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ABSTRACT
We provide the first hardness result of a polylogarithmic ap-
proximation ratio for a natural NP-hard optimization prob-
lem. We show that for every fixed ε > 0, the Group-
Steiner-Tree problem admits no efficient log2−ε k approx-
imation, where k denotes the number of groups (or, alterna-
tively, the input size), unless NP has quasi-polynomial Las-
Vegas algorithms. This hardness result holds even for input
graphs which are Hierarchically Well-Separated Trees, in-
troduced by Bartal [FOCS, 1996]. For these trees (and also
for general trees), our bound is nearly tight with the log-
squared approximation currently known. Our results imply
that for every fixed ε > 0, the Directed-Steiner-Tree
problem admits no log2−ε n–approximation, where n is the
number of vertices in the graph, under the same complexity
assumption.

Categories and Subject Descriptors
F.2.0 [Theory of Computation]: Analysis of algorithms
and problem complexity—General

General Terms
Theory
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1. INTRODUCTION
For most NP-hard optimization problems, the known ap-

proximation ratio1 falls into one of a few broad classes: (i) ar-
bitrarily good fixed approximation ratio, (ii) specific con-
stant factor approximation, (iii) logarithmic approximation
ratio, or (iv) polynomial approximation ratio.2 Similarly,
most of the known hardness of approximation results (namely,
results excluding a certain approximation ratio under a com-
plexity assumption such as P 6= NP) can be divided into
the same categories (with class (i) replaced by strong and
weak NP-hardness). In fact, for each of these classes there
are (natural) problems whose “optimal” approximation ratio
must lie in that class, since we know of both an approxima-
tion algorithm and a hardness of approximation result in
that class.

Polylogarithmic approximation.Much less understood is
the class of polylogarithmic approximation ratios. There
are several (natural) problems for which the best approxi-
mation ratio currently known is polylogarithmic. However,
none of these problems is known to have a hardness of ap-
proximation result that excludes the possibility of a log-
arithmic approximation ratio. The list of problems with
such a fundamental gap in our understanding of their ap-
proximability includes Group-Steiner-Tree, Job-Shop-
Scheduling, Min-Bisection, Bandwidth, Cutwidth, Path-
width, and several problems in bounded-degree graphs (e.g.,
Planar-Drawing-Size and Chordal-Graph-Completion).
We remark that for many of these problems (e.g., Band-
width) no logarithmic hardness of approximation is known,
and for some other problems (e.g., Min-Bisection, Cutwidth
and Pathwidth) there is even no result excluding the pos-
sibility of an arbitrarily good fixed approximation ratio.

So far, progress in closing these gaps came only from the
direction of improving the ratio achieved by approximation

1The approximation ratio of a polynomial-time algorithm is
the worst-case ratio between the value of the solution pro-
vided by the algorithm and that of the optimum solution.
As usual, the approximation ratio is measured as a func-
tion of the input size; however, in graph problems it is more
convenient to characterize the input size by the number of
vertices in the input graph.
2Examples for class (i) are Knapsack, Bin-Packing and
Euclidean-TSP; for class (ii) are Metric-TSP, Max-
SAT, Max-CUT, Vertex-Cover and Steiner-Tree; for
class (iii) are Set-Cover and Domatic-Number; for class
(iv) are Max-Clique and Chromatic-Number.



algorithms. Seymour [22] (essentially) improved the ap-
proximation ratio for feedback sets in directed graphs from
O(log2 n) to O(log n log log n). His technique was extended
in [9] and led to a framework that encompasses several other
problems in [8]. The approximation ratio was further im-
proved in [18] to O(log n) for three of these problems (includ-
ing Total-Linear-Arrangement and Interval-Graph-
Completion). These improved approximation algorithms
raise the intriguing and basic question regarding the exis-
tence of an intermediate hardness (see also [16]). Put differ-
ently: Does every problem with polylogarithmic approxima-
tion ratio actually have a logarithmic approximation ratio?
We provide a (negative) answer by showing the first poly-
logarithmic hardness of approximation result.

The Group-Steiner-Tree Problem.The (undirected)
Group-Steiner-Tree problem is the following. Given an
undirected graph G = (V, E), a collection of subsets (called
groups) g1, g2, . . . , gk ⊆ V , and a weight we ≥ 0 for each
edge e ∈ E, the problem is to construct a minimum-weight
tree in G that spans at least one vertex from every group
gi. We can assume without loss of generality that there is
a distinguished vertex r ∈ V (called the root) that must be
included in the output tree. The case where |gi| = 1 for all
i is just the classical Steiner Tree problem; the case where
G is a tree (or even a star) can be used to model the Set-
Cover problem, which is known to have a logarithmic (in
k) hardness of approximation, see [17, 11, 20].

The first polylogarithmic approximation algorithm for
Group-Steiner-Tree was achieved in the elegant work of
[13]. First, they show that for an input graph G which
is a tree, solving a flow-based linear programming relax-
ation and rounding its fractional solution by a novel ran-
domized rounding approach that they develop, yields an
O(log k log N)–approximation, where N = maxi |gi|. For
a general graph G, they show how to apply the powerful re-
sults of [3] to appropriately reduce the problem to the case
where G is a tree, with an O(log n log log n) factor loss in
the approximation ratio, where n = |V |. Thus, [13] achieve
an O(log n log log n · log k log N)–approximation for Group-
Steiner-Tree in general graphs.

It is worth noting that by applying the results of Bartal [3]
on a graph G one actually obtains a Hierarchically Well-
Separated Tree (HST), i.e., a tree in which (i) all leaves are
at the same distance from the root, and (ii) the weight of
every edge is exactly 1/τ times the weight of its parent edge,
where τ > 1 is any desired constant.

The work of [13] has been extended and expanded in sev-
eral ways: Their algorithm was derandomized in [6, 23]; an
alternative (combinatorial) algorithm is devised in [7]; the
loss incurred by the reduction to an HST is slightly improved
in [4] (at the cost of increasing in the groups’ sizes), and
an optimal such reduction (namely, with only O(log n) loss)
was recently announced in [10]; for HSTs, [14] show that the
fractional solution to the relaxation of [13] can be rounded
so as to achieve an O(log2 k)–approximation, regardless of
N and n. In contrast, it is shown in [15] that, even in
HSTs, the integrality ratio of this relaxation is Ω(log2 k) =
Ω(log k log N/ log log N). A hardness result in [21] excludes

approximation ratio that is better than O((log log n)1/6) for
Group-Steiner-Tree in the Euclidean plane.

