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HOW HARD IS IT TO APPROXIMATE THE BEST NASH
EQUILIBRIUM?∗
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Abstract. The quest for a polynomial-time approximation scheme (PTAS) for Nash equilibrium
in a two-player game, which emerged as a major open question in algorithmic game theory, seeks to
circumvent the PPAD-completeness of finding an (exact) Nash equilibrium by finding an approximate
equilibrium. The closely related problem of finding an equilibrium maximizing a certain objective,
such as social welfare, was shown to be NP-hard [Gilboa and Zemel, Games Econom. Behav., 1
(1989), pp. 80–93]. However, this NP-hardness is unlikely to extend to approximate equilibria, since
the latter admits a quasi-polynomial time algorithm [Lipton, Markakis, and Mehta, in Proceedings
of the 4th ACM Conference on Electronic Commerce, ACM, New York, 2003, pp. 36–41]. We show
that this optimization problem, namely, finding in a two-player game an approximate equilibrium
achieving a large social welfare, is unlikely to have a polynomial-time algorithm. One interpretation of
our results is that a PTAS for Nash equilibrium (if it exists) should not extend to a PTAS for finding
the best Nash equilibrium. Technically, our result is a reduction from the notoriously difficult problem
in modern combinatorics, of finding a planted (but hidden) clique in a random graph G(n, 1/2). Our
reduction starts from an instance with planted clique size O(logn). For comparison, the currently
known algorithms are effective only for a much larger clique size Ω(

√
n).
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1. Introduction. Computational aspects of equilibrium concepts (and in partic-
ular of Nash equilibrium) have seen major advances over the last few years, both from
the side of algorithms and in terms of computational complexity (namely, complete-
ness and hardness results). Perhaps the most celebrated result in this area [5, 8] (see
also [9]) proves that computing a Nash equilibrium in a finite game with two players is
PPAD-complete. Consequently, a weaker notion of ε-approximate Nash equilibrium,
or in short an ε-equilibrium, was suggested, and the following has emerged as a central
open question:

Is there a PTAS for Nash equilibrium?
Recall that the acronym PTAS stands for polynomial-time approximation scheme,

meaning that for every fixed ε > 0 there is a polynomial-time algorithm. The question
highlighted above thus asks for a polynomial-time algorithm that finds an ε-Nash
equilibrium for arbitrarily small but fixed ε > 0. Here and in the rest of this paper,
we follow the literature and assume that the game’s payoffs are in the interval [0, 1],
and approximations are measured additively; see section 2 for precise definitions.

While every game has at least one Nash equilibrium, the game may actually
have many equilibria, some more desirable than others. Thus, an attractive solution
concept is to find a Nash equilibrium maximizing an objective such as the social
welfare (the total utility of all players). For two-player games this problem is known
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80 ELAD HAZAN AND ROBERT KRAUTHGAMER

to be NP-hard [21, 6]. But as we shall soon see, this hardness result is unlikely to
extend to ε-equilibrium.

A fairly simple yet surprisingly powerful technique is random sampling, where
each player’s mixed strategy �x is replaced by another mixed strategy �x′ that has
small support, obtained by sampling a few pure strategies independently from �x and
taking �x′ to be a uniform distribution over the chosen pure strategies. (We allow
repetitions, i.e., the support is viewed as a multiset.) This technique leads to a simple
algorithm that finds, for a two-player game, an ε-equilibrium in quasi-polynomial time
NO(ε−2 logN) [31], assuming that the game is represented as two N × N matrices.1

Indeed, applying random sampling on any Nash equilibrium together with Chernoff-
like concentration bounds yields an ε-equilibrium consisting of mixed strategies that
are each uniform over a multiset of size O(ε−2 logN), and such an ε-equilibrium can
be found by enumeration (exhaustive search). In fact, this argument applies also to
the social welfare maximization problem, and thus the algorithm of [31] finds in time

NO(ε−2 logN) an ε-equilibrium whose social welfare is no more than ε smaller than the
maximum social welfare of a Nash equilibrium in the game.

The existence of a quasi-polynomial algorithm may be seen as promising evidence
that a polynomial algorithm exists. The latter emerged as a major goal and has drawn
intense work with encouraging progress [11, 28, 10, 3, 40], culminating (so far) with
a polynomial-time algorithm that computes a 0.3393-equilibrium [40]. All of these
algorithms, with the sole exception of [40], rely on the aforementioned approach of
proving the existence of a small support ε-equilibrium via sampling, and then finding
such an equilibrium using enumeration (exhaustive search) in conjunction with other
algorithmic tools (such as linear programming).

