 1) 1

9n(2t+1) ) ≤
2
9 , none of the events BS2(i, x[i−j..i], x), BS2(i, y[i−j..i], y)
happens. So overall none of the events mentioned
above happen with probability at least 2/3. We con-
clude the proof by showing that in such a case, the
algorithm outputs far with probability 1.

Assume for sake of contradiction that none of the
events described above happen and still the algorithm
outputs close. We may view the algorithm as com-
puting the shortest path τ on the grid graph GS′ , with
respect to the cost function cALG defined on the proof
of Claim III.10.

The path τ divides the set of rows processed by
the algorithm into intervals I′0, . . . , I′k ⊆ S such that
(i) I′j and I′j+1, j ∈ [0, k − 1] can intersect on at most
single row, and (ii) for each interval I′�, τ traverses
along vertices on diagonal d� while paying cost 0 (so
moving between intervals correspond to either substi-
tutions or diagonal transitions implying insertions and
deletions).

Observe that k ≤ t − |dk| and max Ik is the largest
round processed by the algorithm.

Let us define another set of intersecting intervals
I0, . . . , Ik ⊆ [n] as follows: I0 = [0.. max I′0], I� = I′�
and Ik = [min I′k..n].

Consider the path τ in Gx,y that on rows in I� follows
diagonal d�, while paying the cost along all diagonal
edges, and then finally it traverses to (n, 0). Let us
denote by τI� the cost of τ confined to the rows in
I�, which equals: ΔH(xI� , yI�+d�).

Claim III.16. For all � ∈ [k] we have:

c(τI�) = ΔH(xI� , yI�+d�) < 12t.

Proof: Let us consider an interval I�: Observe that
once the diagonal d� is part of the diagonal on which
the algorithm detects a mismatch followed by period
transition (end of a sampling mode), then the current
interval is over. Hence we can break each interval I�
into its prefix Ip

� that contains the rows on which the
algorithm performs a shift check. And its suffix Is

� that
contains the rows on which the algorithm performs
periodicity check and finally encounters a mismatch
on d�.

We conclude the claim by proving that
ΔH(xIp

�
, yIp

� +d�
) < 4t and ΔH(xIs

�
, yIs

�+d�) < 8t.
Observe that since we assume that the event

BS1(min I�, d�) did not happen then by definition
ΔH(xIp

�
, yIp

� +d�
) < 4t. Next since BS2(i�, x[i�−g..i−1], x)

and BS2(i� + maxD, x[i�−g..i−1], y) did not
happen then we get: ΔH(x[i�+1.. max I� ], p∗) < 4t
and ΔH(y[i�+1.. max I� ] + d�, p∗) < 4t where
p∗ as usual denotes repeated concatenation
of p. By triangle inequality we get that
ΔH(x[i�+1.. max I� ], y[i�+1.. max I� ]+d�) < 8t, as claimed.

In total this implies that the cost of τ is at most k×
12t + k + t − |dk| ≤ 12t2 + t ≤ 13t2, contradicting the
fact that Δe(x, y) > 13t2.

G. Query Complexity Analysis

Claim III.17. The query complexity of the algorithm pre-
sented in Section III-C is bounded by Õ( n

t + t3).

Proof: We bound the number of queries by show-
ing that while staying at the contiguous mode the
algorithm queries the input in O(t3 log n) locations,
and while staying on the sampling mode, it queries
O(

n log n
t ) locations with high probability.

Observe that the algorithm enters into the contigu-
ous mode whenever it encounters a mismatch on at
least one of the potent diagonals. Also observe that
after 2(2t + 1) rounds on which the algorithm stays at
the contiguous mode, either there exists a mismatch
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on at least one of the potent diagonals or the algo-
rithm shifts to the sampling mode. Therefore, for each
2(2t + 1) consecutive rows, spent on the contiguous
mode we can match a mismatch on at least one of the
potent diagonals. Also observe that (Lemma III.4) each
diagonal can have at most O(t) mismatches while it is
potent. Therefore, the number of 2(2t + 1) consecutive
rounds on which the algorithm stays at the contiguous
mode is bounded by O(t2).