The Directed-Steiner-Tree Problem.This is the di-
rected version of the (undirected) Steiner-Tree problem.
Given an edge-weighted directed graph that specifies a root
vertex r and k terminal nodes v1, v2, . . . , vk, the goal is to
construct in G a minimum-weight out-branching tree rooted
at r, which spans all the terminals vi. This problem is eas-
ily seen to generalize the undirected Group-Steiner-Tree
problem, as well as to be equivalent to the directed Group-
Steiner-Tree problem. The polynomial-time approxima-
tion ratio currently known for this problem is kε, for any
constant ε > 0, due to [5]; their algorithm extends to a
polylogarithmic approximation ratio, namely O(log3 n), in
quasi-polynomial running time. It is shown in [24] that the
flow-based linear programming relaxation for this problem

has an integrality ratio of Ω(
√

k), for k = Θ( log2 n
(log log n)2

).

In [15], the integrality ratio of this relaxation is shown to

be Ω( log2 n
(log log n)2

). Directed-Steiner-Tree is known to

have an Ω(log n) hardness of approximation result, since this
problem generalizes the Set-Cover problem.

Our results.We provide the first polylogarithmic hard-
ness of approximation result for a natural problem. Specif-
ically, our main contribution is such a hardness result for
Group-Steiner-Tree, as stated in the next theorem. Let
ZTIME(t) denote the class of languages that have a prob-
abilistic algorithm that runs in expected time t (with zero
error probability).

Theorem 1.1. For every fixed ε > 0, Group-Steiner-
Tree cannot be approximated within ratio log2−ε k, unless
NP ⊆ ZTIME(npolylog(n)); this holds even for HSTs (and in
particular, trees).

We mention several extensions of our results, whose de-
tails are omitted from this version of the paper. First,
stronger complexity assumptions yield stronger lower bounds
on the hardness of approximating Group-Steiner-Tree.

For example, our techniques imply an Ω( log2 k
(log log k)2

) lower

bound for approximating Group-Steiner-Tree, assuming

that NP 6⊆ ZTIME(2nδ

) for some fixed δ > 0. Second, we can
show hardness of approximation for the maximum-coverage
variant of Group-Steiner-Tree, where the input contains
also a weight (i.e., cost) bound C, and we wish to find a
tree of total weight at most C that covers the maximum
number of groups. Theorem 1.1 implies, by a simple ar-
gument, that for any fixed ε > 0, the maximum-coverage
version cannot be approximated within ratio log1−ε k, un-
less NP ⊆ ZTIME(npolylog(n)). In our reduction log N =

log1−Θ(ε) k, so our lower bound above translates to log1−ε N .
We note that an O(log N)–approximation for this problem,
where N = maxi |gi|, is essentially devised in [13]. Fur-
thermore, using the same techniques, our reduction shows
(directly) that under the weaker assumption that P 6= NP,
for every constant c > 0, there is no c–approximation for
this problem.

Our proof of Theorem 1.1 immediately implies the fol-
lowing polylogarithmic hardness of approximation result for
Directed-Steiner-Tree. This implication follows by stan-
dard arguments and is omitted from this version of the pa-
per.



Theorem 1.2. For every fixed ε > 0, Directed-Steiner-
Tree cannot be approximated within ratio Ω(log2−ε n), un-

less NP ⊆ ZTIME(npolylog(n)).

Techniques.The proof of Theorem 1.1 consists of the fol-
lowing five ingredients. First, we use (a variant of) the
Set-Cover reduction of Lund and Yannakakis [17] to cre-
ate Group-Steiner-Tree instance on a star (i.e., tree of
height 1). Then we compose many copies of this reduction
in a certain recursive manner to obtain Group-Steiner-
Tree instance on a tree of larger height. (Clearly, some
technical problems arise in this part). Third, our analysis of
the reduction uses the polylogarithmic integrality ratio con-
struction of Halperin et al. [15] for Group-Steiner-Tree.
This is one of the scarce hardness proofs which exploit in
a non trivial way the construction and the analysis of the
integrality ratio for the same problem; see also Section 5.
Another ingredient of our analysis is the known approxima-
tion algorithm of Garg, Konjevod and Ravi [13] for Group-
Steiner-Tree on trees. This somewhat surprising feature
is interesting conceptually, and we are not aware of a hard-
ness result whose proof uses the approximation algorithm
for the problem. The last (but not least) ingredient is a set
of tools designed to combine all these ingredients. For exam-
ple, we devise an averaging lemma in order to show that the
integrality ratio instance ‘hides’ inside the recursive compo-
sition instance.

One complication arising in this recursive composition ap-
proach is that our reduction contains many copies of the
Set-Cover reduction (namely, every non-leaf vertex to-
gether with its children forms a copy of the Set-Cover
instance of [17]). However, these copies are not really in-
stances of Set-Cover any more, since in the context of
Group-Steiner-Tree different copies “interact” with each
other. For example, copies located at the same level of the
tree may “collaborate” so that each copy covers only some of
the groups. Furthermore, copies located at different levels in
the tree do not have equal importance, since they have dif-
ferent weights and different coverage magnitudes. We deal
with these issues by a suitable averaging over the copies.

Organization.We first describe in Section 2 the random
tree instance from [15] and a certain extension of it that will
be used in the reduction. The reduction itself is presented
in Section 3, and its analysis, which proves Theorem 1.1, is
given in Section 4.

2. A SPECIAL RANDOM TREE INSTANCE
In this section we describe a family of random instances (of

Group-Steiner-Tree on HSTs) that is later used in our
reduction’s analysis (Section 4). This family of instances
extends the one studied in [15]. In fact, we rely on their
main technical lemmas, which are stated below.

Preliminaries.Throughout the paper, a tree is said to be
of arity d if every non-leaf vertex in the tree has d children.
A rooted tree has height H if all its leaves are at distance H
from the root. As usual, the level of a vertex is its distance
from the root; the root itself is at level 0, and there are H+1
levels. The level of an edge is h iff it connects a vertex at
level h − 1 to a vertex at level h.

The random tree of [15].Consider the following random
tree instance of Group-Steiner-Tree. Let T be a complete
d-ary tree of height H , where an edge at level 1 ≤ h ≤ H
has weight 1/2h. Let G = {g1, . . . , gk} be a collection of
k groups, where each group gj is a subset of leaves chosen
randomly as follows. We shall associate with each leaf `
a subset A(`) ⊆ G of the groups; we then let each group
be the set of leaves ` for which A(`) contains the group,
i.e., gj = {` : ` is a leaf and gj ∈ A(`)}. (Thus, a path
from the root to a leaf ` covers all groups in A(`).) To
define A(·) for the leaves, we now recursively and randomly
define a set A(v) for every node v in the tree. Start with
the root r by letting A(r) = G, i.e. A(r) contains every
group gj with probability 1. In general, if gj ∈ A(u) for
some non-leaf vertex u, then for each child v of u put gj in
A(v) independently with probability 1/2. Notice that this
random process goes top-down in the tree and constructs
the groups gj independently of each other. The groups in
A(v) will be referred to as the groups passing through the
vertex v. For the purpose of defining A(v) we can identify
each non-root vertex v with the edge ev connecting it to its
parent, and then A(v) can be referred to as the set of groups
passing through the edge ev.