While progress on the approximation side has remained steady, the other side
of computational lower bounds has resisted attempts to exclude PTAS by extending
the known hardness results to approximations, either for any equilibrium or for an
objective-maximizing one. For instance, the aforementioned PPAD-hardness results
[5] extend to a fully polynomial-time approximation scheme (FPTAS), which is defined
similarly to a PTAS except for the additional requirement that the running time is
polynomial also in 1/ε; they extend also to the smoothed complexity of the problem.
These two extensions fall short of excluding a PTAS, and the reason for this difficulty
might be the aforementioned quasi-polynomial time algorithms, due to which it is
less plausible that we can prove hardness of approximation based on NP-hardness or
PPAD-hardness for the corresponding question.

In this paper we use a nonstandard hardness assumption to give the first negative
evidence for the existence of a PTAS for the objective-maximizing question. We
design a reduction from the well-known problem of finding a hidden (planted) clique
in a random graph. The latter choice is nonstandard, as the problem appears to be
hard on the average rather than in a worst-case sense. However, in several respects it
is an ideal choice. First, it admits a straightforward quasi-polynomial time algorithm.
Second, the average-case nature of the problem is particularly suited for constructing
games with a highly regular structure, which will be important in our reduction.

The hidden clique problem. Denote by Gn,p the distribution over graphs on n
vertices generated by placing an edge between every pair of vertices independently
with probability p.

In the hidden clique problem, the input is a graph on n vertices drawn at random
from the following distribution Gn,1/2,k: pick k = k(n) arbitrary vertices and place on

1Throughout, f is called quasi-polynomial if f(n) ≤ nO(logn).
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ON APPROXIMATING THE BEST NASH EQUILIBRIUM 81

them a k-clique, then connect every other pair of vertices by an edge independently
with probability 1/2. In other words, the graph is random (like in Gn,1/2) except for
a planted clique whose “location” is hidden (not known to the algorithm) because the
clique vertices are chosen by an adversary (but independently of the random graph,
e.g., of its degrees). The goal is to recover the planted clique (in polynomial time),
with probability at least (say) 1/2 over the input distribution.

In a random graph, the maximum size of a clique is, with high probability, roughly
2 logn, and when the parameter k is larger than this value, the planted clique will be,
with high probability, the unique maximum clique in the graph, and the problem’s
goal is simply to find the maximum clique in the graph (see Lemma 2.2 for details).
The problem was suggested independently by Jerrum [25] and by Kučera [30].

It is not difficult to see that the hidden clique problem becomes easier only as k
gets larger, and the best polynomial-time algorithm to date, due to Alon, Krivelevich,
and Sudakov [2], solves the problem whenever k = Ω(

√
n) (see also [18]). Improving

over this bound is a well-known open problem, and certain algorithmic techniques
provably fail this task, namely the Metropolis process [25] and the Lovász–Schrijver
hierarchy of relaxations [19]. Recent results [20, 4] based on r-dimensional tensors
(the generalization of matrices to dimension r ≥ 3) suggest an algorithmic approach
capable of finding a hidden clique of size O(n1/r), but currently this tensor-based
approach is not known to yield a polynomial-time algorithm.

The hidden clique problem can be easily solved in quasi-polynomial time nO(logn);
for the most difficult regime k = O(log n), this is obviously true (via exhaustive search)
even for worst-case instances of the maximum clique problem.

1.1. Our results. We relate the worst-case hardness of finding an approximate
equilibrium to that of solving the hidden clique problem, formally stated as follows.

Theorem 1.1. There are constants ε̂, ĉ > 0 such that the following holds. If there
is a polynomial-time algorithm that finds in an input two-player game an ε̂-equilibrium
whose social welfare is no more than ε̂ smaller than the maximum social welfare of
an equilibrium in this game, then there is a (randomized) polynomial-time algorithm
that solves the hidden clique problem for k = ĉ logn with high probability.

We remark that our proof is actually shown for the special case of symmetric
two-player games (see section 2 for definitions), which only makes the result stronger
(since this is a hardness result). We make no attempt to optimize various constants
in the proofs.