Notice also that on each block I of 2(2t + 1) con-
secutive rounds on which the algorithm stays at the
contiguous mode, it samples only O(t) characters from
both x and y (as it needs to compare from xI against
values in y{min I−t,...,max I+t}). Therefore, in total the
number of queries used while staying at the contigu-
ous mode is bounded by O(t3).

Regrading the sampling mode, at each sampling
round, if both periodicity checks pass then the al-
gorithm makes only 1 queries into both strings x, y.
So such rounds can contribute at most |S| queries
(which is bounded by O(

n log n
t ) with high probability).

Otherwise, it makes O(t log n) additional queries and
by Claim III.9 we are guaranteed to find at least one
mismatch on one of the potent diagonals. Therefore,
by the same argument used for the contiguous search
the number of queries made by during the periodicity
check of the sampling mode is bounded by O(t3 log n).
The number of rows sampled by the shift mode is
bounded by O(

n log n
t ) with high probability. Hence, the

claim follows.

H. Time Complexity Analysis

Claim III.18. The time complexity of the algorithm pre-
sented in Section III-C is bounded by Õ( n

t + t3).

Proof: Recall that the algorithm has two modes:
the sampling mode and the contiguous mode. Let us
first analyze the running time of the algorithm while
staying at the contiguous mode. Naively, while staying
at that mode, the algorithm has to pay at each round
O(|D|) = O(t) operations. Since there are at most
O(t3) such rounds, then the total time spent at this
mode is bounded by O(t4). However, we can utilize
suffix tree machinery to accelerate the computation
process.

Observe that whenever the algorithm enters into the
contiguous mode, then at each round i and for each of
the potent diagonals d it has to update the cost based
on whether xi+1 = yi+d+1. Also observe that whenever
the values match, the diagonal is retained as potent at
the next round i + 1. So if we have an efficient way
to determine at row i and for diagonal d, what is the
maximal row imax ≥ i such that: x[i,...,imax ] = y[i,...,imax ]+d.
Using suffix trees machinery one can solve this prob-

lem in O(1)-time. However, building the suffix tree
requires querying the entire strings x, y.

Nevertheless, we may apply the suffix trees machin-
ery only on substrings of x, y of 5t-length at a time. This
ideas also have been implemented in see [29], [31] in
the context of edit distance computation in a streaming
fashion.

Using suffix trees, we pay O(t)-time generating the
(truncated) suffix trees. Then, given a row i and for
diagonal d, using the suffix tree we can find the max-
imal row imax ∈ {i, . . . , i + 5t} such that: x[i,...,imax ] =
y[i,...,imax ]+d. For a given i, let D be the set of potent
diagonals, and let ki be the mismatches encountered on
the potent diagonals along the next 5t-rows. Then the
running time of the algorithm is bounded by O(t+ k2

i ).
In total, if we divide the contiguous rounds into blocks
of length 5t we get that the running time of the con-
tiguous mode is bounded by t2(O(t)) + ∑ k2

i = O(t3).
While staying at the sampling mode at each round

the algorithm performs only O(1)-operations, pro-
vided that the period was kept. This contributes
O(

n log n
t ) factor to the running time. If the period was

violated, then the algorithm first performs a binary
search to detect a period transition, which requires
O(t log n)-time. Then it again can use suffix tree ma-
chinery to find out the list of diagonals having a mis-
match in the next 2(2t + 1) rows. This takes O(t)-time,
and will be applied at most O(t2)-times (as whenever
this happens one of the potent diagonals increases its
cost).

Summarizing, using suffix tree machinery, the algo-
rithm can be implemented so that its running time
complexity is bounded by Õ( n

t + t3), as claimed.

I. Distinguishing t vs. O(t2−ε)-gap in time Õ( n
t1−ε + t3)

Proposition III.19. There exists an algorithm that, given
as input strings x, y ∈ {0, 1}n and an integer t ≤ √n, has
query and time complexity bounded by Õ( n

t1−ε + t3), and
satisfies the following:
• If Δe(x, y) ≤ t/2 it outputs close with probability

1.
• If Δe(x, y) = Ω(t2−ε) it outputs far with probability

at least 2/3.