Recall that a solution to this instance is a subtree of T ,
i.e., a subgraph of T which is a tree. For a subtree S of T ,
let p(S) denote the probability that S covers all the groups
in G, taken over the randomness in constructing the groups
G. (Here S is fixed prior to the random construction of the
groups.) Since the groups are constructed independently of
each other, letting p′(S) denote the probability (over the
randomness in constructing the groups G) that S does not
cover a particular group in G, we have that p(S) = (1 −
p′(S))k ≤ exp{−k · p′(S)}.

Lemma 2.1 (Halperin et al. [15]). Let T be the ran-
dom instance as above with height H ≤ 1

2
log k, and let S be

any fixed subgraph of T with total weight C. Then for a

constant γ > 0 that is sufficiently large, p′(S) ≥ e−γC/H2

.

Thus, p(S) ≤ exp{−k · e−γC/H2}.

A subtree S of the random instance T is minimal if it has
the same root as T and all its leaves are at level H (i.e., they
are also leaves of T ). Thus, a minimal subtree is defined by
the leaves of T that it reaches, yielding the next lemma.

Lemma 2.2 (Halperin et al. [15]). In the tree T there

are at most dCH2H

minimal subtrees with total weight at
most C.

The two lemmas above imply the following lower bound
(that holds with high probability) on the integral solution
for the random instance T .

Corollary 2.3 (Halperin et al. [15]). Let T be the
random instance as above with height H ≤ 1

2
log k and arity

d ≤ k. Then with probability at least 1 − e−kΩ(1)

, any (op-
timal integral) solution for the random instance T has total
weight Ω( 1

γ
H2 log k).

Proof. Since all groups in G contain only leaves of T , an
optimal solution to the instance T is necessarily a minimal
subtree. For any fixed minimal subtree S of total weight at
most C we have by Lemma 2.1 that S is a solution to the



random instance T (i.e., covers all the groups) with probabil-

ity at most p(S) ≤ exp{−ke−γC/H2}. The number of such

minimal subtrees is, by Lemma 2.2, at most dCH2H

. Taking
a union bound, we conclude that the probability that T has
an (optimal) solution of weight at most C = 1

5γ
H2 ln k is

at most dCH2H · exp{−ke−γC/H2} ≤ exp{Õ(
√

k) − k4/5} ≤
exp{−k3/4}.

It is also proven in [15] that (with high probability) the
value of the fractional solution to the flow-based LP on the
random instance T can be upper bounded as follows.

Lemma 2.4 (Halperin et al. [15]). With probability

at least 1 − dHk/eΩ(d), the random instance T has a frac-
tional solution with value O(H).

We remark that an integrality ratio of Ω(log2 k) is shown
in [15] by combining Corollary 2.3 with Lemma 2.4. Notice
also that the randomized rounding procedure of [13] up-
per bounds the integrality ratio in T by O(log(dH) log k) =
O(H log d log k). (Their proof actually yields the better bound
O(H log k) for any tree instance with height H and k groups,
but this improved bound is not necessary for our purposes.)
By combining this integrality ratio upper bound with Lemma
2.4 we obtain that with high probability T has an integral
solution of weight O(H2 log d log k). We shall use this upper
bound in the proof of Lemma 2.6.

An extended random tree.We now consider an extended
version of the random tree T , in which some pairs of edges
may be “identical” or “complementary”, and then the ran-
dom choices in constructing the groups in this pair of edges
are not independent, as follows. Let every vertex of T have
one of three labels: (i) use a fresh coin; (ii) use the same coin
as some sibling vertex that uses a fresh coin; or (iii) use the
opposite coin of some sibling vertex that uses a fresh coin.
We stress that the same labels are used for all the groups in
G. Two edges are called identical if they have a common par-
ent and they use the same coin tosses (e.g., they both use
the opposite of a coin tossed by a common sibling); thus,
for identical edges, the set of groups passing through them
are identical. Two edges are complementary if they have a
common parent and they use opposite coins tosses (e.g., one
of the edges tosses the coins, and the other edge uses the
opposite result); thus, for a complementary pair, the set of
groups passing through the two edges forms a partition of
the set of groups passing through their common parent.

We call this tree an extended random tree. We assume
further that each non-leaf vertex has at least d̂ = dΩ(1) chil-
dren that use fresh coins (and are thus independent of each
other). The following two lemmas provide a step-by-step
extension of Corollary 2.3 to this tree.

Lemma 2.5. Let T be an extended random tree as above
with height H ≤ 1

2
log k and arity d ≤ k. Then with probabil-

ity at least 1−e−kΩ(1)

any (integral) solution for T that con-
tains no complementary pairs has total weight Ω( 1

γ
H2 log k).

Proof. Let S be a fixed subgraph of T with total weight
C and let p(S) be the probability that S covers all the groups
in G, taken over the randomness in constructing the groups
G. We first claim that if S has no complementary edges then

p(S) ≤ exp{−ke−γC/H2}. For two edges e1 and e2 with a

common parent e0, and with subtrees T1, T2 rooted at e1 and
e2 respectively, the contraction of the pair (e1, e2) is done
by deleting e2 and adding T2 as subtree rooted at e1. To
prove the claim, we construct a tree T̂ from T by contracting
every pair of identical edges, and let Ŝ be the subtree of T̂
that is induced by S. It is easy to see that p(S) = p(Ŝ) and

that the total weight of Ŝ is at most C. The tree T̂ might
end up being not regular, but we can view Ŝ as a subtree
of a bigger tree, which is regular. By applying Lemma 2.1
(whose bound does not depend on the degree of the tree) we

obtain p(S) = p(Ŝ) ≤ exp{−ke−γC/H2}.
Finally, observe that the upper bound of Lemma 2.2 ap-

plies also for an extended random tree T . Thus, the proof
follows by the same union bound as in the proof of Corol-
lary 2.3.

Lemma 2.6. Let T be an extended random tree as above
with height H ≤ 1

2
log k and arity d ≤ k. Assume that

d̂ ≥ max{log2 k, dΩ(1)}, and let β > 0 be a sufficiently small

constant. Then with probability at least 1−e−dΩ(1)

any (inte-
gral) solution for T in which the number mh of complemen-

tary pairs at level h satisfies
∑H

h=1
mh

2h ≤ β
γ log d

has total

weight Ω( 1
γ
H2 log k).