Subsequent work. Recently, Minder and Vilenchik [33] improved the constants in
our main theorem, showing that a polynomial-time approximation scheme for the best
Nash equilibrium implies a polynomial-time algorithm for finding a hidden clique of
size (3+δ) logn in a random graph, or alternatively for the decision version of detecting
a hidden clique of size (2+δ) log n, for an arbitrarily small constant δ > 0. The leading
constant 2 is a natural barrier for the problem, since a clique of size roughly 2 logn
exists in a random graph with very high probability.

1.2. Related work. There are complexity classes that attempt to capture prob-
lems requiring running time nO(logn); see [37] and the references in section 5 therein.
It is plausible that our approach of relying on the hidden clique problem may be used
to prove hardness of approximation for problems mentioned in [37], such as the VC
dimension of a 0-1 matrix and the minimum dominating set in a tournament graph.

Average-case hardness. The hidden clique problem is related to the assumption
that refuting 3-satisfiability (3SAT) is hard on average (for low-density formulas),
which was used by Feige [15] to derive constant factor hardness of approximation for
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several problems, such as minimum bisection, dense k-subgraph, and maximum bipar-
tite clique. His results may be interpreted as evidence that approximation within the
same (or similar) factor is actually NP-hard, which is a plausible possibility but not
known to date. In fact, the random 3SAT refutation conjecture may be viewed [16] as
an analogue of the hidden clique problem, in the following sense. An important dis-
tinction between these two average-case problems appears to be that straightforward
algorithms based on enumeration require different running times, exponential for one
problem and quasi-polynomial for the other. However, they are based on different yet
related combinatorial optimization problems, and it is perhaps not surprising that
some of the inapproximability results in [15] can be shown (more or less) also un-
der the assumption that the hidden clique problem cannot be solved in polynomial
time. Consider for example the dense k-subgraph problem; the hidden clique graph
itself obviously contains a k-vertex subgraph of full density, while any algorithm that
is likely to find in it a sufficiently dense k-vertex subgraph can be used to find the
planted clique; see, e.g., Lemma 5.3. The argument for the maximum bipartite clique
problem is similar.

It is worth noting that the assumption that the hidden clique problem is hard
was used in a few other contexts, including for cryptographic applications [26] and
for hardness of testing almost k-wise independence [1]. The decision version of the
hidden clique problem, namely, to distinguish between the distributions Gn,1/2,k and
Gn,1/2, is attributed to Saks in [29, section 5].

Computing equilibria. The last decade has seen a vast amount of literature on
computational aspects of equilibria in various scenarios, including, e.g., succinct games
(where the payoffs can be represented succinctly, e.g., due to strong symmetries or
because direct interaction between players is limited to a certain graph structure) or
markets (where sellers and buyers interact via prices). For more details, we refer the
reader to the excellent and timely surveys [36, 38] and the many references therein.
More concretely for Nash equilibrium in bimatrix games, see the recent surveys [35,
39].

In general, the problems of finding any equilibrium and that of finding an equi-
librium that maximizes some objective need not have the same (runtime) complexity,
although certain algorithmic techniques may be effective to both. As mentioned
earlier, this indeed happens for ε-equilibrium in two-player games when employing
random sampling combined with quasi-polynomial enumeration. Another example is
the use of the discretization method [27], which was recently used in [12] to find an
ε-equilibrium in anonymous games with fixed number of strategies, but actually ex-
tends to the value-maximization version [7]. Yet another example are the algorithms
of [27, 13] for graphical games on bounded degree trees.

2. Preliminaries. Let [n] = {1, 2, . . . , n}. An event E is said to occur with high
probability if Pr[E ] ≥ 1 − 1/nΩ(1); the value of n will be clear from the context. An
algorithm is called efficient if it runs in polynomial time, nO(1). Throughout, we
ignore rounding issues, assuming, e.g., that logn is integral. All logarithms are to
base 2, unless stated explicitly.

2.1. Nash equilibria in games. In what follows, we restrict our attention to
symmetric games, and hence our definition assumes square matrices for the payoff.
A (square) two-player bimatrix game is defined by two payoff matrices R,C ∈ R

n×n,
such that if the row and column players choose pure strategies i, j ∈ [n], respectively,
the payoffs to the row and column players are R(i, j) and C(i, j), respectively. The
game is called symmetric if C = R�.
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A mixed strategy for a player is a distribution over pure strategies (i.e., rows/
columns), and for brevity we may refer to it simply as a strategy. An ε-approximate
Nash equilibrium is a pair of mixed strategies (x, y) such that

∀i ∈ [n], e�i Ry ≤ x�Ry + ε,

∀j ∈ [n], x�Cej ≤ x�Cy + ε.