Let us briefly sketch the proof. We keep the same
algorithm structure, where the only change is in the
rate of sampling: instead of sampling at a rate Õ( 1

t ),
our algorithm samples at a rate Õ( 1

t1−ε ). That will
increase the query and running complexity of the
modified algorithm into Õ( n

t1−ε + t3).
The proof of correctness follows by the same argu-

ments, where one have to show that while sampling
at this rate with high probability the algorithm detects
mismatches and period violations at a rate of 1

t1−ε .
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J. Succinct Representation of an Alignment
Our algorithm can succinctly represent an alignment

in Õ(t2) bits. Note that our algorithm has at most O(t2)
sampling mode, therefore at most O(t2) contiguous
mode. During the ith contiguous mode, we can repre-
sent an alignment using Õ(ki) bits if ki is the number
of edit operations paid during that contiguous mode.
Since, in each sampling mode, the alignment is given
by a single diagonal, it can be represented in Õ(1) bits.
Thus, over all the contiguous and sampling modes,
representing the alignment requires Õ(∑i ki + t2) =
Õ(t2) bits.
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APPENDIX

A. PROOF OF LEMMA II.3

Lemma (II.3). Let Δe(x, y) ∈ {0, 1}n.
If Δe(x, y) ≤ t then with probability 1 the algorithm

outputs close.
If Δe(x, y) > 6t2 then with probability at least 2/3 the

algorithm outputs far.

Proof of Lemma II.3: To prove the first part, suppose
Δe(x, y) ≤ t. We will prove for all S ⊆ [n] (and
thus with probability 1), for every source-to-sink path
τ in the original grid graph Gx,y, there is in GS a
corresponding source-to-sink path τS of the same or
lower cost. It would then follow that GS contains a
path from the source (0, 0) to the sink (n, 0) of cost at
most t, and the algorithm outputs close.

Given S ⊆ [n] and a path τ in Gx,y, construct
the corresponding path τS in GS as follows. Suppose
the vertices τ traverses in row 0 are (0, 0), . . . , (0, d0);
then let τS start at (0, 0) and traverse the exact same
vertices. Now we describe how to extend τS itera-
tively for j = 0, . . . , s − 1, where i0 = 0 by con-
vention. Denote the last vertex τS traverses in row
ij by (ij, dS), and suppose the vertices τ traverses in
row ij+1 are (ij+1, d), . . . , (ij+1, d + �). Now we have
two cases: if dS ≤ d + �, extend τS by appending
(ij+1, dS) . . . , (ij+1, d + �); otherwise, extend it by ap-
pending (ij+1, dS − 1). Finally, denote the last vertex
τS traverses in row is by (is, dS); then extend τS by
append (n, 0), which uses an edge of cost |dS|.
Claim A.1. cGS(τS) ≤ cGx,y(τ).

Proof of Claim A.1: For each j = 0, . . . , s, let dτ(j)
denote the last diagonal visited by τ at row ij, and let
dτS(j) be similarly for the path τS. Denote by cτ(j) the
cost of the prefix of τ up to (ij, dτ(j)), and similarly
cτS(j) for path τS and vertex (ij, dτS(j)). We will prove
show the following bound on τS

∀j = 0, . . . , s, cτS(j) + dτS(j) ≤ cτ(j) + dτ(j). (7)

Let us now show how this bound implies the claim.
By construction, the last edge in τS goes from row is
(the last row in S) to the sink and has cost |dτS(s)|, and
together with (7) in the case j = s, we have

cGS(τS) = cτS(s) + |dτS(s)|
≤ cτ(s) + dτ(s)− dτS(s) + |dτS(s)|.