Proof. We first claim that with probability at least 1 −
e−dΩ(1)

, for every vertex v at level h the subtree of T rooted
at v has an integral solution that contains no pair of comple-
mentary edges and has total weight O(H2/2h · log d log k).
To prove the claim, fix a vertex v at some level h. The
subtree of T rooted at v contains a (non-extended) random

tree (similar to T but) with height H − h, arity d̂ = dΩ(1),
at most k groups, and its edge weights are scaled down
by a factor of 2h. It follows from Lemma 2.4 that with

probability at least 1 − d̂Hk/eΩ(d̂) this scaled instance has
a fractional solution of value at most O(H/2h). By the
randomized rounding procedure of [13], such a fractional
solution implies an integral solution (i.e., a subtree cov-
ering all the groups passing through v) with total weight
O(H/2h ·H log d log k). Taking a union bound over less than
dH non-leaf vertices v, the overall probability of failure is at

most dH · d̂Hk/eΩ(d̂) ≤ eO(log k log d)−Ω(d̂) ≤ e−dΩ(1)

, which
proves the claim.

For the rest of the proof assume that the event in the
claim above happens. We then show that for any solution

S (for T ) with total weight C and
∑H

h=1
mh(S)

2h ≤ β
γ log d

(recall that mh(S) is the number of complementary pairs
at level h that S contains) there exists a solution S′ that
has total weight at most C + O(β

γ
H2 log k) and contains no

complementary pairs. To prove this, construct S′ from S
by replacing every complementary pair with a subtree as
in the claim above (with no complementary pairs) under
their common parent. It follows that every complementary
pair at level h is replaced with a subtree of total weight
O(H2/2h · log d log k) that covers all the groups covered by
the common parent. S′ clearly covers every group that S
covers and is thus a solution for T . Observe that the weight
of S′ is at most C +

∑H
h=1 mh(S) · (H2/2h · log d log k) ≤

C + O(β
γ
H2 log k).

Finally, assume that the event described in Lemma 2.5
also happens. Notice that by a union bound, these two
events (the one from Lemma 2.5 and the one above) both

happen with probability at least 1− e−dΩ(1)

(recall that k ≥



d). In this case, we have from Lemma 2.5 that the total
weight of S′ is Ω( 1

γ
H2 log k); combining this lower bound

with the upper bound C + O(β
γ
H2 log k) from above, we

conclude that for a sufficiently small constant β > 0, the
total weight of S is C ≥ Ω( 1

γ
H2 log k).

3. THE REDUCTION
In this section we introduce a reduction from an arbitrary

NP-hard problem (say SAT) to Group-Steiner-Tree. We
first recall (a variant of) the reduction of Lund and Yan-
nakakis [17] that yields a logarithmic gap for Set-Cover
(see also [1, 11]); however, we view it as a reduction to
Group-Steiner-Tree in a tree of height 1 by using the
equivalence between these two problems (Set-Cover and
Group-Steiner-Tree in tree of height 1). We then show
how to recursively compose many copies of this reduction,
thus obtaining a reduction to Group-Steiner-Tree in a
tree of large height.

3.1 The parallel repetition starting point
The starting point for our reduction is the following PCP

system (which is motivated by one-round two-prover interac-
tive proof systems.) A witness to the PCP is an assignment
to the 2M variables X1

1 , . . . , X1
M and X2

1 , . . . , X2
M , all taking

values from the same set A (called answers). A verifier is any
polynomial time procedure that decides whether to accept or
reject a given witness as follows: the verifier uses its private
random coins to pick q1, q2 ∈ {1, . . . , M} (called queries),
reads from the witness the values of the two corresponding
variables X1

q1 , X2
q2 , and then decides whether to accept or

reject the witness. The next theorem follows essentially by
applying the Parallel Repetition Theorem of Raz [19] on the
so-called PCP Theorem of [2] (see also [1]).

Theorem 3.1. Let L be any NP-complete language. Then
there exist constants a, c0, c1 and an algorithm that, given
an instance I for L and an integer l ≥ 1, produces in time
|I|O(l) a verifier V for the above PCP system, such that:
|M | = ml for m ≤ |I|c1 and |A| = al; if I ∈ L then there
exists a witness that V accepts with probability 1; if I /∈ L
then any witness is accepted by V with probability at most
2−c0l.

We remark that for Set-Cover, it suffices that the num-
ber of parallel repetitions is l = O(log log m). In our reduc-
tion we shall take l = log m.

Additional properties.For our purposes, it is important
that the PCP system of Theorem 3.1 has some additional
properties. We say that the verifier is D-regular if the queries
pair (q1, q2) is chosen uniformly at random from a collection
of D · M pairs, called the plausible pairs, such that each
possible value for q1 appears in exactly D pairs, and each
possible value for q2 appears in exactly D pairs. Note that a
D-regular verifier chooses each of q1 and q2 from a uniform
distribution, but these two distributions are (generally) not
independent. It is shown in [11] (and also in [12]) that The-
orem 3.1 can be proven with the additional property that
the verifier V is dl-regular for some constant d > 0.

We say that the verifier is a projection-equality tester if
it decides whether to accept or reject a witness as follows.
The verifier has for each variable Xp

t (where p ∈ {1, 2} and

t ∈ {1, . . . , M}) a function πp
t : A → Ã called a projection.

The verifier accepts the witness if the projections of the
two variables it reads from the witness are equal, namely,
if π1

q1(X1
q1) = π2

q2(X2
q2). The known proofs of Theorem 3.1

give a verifier that is a projection-equality tester with |Ã| =
ãl for some constant ã. (In fact, ã = 2 in [11] and ã = 3

in [12].) We assume without loss of generality that Ã =
{1, . . . , ãl}.

3.2 Reduction to Group-Steiner-Tree in a tree
of height one.

We next describe the randomized reduction from the PCP
system from Section 3.1 to the Group-Steiner-Tree prob-
lem in a tree of height one (i.e., a star graph). This reduction
is essentially (a variant of) the Lund and Yannakakis [17]
reduction to Set-Cover (see also [1, 11]). The reduction
produces an instance T of the Group-Steiner-Tree prob-
lem on a rooted tree of height 1 (i.e. a star), as follows. Let
T have one edge (and thus also one leaf vertex) for every
possible assignment of a value in A for every variable Xp

t .
Thus, the total number of edges in T (i.e., the degree of
the root in this tree of height 1) is 2 · ml · al. For every
plausible pair of queries the instance T has a ground set
of u groups, where u will be determined later. To simplify
notation, let us enumerate the plausible pairs of queries by
i = 1, . . . , (md)l and denote the corresponding ground sets

by Ui. Let Û := ∪iUi be the set of all groups in the instance
T . Then |Ui| = u for all i and |Û | = (md)l · u.

As a means to define the members of each group in this
instance, we give every leaf vertex a set of labels. Each label
is of the form Di,j or D̄i,j , where i ∈ {1, . . . , (md)l} and

j ∈ Ã. A leaf that corresponds to assigning a value r ∈ A to
a variable X1

t is labeled by Di,π1
t (r) for every plausible pair

of queries i that contains the variable X1
t . Similarly, a leaf

that corresponds to assigning a value r ∈ A to a variable
X2

t is labeled by D̄i,π2
t
(r) for every plausible pair of queries

i that contains the variable X2
t . Since each variable Xp

t

appears in exactly dl pairs of queries, we have that every
leaf has exactly dl labels. (These labels are distinct since
they have different values for i.) Note that the labeling is
deterministic.