Here and throughout, ei is the ith standard basis vector, i.e., 1 in ith coordinate, and
0 in all other coordinates. If ε = 0, the strategy pair is called a Nash equilibrium
(NE). The definition immediately implies the following.

Proposition 2.1. For an ε-equilibrium (x, y), it holds that for all mixed strate-
gies x̃, ỹ,

x̃�Ry ≤ x�Ry + ε,

x�Rỹ ≤ x�Ry + ε.

As we are concerned with an additive notion of approximation, we assume that the
entries of the matrices are in the range [0,M ], for M which is a constant independent
of all the other parameters. It will be technically convenient to use M �= 1, but the
results easily translate to the case M = 1 by scaling all payoffs.

Consider a pair of strategies (x, y). We call x�Ry the payoff of the row player
(this is actually the expected payoff), and similarly for the column player. The value
of an (approximate) equilibrium for the game is the average of the payoffs of the two
players. Recall that social welfare is the total payoff of the two players, and thus
equals twice the value.

2.2. The hidden clique problem. Recall that in this problem the input is
drawn at random from the distributionGn,1/2,k. Intuitively, the problem only becomes
easier as k gets larger, at least in our regime of interest, namely, k ≥ c0 logn for
sufficiently large constant c0 > 0. This intuition can be made precise as follows.

Lemma 2.2. Suppose there are a constant c1 > 0 and a polynomial-time algo-
rithm such that given an instance of the hidden clique problem with k ≥ c1 logn, this
algorithm finds a clique of size 100 logn with probability at least 1/2. Then there
exists a constant c0 > 0 and a randomized polynomial-time algorithm that solves the
hidden clique problem for every k ≥ c0 logn.

This lemma is probably known, but since we could not provide a reference, we
prove it in the appendix, essentially using ideas from [2] and [32]. Notice that one
cannot employ simple techniques that are useful in worst-case instances, such as re-
peatedly finding and removing from the input graph a clique of size 100 logn (using
the assumed algorithm), because such operations affect the graph distribution (even
one such iteration results in a graph not distributed like Gn,1/2,k) not to mention, of
course, that the assumed algorithm succeeds only with probability 1/2 (and repeating
it need not amplify the success probability).

3. The reduction. We prove Theorem 1.1 by reducing the hidden clique prob-
lem to the Nash equilibrium problem. That is, given an input instance of the hidden
clique problem we construct a two-player game such that with high probability (over
the randomness in our construction and in the hidden clique instance), a high-value
approximate equilibrium leads, in polynomial time, to a solution to the hidden clique
instance.
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Techniques. Our construction is motivated by an observation of Motzkin and
Straus [34] (and independently by Halperin and Hazan [22]) that for every graph, the
quadratic form corresponding to the graph’s adjacency matrix, when considered over
the unit simplex (i.e., all probability distributions over [n]), is maximized exactly at
a (normalized) incidence vector of a maximum clique in the graph. We rely on this
observation, as one portion of the game we construct is exactly the adjacency matrix
of the hidden clique instance. However, this is not enough to obtain a suitable Nash
equilibrium instance.

First, an equilibrium is a bilinear form rather than a quadratic form, so hence
the results of [34, 22] are not directly applicable. We thus use (mainly in Lemma 5.2)
the special properties of an approximate equilibrium to prove a relationship of similar
flavor between bilinear forms on the adjacency matrix and large cliques (or actually
dense subgraphs) in the graph.

Second, a simple use of the adjacency matrix yields a very small gap (between
vectors corresponding to a clique and those that do not) that is by far insufficient
to rule out a PTAS. To boost this gap we use an idea of Feder, Nazerzadeh, and
Saberi [14] to eliminate from the game all equilibria of small support (cardinality at
most O(log n)).

The construction. Let ε̂, ĉ and M, c1, c2 be constants to be defined shortly. Given
an instance G ∈ Gn,1/2,k of the hidden clique problem, consider the two-player game
defined by the following payoff matrices (for the row player and the column player,
respectively):

R =

(
A −B�

B 0

)
, C =

(
A B�

−B 0

)
.

The matrices R,C are of size N × N for N = nc1 . These matrices are constructed
from the following blocks.

1. The matrix A, which appears in the upper left n× n block in both R and C,
is the adjacency matrix of G with self-loops added.