Now if dτS(s) ≥ 0, the last two summands above cancel
and we continue

= cτ(s) + dτ(s) + 0 ≤ cτ(s) + |dτ(s)|;
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otherwise, we have dτ(s) ≤ dτS(s) < 0 and we
continue

≤ cτ(s) + 0 + |dτS(s)| ≤ cτ(s) + |dτ(s)|.
In both cases, we obtain cGS(τS) ≤ cτ(s) + |dτ(s)| ≤
cGx,y(τ), which proves the claim.

We proceed to proving (7) by induction on j. The
base case j = 0 holds trivially (with equality), because
τS is constructed to be identical to τ in row i0 = 0. For
the inductive step, we actually show

∀j = 0, . . . , s− 1, ΔjcτS + ΔjdτS ≤ Δjcτ + Δjdτ , (8)

where Δj f := f (j+ 1)− f (j) for f (j) being any of the 4
terms appearing in (7). The last inequality clearly im-
plies the inductive step. (Alternatively, we can replace
the induction by a telescopic sum.)

Now to prove (8), fix j ∈ {0, . . . , s− 1}, and observe
that in the desired inequality, the LHS is about the
subpath of τS from row ij to row ij+1, and similarly
the RHS is about the subpath of τ. More precisely,
these subpaths are taken to “start” and “end” at the last
vertex visited in each row. Assume first that LHS = 0.
Observe that Δjcτ is the cost along that subpath of τ,
and every edge in it that increments/decrements the
diagonal has cost 1, hence Δjcτ ≥

∣∣Δjdτ

∣∣ ≥ −∣∣Δjdτ

∣∣.
This proves that in this case, indeed RHS ≥ 0 = LHS.

Assume next that LHS > 0. Suppose towards con-
tradiction that the first edge in that subpath of τS (from
row ij to row ij+1) decreases the diagonal; then by its
construction, τS visits no additional vertices on this
row, hence the said subpath of τS consists of only
one edge, and we see that LHS = ΔjcτS + ΔjdτS =
1− 1 = 0, which contradicts our assumption. We thus
know that the first edge in that subpath of τS does not
change the diagonal. Clearly, any additional edges in
this subpath, if any, must stay in the same row and
increment the diagonal, hence their number is exactly
ΔjdτS ≥ 0. Observe the fact dτS(j) ≥ dτ(j), which
follows from the construction of τS. We can also verify
the fact dτS(j + 1) = dτ(j + 1); indeed, one direction
(≥) is just the previous inequality (but for j + 1), and
the other direction (≤) holds in our case where the
first edge of the subpath does not change the diagonal.
Combining these two facts, we have ΔjdτS ≤ Δjdτ .
Moreover, the foregoing discussion implies that

0 ≤ ΔjdτS ≤ Δjdτ ≤ Δjcτ . (9)

Observe that by the foregoing discussion and the def-
inition of GS,

ΔjcτS = �{xij+1 �=yij+dτS (j)+1} + ΔjdτS ≤ 1 + ΔjdτS , (10)

and let us argue next, by a case analysis, that

ΔjcτS ≤ Δjcτ , (11)

Case 1 of proving (11) is when dτ(j) < dτS(j) (i.e.,
our first fact above holds with strict inequality). Then
the derivation of (9) actually gives a stronger bound
ΔjdτS + 1 ≤ Δjdτ . Combining this with (9) and (10) we
obtain (11).

Case 2 is when the first edge in that subpath of
τ decrements the diagonal. Then later steps in the
subpath must increment the diagonal (because the net
difference is Δj(τ) ≥ 0), and again we obtain a stronger
cost bound Δjcτ ≥ Δjdτ + 2. Combining this with (9)
and (10) we obtain (11).

Case 3 is the remaining scenario, where dτ(j) =
dτS(j) and the first edge in that subpath of τ
does not change the diagonal, and thus has cost
�{xij+1 �=yij+dτ (j)+1}. Hence,

Δjcτ ≥ �{xij+1 �=yij+dτ (j)+1} + Δjdτ .

Combining this with (10) implies (11).
Finally, having established (11), we combine it

with (9) to derive (8), which we called LHS ≤ RHS,
and proves the case LHS > 0. This completes the proof
of the inductive step and of Claim A.1.

This completes the proof of the first part of
Lemma II.3.