Finally, we randomly construct the groups using the la-
bels. For every group g ∈ Ui and every j ∈ Ã, choose
uniformly at random (i.e., with equal probabilities) and in-
dependently of all other events, one of the two labels Di,j

and D̄i,j . Then let each group g contain all the leaves that
have the label chosen by g.

3.3 Reduction to Group-Steiner-Tree by re-
cursive composition.

We now construct an instance T ′ of the group Steiner tree
from (many copies of) the instance T (of Section 3.2). T ′

is a complete (rooted) tree of arity 2 · ml · al and height
H (that we will determine later to be polylog(m)). That
is, every non-leaf vertex has 2 · ml · al children, and all the
leaves of the tree are at distance H from the root. As usual,
the level of a vertex is its distance from the root; the root
itself is at level 0, and there are H +1 levels. The level of an
edge is h iff it connects a vertex at level h− 1 to a vertex at
level h. We then let every edge at level h have weight wh,
where w := 1/(2ml).

The set Û of all groups in the instance T ′ has the following
structure. Û is partitioned into (md)l what we shall call level



1 ground sets, each of size u1 (that we will choose later).
Each level 1 ground set is further partitioned into ml level
2 ground sets of size u2 = u1/ml. More generally, each level
h ground set, for 1 ≤ h ≤ H − 1, is further partitioned into
ml level h + 1 ground sets of size uh+1 = uh/ml. Thus,
for every 1 ≤ h ≤ H the number of level h ground sets is
(md)l · ml(h−1) = dlmlh.

We define the group members so that each non-leaf vertex
will essentially form, together with its children, a copy of T .
(However, the groups will actually contain only leaves of
T ′.) First, let the root vertex and its children form a copy
of T using the level 1 ground sets. This is possible since
the degree of the root is 2 · ml · al, just like in the tree T ,
and since the number of level 1 ground sets is (md)l, just
like the number of ground sets in T . This copy of T , with
ground sets’ size u = u1, is said to be at level 1. We stress
that at this point we do not determine which groups are
chosen to each edge, but rather determine only the ground
sets and labels that are associated with each edge; at a later
stage we will use the labels to decide which groups of these
ground sets actually pass through each edge. Consider next
a vertex v at level 1. Since v is a leaf in the copy of T at
level 1, exactly dl level 1 ground sets appears in it; each
such ground set is partitioned into ml level 2 ground sets,
yielding a total of (md)l level 2 ground sets “relevant” to v.
We then let v, together with its 2 · ml · al children, form a
copy of T using these (md)l level 2 ground sets. This copy
of T , with ground sets’ size u = u2, is said to be at level
2. More generally, each vertex v at level 1 ≤ h ≤ H − 1
is a leaf in one copy of T at level h, and thus exactly dl

level h ground sets appears in it. Each such ground set is
partitioned into ml level h + 1 ground sets, yielding a total
of (md)l level h + 1 ground sets “relevant” to v. We then
let v, together with its 2 · ml · al children, form a copy of T
using these (md)l level h + 1 ground sets. This copy of T ,
with ground sets’ size u = uh+1, is said to be at level h + 1.

Finally, the groups are constructed randomly by using in-
dependent coins tosses at the different copies of T in T ′

and letting only the leaves of T ′ be group members. More
specifically, at every copy of T at every level 1 ≤ h ≤ H , we
have (just like in T ) for every “relevant” level h ground set

Ui, every group g ∈ Ui, and every j ∈ Ã, one fair coin. This
coin chooses for the group g (in this copy of T ) uniformly
at random (i.e., with equal probabilities) and independently
of all other events, one of the two labels Di,j and D̄i,j . We
stress that all these coins are mutually independent. Con-
sider a group g ∈ Û and a leaf v in T ′, and denote by vh

the ancestor of v at level h. Then g passes through vh if it
passes through its parent vertex and vh has the label chosen
by g in the corresponding copy of T . That is, the leaf v is a
member of the group g if at every level 1 ≤ h ≤ H the ver-
tex vh has the label chosen by g in the corresponding level
h copy of T .

4. ANALYSIS OF THE GAP
In this section we show that the reduction creates a poly-

logarithmic gap between the case where I ∈ L and I /∈ L.
Specifically, Section 4.1 shows that if I ∈ L (called a YES in-
stance) then the instance T ′ has a solution of weight H , and
Section 4.2 shows that if I /∈ L (called a NO instance) then
with high probability (over the randomness in the reduction)
any solution of the instance T ′ has weight Ω(H2 log k). (Re-
call that H is a parameter of the reduction.) Thus, the re-

duction produces a gap of Ω(H log k) on the approximation
ratio of Group-Steiner-Tree on trees. Section 4.3 con-
cludes by setting the parameter H so that H = (log k)1−ε

for an arbitrarily small constant ε > 0. The crux is that ap-
proximation ratio o(H log k) for Group-Steiner-Tree on
trees yields a randomized randomized algorithm for decid-
ing whether I ∈ L; the guarantees of this algorithm are like
in co-RP, but its running is quasi-polynomial (with our in-
tended choice of l and H). By standard arguments we then
get for L ∈ NP also a ZPP-like decision algorithm, i.e., that
NP ⊆ ZTIME(npolylog(n)). completing the proof of Theo-
rem 1.1.

4.1 YES instance
Consider the case I ∈ L. Then the PCP system de-

scribed in Section 3.1 has a witness for which the verifier V
always accepts. Thus, there exists an assignment to the vari-
ables X1

1 , . . . , X1
M and X2

1 , . . . , X2
M , such that π1

q1(X1
q1) =

π2
q2(X2

q2) for all plausible pairs of queries (q1, q2). This as-

signment defines for the star instance T a solution with 2ml

edges, as follows. Let S be the set of 2ml edges (in T )
that correspond to the values of the variables X1

1 , . . . , X1
M

and X2
1 , . . . , X2

M in the assignment. To see that S is a so-
lution for T , consider a ground set Ui. This ground set
corresponds to a plausible pair of queries (q1, q2). The as-
signment mentioned above gives values to X1

q1 and X2
q2 , such

that π1
q1(X1

q1) = π2
q2(X2

q2). Let us denote the latter value

by j ∈ Ã; then the assignments to X1
q1 and X2

q2 correspond,
to an edge of S whose non-root endpoint vertex is labeled
by Di,j and to an edge of S whose non-root endpoint vertex
is labeled by D̄i,j , respectively. Thus, every group g ∈ Ui

is covered by one of these two edges of S (regardless of the
random choice that g makes among these two labels). It
follows that S always covers every group g in the instance
T .