To prove the second part, suppose that Δe(x, y) >
6t2. Using Claim II.4 and applying a union bound on
all possible rows and diagonals, we get that except
with probability n(2t + 1) 1

3n(2t+1) ≤ 1
3 , none of the

events B(i, d) happens. We conclude the proof by
showing that in this case, the shortest path connecting
(0, 0) and (n, 0) has cost strictly larger than t, and
therefore our algorithm outputs far.

Assume towards contradiction that none of the
events B(i, d) happens and yet the shortest path in
GS from (0, 0) to (n, 0), denoted τS, has cost at most
t. From τS, we construct a new path τ in Gx,y as
follows. (i) For each edge (ij, d) to (ij, d + 1) in τS, we
include the same edge in τ. (ii) For each edge (ij, d)
to (ij+1, d− 1), we include the edges corresponding to
the path (ij, d), (ij + 1, d), . . . , (ij+1 − 1, d) followed by
an edge to (ij+1, d − 1). (iii) For each edge (ij, d) to
(ij+1, d), we include the edges corresponding to the
path (ij, d), (ij + 1, d), . . . , (ij+1, d).

Notice that in case (i), τS pays a cost of 1 and so does
τ. In case (ii), τS pays a cost of 1 and since B(ij, d) did
not happen, τ pays a cost of at most 3t + (d′ − d).

Now consider the maximal subpaths that are formed
in τ by the edges in case (iii). Each of these maximal
subpaths can be indexed by a contiguous collection of
rows and a single diagonal. Let us denote them by
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(I1, d1) . . . , (Ik, dk). Let I′j ⊆ Ij be the rows in Ij ∩ S for
j = 1, . . . , k.

Therefore in τS, there is a path through diagonal
dj and rows in I′j . Let this path pay ej edit cost in
τS. Note that they are all from substitution edits. Let
Z = {z1, z2, . . . , zej} be the rows in I′j in increasing
order such that τS pays an edit cost on the outgoing
edge from (z, dj) for all z ∈ Z. Since, we avoided
the events B(min I′j , dj), B(z1 + 2, dj), . . . , B(zej + 2, dj),
the total substitution cost paid in τ while traversing
through (Ij, dj) is at most 3t(ej + 1).

Therefore, over all k, τ pays a total substitution
cost of ∑k

j=1 3t(ej + 1) ≤ 3t2 + 3t ∑
j
j=1 ej, since k ≤ t.

Now adding the cost from case (i) and (ii), the overall
cost paid by τ is at most 6t2. This contradicts the
assumption that Δe(x, y) > 6t2.

This completes the proof of Lemma II.3 (both parts).

B. MISSING PROOFS FROM SECTION III

Proof of Lemma III.2: We proceed by induction on
the grid vertices in lexicographic order (i.e., their row is
the primary key and their diagonal is secondary). The
base case is the source (0, 0), which follows trivially.
To prove the inductive step, consider a vertex v and
assume the claim holds for all previous vertices. We
now split into two cases.

Case (a): v is dominated. By applying the induction
hypothesis to the in-neighbor that dominates v, we
obtain a shortest path (0, 0) = v0, v1, . . . , vl to the in-
neighbor vl that dominates v, hence the cost of this
path is c(vl) ≤ c(v)− 1. By appending that path with
v, we obtain a shortest path to v because its cost is at
most c(vl) + 1 ≤ c(v). It remains to show the ordering
requirement that all non-potent vertices in this path
appear after all potent vertices. If v is non-potent, this
is immediate because v is appended. If v is potent
then by Definition III.1 the dominating vertex vl must
be potent, and again the ordering requirement follows
immediately.