The assignment mentioned above also defines a solution of
total weight H for T ′, as follows. First, in the level 1 of T ′

(i.e., in the level 1 copy of T ) let S′ contain the 2ml edges
that correspond to the values of the variables X1

1 , . . . , X1
M

and X2
1 , . . . , X2

M in the assignment. These edges reach 2ml

level 2 copies of T in T ′. At each of these copies, let
S′ contain the 2ml edges that correspond to the values of
the variables X1

1 , . . . , X1
M and X2

1 , . . . , X2
M in the assign-

ment. Continue similarly at every level h ≤ H . Then the
set S′ contains (2ml)h edges at each level h. Since each
edge at level h has weight wh, the total weight of S′ is
∑H

h=1(2ml)h · wh = H . We now argue that S′ is a solu-
tion for T ′. Consider a level H ground set U , and denote
by Uh the level h ground set that contains U . By the argu-
ments above for the star instance T we have that S′ contains
a complete binary tree T ′

U of height H (i.e. from the root
to the leaves of T ′), in which every non-leaf vertex at level

h has, for i = Uh and for some j ∈ Ã, one of its children
labeled by Di,j and the other one labeled by D̄i,j . Thus,
every group g ∈ U is covered by one of the 2H leaves in this
complete binary tree T ′

U (regardless of the random choice
that g makes among these two labels). It follows that S′

always covers every group g in the instance T ′.

4.2 NO instance
Consider the case I /∈ L, and assume for contradiction

that T ′ has a solution (i.e., a subtree) S of total weight C ≤
δH2 log k for a sufficiently small constant δ > 0 (that will



be determined later). We shall choose the size of the level
H ground sets to be uH := dlmlH , so that k = dlmlH ·uH =
(uH)2 and thus C ≤ 2δH2 log uH . Below we use the solution
S to construct randomly a witness πR (for the PCP system
from Section 3.1) which the verifier accepts with probability
higher than 2−c0l. (This probability is taken over both the
randomness in constructing the witness πR and the random-
ness of the verifier.) It follows that there exists a witness π
which the verifier accepts with probability higher than 2−c0l

(this probability is taken only over the randomness of the
verifier), which contradicts Theorem 3.1. Technically, this
whole argument only goes through when the (randomized)
reduction is “successful”, and we shall show that this event
happens with high probability (over the randomness in the
reduction).

An averaging lemma.Consider a level H ground set U .
Then U = UH ⊂ UH−1 ⊂ · · · ⊂ U1, where Uh is a level
h ground set. Let T ′

U be the subtree of T ′ that is induced
on the vertices in which any of U1, . . . , UH appears (i.e.,
all vertices at level h with Uh appearing in them, for all
h). Let sh(U) denote the number of edges at level h in T ′

U

that belong to (i.e., are used by) the solution S. The next
lemma will allow us to restrict our attention to a single level
H ground set and analyze it separately.

Lemma 4.1. Let U be a level H ground set chosen uni-

formly at random. Then EU

[

∑H
h=1

sh(U)

2h

]

= C.

Proof. For any edge e, let Xe be 1 if e ∈ S and 0 oth-
erwise. Let Lh denote the set of edges at level h of T ′.
Recall that the number of level h ground sets that appear
in a vertex at level h is dl, and that each level h ground set
is partitioned into ml(H−h) level H ground sets. Letting U
range over all level H ground sets we thus have:

∑

U

H
∑

h=1

sh(U)

2h
=

H
∑

h=1

1

2h

∑

U

sh(U) =
H

∑

h=1

1

2h

∑

e∈Lh

Xe·dlml(H−h).

Dividing by the number of level H ground sets, which is
dlmlH , we obtain

EU

[

H
∑

h=1

sh(U)

2h

]

=

H
∑

h=1

∑

e∈Lh

Xe

2hmlh
=

H
∑

h=1

∑

e∈Lh

Xe · wh = C.

The restricted instanceT ′

U . Lemma 4.1 suggests that S
provides a “low-weight” solution to the problem of covering
the groups of a “typical” ground set U of level H . More
precisely, for each level H ground set U the instance T ′

defines the following Group-Steiner-Tree instance on the
subtree T ′

U : This is the problem of covering the groups of
U in the subtree T ′

U , where edges at level 1 ≤ h ≤ H have
weight 1/2h. We shall call this the restricted instance T ′

U .
Since S is a solution for T ′, the edges of S in T ′

U form a
solution for the restricted instance T ′

U . Lemma 4.1 shows
that if U is a randomly chosen level H ground set, then the
solution for T ′

U provided by S has expected weight C.

Complementary edges.Two edges in T form a comple-
mentary pair in T with respect to a ground set Ui if for some
j, one of these edges is labeled by Di,j and the other one

is labeled by D̄i,j . Observe that two such complementary
edges in T define values for the two variables X1

q1 , X2
q2 that

correspond to Ui, such that if the verifier’s pair of queries
is (q1, q2) then these values of X1

q1 , X2
q2 cause the verifier to

accept. Two edges in T ′ form a complementary pair in T ′

at level h if they belong to the same copy of T at level h
of T ′ and they are complementary in this copy of T . Two
edges in T ′

U form a complementary pair in T ′

U if they belong
to the same copy of T and they are complementary in this
copy of T with respect to a ground set that contains U .

An “easy” case - no complementary edges.For ease of
exposition (and to demonstrate the role of Lemma 4.1), we
first prove the special case where S contains no two edges
which are complementary in T ′. We shall use the follow-
ing lemma, whose proof essentially follows from that of the
integrality ratio of [15] (see Section 2).

Lemma 4.2. Let l � H ≤ 1
2

log uH . Then with high prob-

ability (namely, 1−e−u 0.1
H ) (over the randomness in the re-

duction), the following holds for all level H ground sets U :
In the restricted instance T ′

U , every solution that contains
no complementary pairs has weight Ω( 1

γ
H2 log uH).

Proof. For any fixed level H ground set U we can apply
Lemma 2.5 on T ′

U , since T ′

U is an extended random tree with
height H , arity 2al and uH groups. Thus, with probability

at least 1 − e−u
Ω(1)
H any (integral) solution for T ′

U that con-
tains no complementary pairs has total weight Ω( 1

γ
H2 log k).

The proof then follows by taking a union bound over all the
dlmlH ≤ uH level H ground sets U .

Suppose that no two edges in S are complementary in
T ′. By Lemma 4.1 there exists a restricted instance T ′

U for

which S provides a solution of cost
∑H

h=1
sh(U)

2h ≤ C. But

since S contains no two complementary edges in T ′

U , we have
from Lemma 4.2 that with high probability, the cost of this

solution is
∑H

h=1
sh(U)

2h ≥ Ω( 1
γ
H2 log uH). It follows that

Ω(H2 log uH) ≤ ∑H
h=1

sh(U)

2h ≤ C ≤ 2δH2 log uH . For a suf-
ficiently small constant δ > 0, this yields a contradiction.
Note that the only restriction on H is that H ≤ 1

2
log uH ;

thus, in this “easy” case we can choose H = Ω(log k), yield-
ing a gap of Ω(log2 k).