Case (b): v = (i, d) is not dominated, and in par-
ticular it is potent. Then a shortest-path to v must
be coming from w1 = (i − 1, d). If this w1 is potent,
then we can obtain a shortest path to w1 by the
induction hypothesis, and appending v to this path
satisfies the ordering requirement and gives a shortest
path because its cost is at most c(w1) + 1 ≤ c(v). So
assume henceforth that w1 is non-potent, and let us
show a contradiction. Then by Definition III.1 it must
be dominated by some in-neighbor w2, and moreover
either w2 is non-potent or it has an outgoing edge of
cost 0, i.e., a matching edge (or both). If w2 is non-
potent, then by the same argument (as for w1), it must

be dominated by some in-neighbor w3. Repeat this
argument until reaching the first wl , l ≥ 2, that is
potent, and thus wl must have an outgoing edge of
cost 0. The path’s construction and the monotonicity
property (1) imply that c(v) ≥ c(w1) ≥ c(w2) − 1 ≥
· · · ≥ c(wl) − (l − 1). Observe that the path wl →
· · · → w2 → w1 → v has l edges, the first l − 1 are
insertion/deletion edges, and the last one is a matching
or substitution edge. Consider an alternative path from
wl , that uses first the outgoing edge of cost 0, and then
l− 1 insertion/deletion edges in exact correspondence
with the l − 1 edges wl → wl−1, . . . , w2 → w1. It is
easy to verify that also this alternative path reaches v.
and its cost is exactly l − 1. Appending this path to
an arbitrary shortest-path to wl , yields a path of cost
c(wl)+ l− 1 ≤ c(v), i.e., a shortest-path to v that enters
v via an insertion/deletion edge. This means that v is
dominated, in contradiction to our assumption.

Proof of Lemma III.3: First, if c((i, d) → (i, d +
1)) = 0, then c(i + 1, d) ≤ c(i, d) + c((i, d) → (i, d +
1)) = c(i, d). On the other hand, from the monotonicity
property (1), c(i + 1, d) ≥ c(i, d). Therefore, whenever
c((i, d)→ (i, d + 1)) = 0, we have c(i, d) = c(i, d + 1).

Therefore, let us assume, c((i, d) → (i, d + 1)) = 1.
We prove the claim by a double induction on the grid
vertices (i, d) in lexicographic order (i.e., their row is
the primary key and their diagonal is secondary).

Base case: Note that by definition (0, 0) is potent. Let
(i, d) be the first vertex in the lexicography order which
is non-potent. Then (i, d) must be dominated by either
(i, d− 1) or (i − 1, d + 1) both of which are potent (if
they exist). Let w.l.o.g., (i, d− 1) dominates (i, d), then
if c((i, d− 1)→ (i+ 1, d− 1)) = 1, it must hold for (i, d)
to be non-potent that (i− 1, d+ 1) dominates (i, d) and
has c((i − 1, d + 1) → (i, d + 1)) = 0. Thus consider
(i, d − 1) dominates (i, d) and has c((i, d − 1) → (i +
1, d− 1)) = 0 (the other case is identical). Then c(i +
1, d− 1) = c(i, d− 1). Overall, we have

c(i, d) ≤ c(i + 1, d) ≤ c(i + 1, d− 1) + 1
= c(i, d− 1) + 1 = c(i, d),

where the last equality follows from (i, d − 1) domi-
nating (i, d). Therefore, c(i + 1, d) = c(i, d).

For the inductive step, assume the claim is true for
all vertices (i′, d′) with i′ < i and consider row i.
Let d be the first diagonal on row i such that (i, d)
is non potent. Since (i, d) is non-potent, it must be
dominated by either (i, d− 1) or (i− 1, d + 1). If (i, d)
is only dominated by (i, d− 1), then since (i, d− 1) is
potent (note d is the first diagonal on row i which is
non-potent), then for (i, d) to be non-potent, it must
hold c((i, d − 1) → (i + 1, d − 1)) = 0. Now follow-
ing the same argument as in the base case, we get
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c(i + 1, d) = c(i, d).
Thus assume, either (i, d) is not dominated by (i, d−

1) or c((i, d− 1)→ (i + 1, d− 1)) = 1. Then, (i− 1, d +
1) dominates (i, d), that is c(i − 1, d + 1) = c(i, d) −
1. If (i − 1, d + 1) is potent, then for (i, d) to be non-
potent, we must have c((i − 1, d + 1) → (i, d + 1)) =
0. This implies c(i, d + 1) = c(i− 1, d + 1). Otherwise,
(i− 1, d + 1) dominates (i, d) but (i− 1, d + 1) is non-
potent. Then from the induction hypothesis, c(i, d +
1) = c(i− 1, d + 1). Overall, we have

c(i, d) ≤ c(i + 1, d) ≤ c(i, d + 1) + 1
= c(i− 1, d + 1) + 1 = c(i, d).

Therefore, c(i+ 1, d) = c(i, d). Thus, the claim holds for
the first non-potent diagonal on row i. Suppose, again
by the inductive hypothesis, the claim holds for all r′th
potent diagonal on row i with r′ < r, and consider the
r-th non-potent diagonal dr at row i, r > 1.

If (i, dr− 1) is potent, then the claim follows from the
same argument as above, as if dr is the first diagonal
on row i to be non-potent.

Otherwise, (i, dr − 1) is non-potent. Then, by the
induction hypothesis, c(i + 1, dr − 1) = c(i, dr − 1). If
(i, dr − 1) dominates (i, dr), then we have

c(i, dr) ≤ c(i + 1, dr) ≤ c(i + 1, dr − 1) + 1
= c(i, dr − 1) + 1 = c(i, dr).

Therefore, c(i + 1, dr) = c(i, dr).
Otherwise, (i, dr − 1) does not dominate (i, dr).

Hence (i, dr) must be dominated by (i− 1, dr + 1). In
that case, if (i − 1, dr + 1) is potent, then we must
have c((i − 1, dr + 1) → (i, dr + 1) = 0. This implies
c(i, dr + 1) = c(i − 1, dr + 1). On the other hand, if
(i − 1, dr + 1) is non-potent, then from the induction
hypothesis c(i, dr + 1) = c(i− 1, dr + 1). We have

c(i, dr) ≤ c(i + 1, dr) ≤ c(i, dr + 1) + 1
= c(i− 1, dr + 1) + 1 = c(i, dr).

Therefore, we have c(i + 1, dr) = c(i, dr). The lemma
follows.

Proof of Lemma III.4: We prove this by induction
on the grid vertices (i, d) in lexicographic order (i.e.,
their row is the primary key and their diagonal is
secondary). The base case (i, d) = (0, 0) is immediate,
because the mismatch guarantees that c(1, 0) ≥ 1.

For the inductive step, consider (i, d) and assume
the claim holds for all previous vertices. Suppose first
that (i + 1, d) has a mismatch, and let us show that
c(i + 1, d) = c(i, d) + 1. By (1), it suffices to show that
c(i + 1, d) ≥ c(i, d) + 1, which due to the mismatch
requires proving a lower bound on the cost of two in-

neighbors of (i + 1, d), namely,

min{c(i + 1, d− 1), c(i, d + 1)} ≥ c(i, d).

This is equivalent to two inequalities, and we start
with the inequality c(i + 1, d − 1) ≥ c(i, d). Assume
first that (i, d) is not dominated by (i, d − 1). This
together with the monotonicity property (1) implies
c(i, d) ≤ c(i, d − 1) ≤ c(i + 1, d − 1), as required.
Assume next that (i, d) is dominated by (i, d − 1).
Then by Definition III.1, diagonal d − 1 is potent at
row i and has a mismatch at the next row i + 1.
Applying the induction hypothesis to (i, d − 1) and
using the bounded difference property (2), we have
c(i + 1, d − 1) = c(i, d − 1) + 1 ≥ c(i, d), as required.
Thus, both cases satisfy the required inequality.

The second inequality c(i, d + 1) ≥ c(i, d) is proved
by a similar argument with two cases depending on
whether (i, d) is dominated by (i − 1, d + 1). This
concludes the inductive step in this case.