A successful reduction.We say that the reduction is suc-
cessful if the events described in Lemmas 4.3 and 4.4 below
both happen. These two lemmas will be used in the proof
of the general case. The first one extends Lemma 4.2 to so-
lutions (for a restricted instance T ′

U ) that contain relatively
few complementary edges. The second one shows that any
solution for T ′ must have edges in at least (1/w)h−1 copies
of T at any level h (i.e., similar to the situation in the YES
instance).

Lemma 4.3. Let H ≤ 1
2

log uH and λ′ log log uH ≤ l � H
for a sufficiently large constant λ′ > 0, and let β > 0
be a sufficiently small constant. Then with probability at
least 1 − e−uH (over the randomness in the reduction), the
following holds for all level H ground sets U : In the re-
stricted instance T ′

U , every solution that contains at most
β

2γ log a·lH
2h = O( 2h

H2 ) complementary pairs at every level h

has weight Ω( 1
γ
H2 log uH).



Proof. For any level H ground set U the restricted in-
stance T ′

U is an extended random tree with height H , arity
2al and uH groups. Note also that the number of “inde-
pendent” children of any non-leaf vertex (called there d̂)

is indeed at least ãl ≥ (2al)Ω(1). To apply Lemma 2.6

on T ′

U , notice that the requirement (2al)Ω(1) ≥ log2 uH

holds if λ′ is a sufficiently large constant, and that our
assumption that mh ≤ β

2γ log a·lH
2h for all h implies that

∑H
h=1

mh

2h ≤ H · β
2γ log a·lH

≤ β
γ log(2al)

. Then by Lemma 2.6,

with probability at least 1 − e−(2al)Ω(1)

any (integral) so-
lution for T ′

U in which the number mh of complementary
pairs at level h satisfies

∑H
h=1

mh

2h ≤ β

γ log(2al)
, has total

weight Ω( 1
γ
H2 log k). The proof then follows by taking a

union bound over all dlmlH ≤ uH level H ground sets U . If
λ′ is sufficiently large the total failure probability is at most

uH · e−(2al)Ω(1) ≤ uH · e− log2 uH ≤ e−uH .

Lemma 4.4. With probability at least 1−e−u
Ω(1)
H (over the

randomness in the reduction), any solution for the instance
T ′ contains edges in Ω((1/w)h−1) copies of T at every level
h.

We need the following claim for the proof of Lemma 4.4.

Claim 4.5. With probability at least 1 − e−u
Ω(1)
H , every

vertex v at every level h contains Θ(uH/2h) groups of each

of the dlml(H−h) level H ground sets it contains.

Proof of Claim 4.5. Consider a level H ground set U
that appears in v. The path from the root to v has length
h, and thus each group g ∈ U passes through this path
independently with probability 1/2h. Therefore, the number
of groups of U that v contains is a binomially distributed
random variable X ∼ B(uH , 1/2h). By Chernoff bounds,

X = Θ(uH/2h) with probability at least 1 − e−Θ(uH/2h).
Taking a union bound over the Θ((2alml)H) ≤ m2lH ≤
u2

H vertices v and dlmlH = uH level H ground sets U , the

total probability of failure is at most uH ·u2
H · e−Θ(uH/2h) ≤

e−u
Ω(1)
H , which proves the claim.

We are now ready to prove Lemma 4.4:

Proof of Lemma 4.4. Let us assume that the event de-
scribed in Claim 4.5 indeed happens. Notice that edges
in a copy of T at level h can cover only groups that ap-
pear in the level h − 1 vertex v that is the root of this
copy of T ; by our assumption any number of edges from
the same copy of T covers together O(uH/2h−1) groups in

each of the dlml(H−h+1) level H ground sets appearing in
v. Thus, a solution for T ′ that contains edges from at
most z distinct copies of T at level h can cover at most
z · O(uH/2h−1) · dlml(H−h+1) level H groups. Since there
are k = dlmlH · uH level H groups in T ′ and a solution
covers all of them, we get that z ≥ Ω(2h−1 · ml(h−1)) =
Ω((1/w)h−1).

The general case.We describe below how the solution S
yields a randomized witness πR (for the PCP system from
Section 3.1). We will then show that if the reduction is suc-
cessful (i.e., that the events described in Lemmas 4.3 and 4.4
both happen) then the verifier accepts πR with probability
higher than 2−c0l.

The solution S defines a randomized witness πR for the
PCP system, as follows. First choose at random a level hR ∈
{1, . . . , H}. Then choose at random a copy of T uniformly
at random from all the copies at level hR of T ′ that contain
at least one edge of the solution S. Denote this copy of T
by TR. Recall that each edge in TR corresponds to a value
to one of the 2M variables X1

1 , . . . , X1
M , X2

1 , . . . , X2
M . Thus,

the edges in TR that belong to the solution S define for each
of these 2M variables a set of values from A. We call this
a multi-assignment π̃R to the 2M variables. This multi-
assignment is sparsified into an assignment πR by choosing
for each variable Xp

t one value uniformly at random from the
set of values assigned to Xp

t by the multi-assignment π̃R. If
this set of values is empty then the variable is assigned an
arbitrary value.

We wish to lower bound the probability that the verifier
accepts the above randomized witness πR. (This probability
is taken over the randomness in constructing the witness
and the randomness of the verifier.) Denote by (q1R, q2R)
the plausible pair of queries chosen randomly by the verifier.
Each plausible pair of queries is identified with a ground set
in T , and thus also with a level hR ground set UR in the copy
TR (used in the witness construction). Thus, the randomized
witness and the verifier define together a random tuple <
TR, UR > at level hR. This tuple motivates our following
definition. A permissible tuple at level h is a tuple < Tz, U >
where U is a level h ground set that appears in Tz, and Tz is
a copy of T at level h of T ′ that contains at least one edge
of S (note that it is possible that S does not contain any
edge which corresponds to U in Tz). Observe that a tuple
is permissible if and only if it has a positive probability to
be chosen as the random tuple < TR, UR >. Below, we
first lower bound the probability of choosing any particular
permissible tuple, and then identify a relatively large set
of permissible tuples that are likely to cause the verifier to
accept.

Lemma 4.6. Every permissible tuple < Tz, U > at any
level h is chosen to be the random tuple < TR, UR > with

probability at least wh−1

HC(md)l .

Proof. The probability that hR is chosen to be h is 1/H .
The number of copies of T at level h that contain at least
one edge of S is at most C(1/w)h−1, because each of them
requires that S contains a distinct edge at level h−1. Thus,
each such copy Tz is chosen with probability at least (1/C) ·
wh−1. Recall that UR is defined by choosing one of (md)l

plausible pairs of queries uniformly at random. Thus, the
probability to choose a particular U is 1/(md)l. The proof
follows.