Suppose next that (i + 1, d) has a match. Then this
vertex has an incoming edge of cost 0, hence c(i +
1, d) ≤ c(i, d). The other direction c(i + 1, d) ≥ c(i, d)
follows by (1). It remains to prove that (i + 1, d) is po-
tent. First, assume (i, d) is not dominated by (i, d− 1).
This along with the monotonicity property (1) implies
c(i + 1, d − 1) ≥ c(i, d − 1) ≥ c(i, d) = c(i + 1, d), i.e.
(i + 1, d− 1) does not dominate (i + 1, d).

Otherwise, assume (i, d − 1) dominates (i, d), then
from Definition III.1, (i, d− 1) must be potent and there
must be a mismatch at row i. Hence, from the first
part of this lemma, c(i + 1, d − 1) = c(i, d − 1) + 1 ≥
c(i, d) = c(i + 1, d), i.e., (i + 1, d− 1) cannot dominate
(i + 1, d).

Similarly, (i, d+ 1) cannot dominate (i, d). Therefore,
(i + 1, d) is potent. This completes the inductive step
and proves the lemma.

Proof of Lemma III.6: We prove the first claim
(about insertion to Di) by induction on the grid ver-
tices (i, d) in lexicographic order (i.e., their row is the
primary key and their diagonal is secondary). The base
case is row i = 0, at which the only potent diagonal is
d = 0, and indeed it is inserted into D0 as initialization.

For the inductive step, consider a potent vertex (i, d)
and assume the claim holds for all previous vertices. By
Lemma III.2, there is a shortest path to (i, d) consisting
only of potent vertices. This path enters (i, d) from one
of its three in-neighbors (i − 1, d), (i − 1, d + 1), and
(i, d− 1), which then must be potent too. We now have
three cases.

Suppose first the shortest path enters from (i− 1, d).
As mentioned above, this vertex must be potent, and
then by the induction hypothesis, d is inserted to the
list Di−1. It follows that when (i− 1, d) is scanned, the
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algorithm will see it is potent and insert d to Di.
Second, assume the shortest path enters from (i, d−

1). As mentioned above, it must be potent, and then
by the induction hypothesis, d − 1 is inserted to the
list Di. Observe that (i, d), which is potent, must be
dominated by (i, d − 1) because of the shortest path,
hence diagonal d− 1 has a mismatch at the next row
i+ 1, and thus when (i, d− 1) is scanned, the algorithm
will insert d to Di.

Third, assume the shortest path enters from (i −
1, d + 1). Similarly to the previous case, this vertex
must be potent and then by the induction hypothesis,
d + 1 is inserted to the list Di−1. Since (i, d) is potent
and dominated by (i − 1, d + 1), and diagonal d + 1
must have a mismatch at the next row i, and thus when
(i− 1, d + 1) is scanned, the algorithm will insert d to
Di.

Finally, to prove the second claim, observe that
during the scan of Di, every diagonal d that is found
to be not potent is removed from the list.

Proof of Lemma III.7: We prove only the first
assertion, as the second one is an immediate conse-
quence of it. The proof is by induction on the grid
vertices (i, d) in lexicographic order (i.e., their row is
the primary key and their diagonal is secondary). The
base case is the time before processing vertex (0, 0); at
this time, cA stores its initial values, i.e., cA[d] = |d|,
which is equal to c(0, d) for all d ≥ 0. For d < 0, the
base case is the time before processing (−d, d), because
we should only consider vertices reachable from (0, 0);
at this time, cA[d] = |d| is still the initialized value and
it is equal to c(d,−d) = −d.

For the inductive step, we need to show that the
processing of diagonal d ∈ Di updates the array cA
correctly. But using the induction hypothesis, we only
need to show cA[d] is updated from c(i, d) to c(i+ 1, d).
To this end, suppose first that vertex (i, d) is non-
potent. Then by Lemma III.3 we have c(i + 1, d) =
c(i, d), and the algorithm indeed does not modify cA[d].
Suppose next (i, d) is potent and let us use Lemma III.4:
If (i+ 1, d) has a mismatch then c(i+ 1, d) = c(i, d) + 1,
and the algorithm indeed increments cA[d] by 1; and
if (i + 1, d) has a match then c(i + 1, d) = c(i, d), and
the algorithm indeed does not change cA at all.
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