An S-complementary tuple is a permissible tuple < Tz, U >
in which Tz contains two edges of S that form a complemen-
tary pair with respect to the ground set U . We next show
that there are many S-complementary tuples.

Lemma 4.7. If the reduction is successful, then there ex-

ists a level h0 such that T ′ contains at least Ω( dlmlh02h0

H3 )
distinct S-complementary tuples at level h0.

Proof. Assume that the reduction is successful. From
Lemma 4.1 we have, using Markov’s inequality, that for at

least half of all level H ground sets U , we have
∑H

h=1
sh(U)

2h ≤
2C, i.e., S provides a solution with weight at most 2C =



4δH2 log uH for the restricted instance T ′

U . Consider one of
these ground sets U . For a sufficiently small constant δ, this
weight 4δH2 log uH is smaller than the term Ωγ(H2 log uH)
in Lemma 4.3, and so (by this lemma) the solution S con-

tains, for some level hU , at least Ω( 2hU

H2 ) complementary
pairs in T ′

U . The levels hU (for different ground sets U) can
be spread over at most H levels; thus, there exists a level
h0 such that for at least 1

2H
-fraction of all level H ground

sets U (namely, dlmlH

2H
ground sets), the solution S con-

tains at least Ω( 2h0

H2 ) complementary pairs at level h0 in T ′

U .
Observe that each of these complementary pairs defines an
S-complementary tuple < Tz, W >, where Tz is the copy of
T at level h0 in T ′

U that contains the complementary pair
of S and W is the level h0 ground set that contains U . We

thus obtain at least dlmlH

2H
·Ω( 2h0

H2 ) S-complementary tuples
at level h0; however, these tuples need not be distinct be-
cause different level H ground sets U may correspond to the
same level h0 ground set W . Since each level h0 ground set
W is partitioned into ml(H−h0) level H ground sets U , we
have counted every < Tz, W > at most ml(H−h0) times. We

conclude that there are at least Ω
(

dlmlH2h0

H3 · 1

ml(H−h0)

)

=

Ω
(

dlmlh02h0

H3

)

S-complementary tuples < Tz, W > at level

h0.

Corollary 4.8. With probability at least Ω
(

1
H4C

)

the
random tuple < TR, UR > is an S-complementary tuple.

Proof. By Lemmas 4.6 and 4.7 we have that the random
tuple < Th, Uh > is an S-complementary tuple at level h0

with probability at least

Ω

(

dlmlh02h0

H3
· wh0−1

HC(md)l

)

= Ω

(

1

H4C

)

,

where the equality follows from w = 1/(2ml).

Recall that TR corresponds to the multi-assignment π̃R

and UR corresponds to the plausible pair of queries (q1R, q2R).
Thus, Corollary 4.8 says that with probability at least Ω

(

1
H4C

)

,

the multi-assignment π̃R gives the queried variables X1
q1R

, X2
q2R

sets of values which contain a pair of values for which the
verifier accepts. We thus only need to lower bound the prob-
ability that the sparsification procedure chooses this specific
pair of values to be the values given by the assignment πR.
The next lemma shows that the number of values given by
the multi-assignment π̃R is likely to be relatively small.

Lemma 4.9. With probability at least 1 − O
(

1
H5C

)

, the
number of values given by π̃R to the (actually queried) vari-
ables X1

q1R
, X2

q2R
is at most H5C2.

Proof. Suppose that hR has been chosen. By Lemma 4.4
we have that the solution S has edges in at least Ω((1/w)hR−1)
copies of T at level hR. Thus, TR is chosen (randomly) from
at least Ω((1/w)hR−1) copies of T . It follows that the ex-
pected weight of S that is contained in the copy TR is at
most O(CwhR−1). The weight of an edge at level hR is
whR , and so the expected number of edges of S in TR is at
most O(CwhR−1)/wh

R = O(C/w).
Let Yp, for p = 1, 2 be the number of edges of S in

TR that correspond to values for the variables Xp
1 , . . . , Xp

M .
By the above, E[Y1 + Y2] ≤ O(C/w). Let Zp denote the
number of edges of S in TR that correspond to values for

the variable Xp
qpR

actually queried. Since each qpR has

a uniform distribution over ml possible queries, we have
that E[Zp] = E[E[Zp|Yp]] = E[Yp/ml] and thus E[Z1 +
Z2] = E[Y1 + Y2]/ml ≤ O(C/w)/ml = O(C). By applying
Markov’s inequality we get Pr[Z1 +Z2 ≥ H5C2] ≤ O( 1

H5C
).

Observing that Z1 + Z2 is just the number of values given
by π̃R to the (actually queried) variables X1

q1R
, X2

q2R
, the

lemma follows.

By Corollary 4.8 and Lemma 4.9, with probability at least
Ω( 1

H4C
) the multi-assignment π̃R gives the queried variables

X1
q1R

, X2
q2R

sets of values such that (i) these sets are of size

at most H5C2. and (ii) these sets contain a pair of values for
which the verifier accepts. We thus conclude that the multi-
assignment π̃R yields a sparsified assignment πR which the
verifier accepts, with probability at least Ω( 1

H4C
· 1
(H5C2)2

) =
Ω(1)

H14C5 .

4.3 Parameter setting
Finally, we need to set the parameters so that Ω(1)

H14C5 >

2−c0l, i.e., that c0l > 14 log H + 5 log C. To this end, let us
choose l = log m and H = (log m)α where α is an arbitrarily
large constant (recall that m = |I|c1). Recall that k = u2

H

and uH = dlmlH ; thus log k = 2 log uH = Θ(lH log m) =

Θ(logα+2 m) = Θ(H1+2/α). It is easy to verify that for our
choice of C ≤ δH2 log k we have log H = Θ(log log m) � l
and log C = Θ(log H + log log k) = Θ(log log m) � l. We
thus conclude that the hardness factor shown is Ω(H log k) =
Ω((log k)2−ε) for any fixed ε > 0. This completes the proof
of Theorem 1.1.

5. CONCLUDING REMARKS
This paper gives the first polylogarithmic inapproximabil-

ity result for a natural NP-hard problem. It is reasonable to
ask whether there are other polylogarithmic thresholds, es-
pecially en route to understanding the structure of this phe-
nomenon (e.g., in the sense of [16]). One candidate for that
could be Group-Steiner-Tree in general graphs, for which
the best upper bound currently known is O(log2 k log n)–
approximation. In fact, it is plausible (now more than be-
fore) to suspect that we are not aware of various other “in-
termediate” thresholds that arise naturally.

The construction of our reduction relies on the intuition
given by the integrality ratio for Group-Steiner-Tree due
to [15], and our analysis actually uses that result in a non-
trivial manner. In the past, very few hardness results were
devised or proven by building on the integrality ratio re-
sults. Nevertheless, this line of attack still appears to be of
the most natural ones for many problems.
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