2. The lower right block 0 in both R,C is the all-zeros matrix of size (N −n)×
(N − n).

3. All other entries are set via an (N − n) × n matrix B whose entries are set
independently at random to be

Bi,j =

{
M with probability 3

4 · 1
M ,

0 otherwise.

Notice that the game is symmetric, i.e., C = R�, and that outside the upper left
block A, the game is zero-sum.

Choice of parameters. We set the parameters in our construction as follows. We
start with two absolute constants:

• M = 12 and c2 = 2000,
and use them to derive three other constants:

• c1 = 2 + c2 log(4M/3) (recall N = nc1),
• ĉ = 32M2(c1 + 2), and
• ε̂ = 1/50M .

The values chosen here are just large enough for the proof to work easily; as one might
expect, setting any of the first four constants to be larger, or the last constant ε̂ to
be smaller, would maintain the correctness.
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As is standard in computational complexity, we prove Theorem 1.1 by analyzing
the completeness and soundness of the reduction.

Henceforth, when we say with high probability, it means over the choice of G
from Gn,1/2,k, over the construction of the game (namely the randomness in B), and
over the coin tosses of our algorithms. We note, however, that most of our algorithms
are deterministic; the only exception is Lemma 2.2 (and of course the algorithms that
invoke it).

4. Completeness.
Lemma 4.1. With high probability, the game above has an equilibrium of value 1.
Proof. Consider the distributions (mixed strategies) x = y which are a uniform

distribution over the strategies corresponding to the planted k-clique, i.e., xi =
1
k if

i is in the planted clique, and xi = 0 otherwise. The value of this strategy set is
1
2x

�(R+ C)y = 1. We shall prove that with high probability this is an equilibrium.
Consider without loss of generality the row player, and observe that her payoff

when she plays x is exactly 1. We need to show that she cannot obtain a larger payoff
by playing instead any strategy i ∈ [N ]. For i ≤ n, her new payoff is at most the
largest entry in A, i.e., 1. For each i > n, her new payoff is the average of k distinct
values in B, which is highly concentrated around its mean 3/4. Formally, we use the
following Chernoff–Hoeffding bound.

Theorem 4.2 (see [24]). Let X1, . . . , Xm be independent random variables bound-
ed by |Xj| ≤ C, and let X̄ = 1

m

∑
j Xj. Then for all t > 0,

Pr[X̄ −E[X̄] ≥ t] ≤ exp(−mt2

2C2 ).

In our case, the variables satisfy |Xj| ≤ M and E[Xj ] =
3
4 , and X̄ is the payoff

of playing strategy i > n (when the other player still plays x = y). We thus obtain

Pr[X̄ ≥ 1] ≤ exp(− k
32M2 ).

By a union bound over all strategies i > n we have that the probability a strategy

i > n exists with payoff larger than 1 is at most (N −n) · e− k
32M2 ≤ nc1− ĉ

32M2 = 1/n2,
where the last inequality follows by our choice of c1 and ĉ. This completes the proof
of Lemma 4.1.

5. Soundness. To complete the proof of Theorem 1.1, we shall show that with
high probability, every ε̂-approximate equilibrium with value ≥ 1− ε̂ in the game can
be used to find the hidden clique efficiently. We do this in three steps, using the three
lemmas below.

For our purpose, a bipartite subgraph is two equal-size subsets V1, V2 ⊆ V (G)
(not necessarily disjoint); its density is the probability that random v1 ∈ V1, v2 ∈
V2 are connected by an edge in the input graph with self-loops added, formally
density(V1, V2) = E[Av1,v2 ].

Lemma 5.1. With high probability, given an ε̂-equilibrium in the game with
value ≥ 1− ε̂, we can efficiently compute a (4Mε̂)-equilibrium that is supported only
on A and has value ≥ 1− ε̂.

Lemma 5.2. With high probability, given a (4Mε̂)-equilibrium supported only on
the matrix A and with value ≥ 1 − ε̂, we can efficiently find a bipartite graph of size
c2 logn and density ≥ 3

5 in the input graph.
Lemma 5.3. With high probability, given a bipartite subgraph of size c2 logn

and density ≥ 3
5 in the input graph, we can efficiently find the entire planted hidden

k-clique.
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5.1. Proof of Lemma 5.1. The following two claims are stated with a general
parameter δ > 0, although we will later use them only with a specific value δ = ε̂.

Claim 5.1. In every pair of mixed strategies achieving value ≥ 1− δ, at most δ
of the probability mass of each player resides on strategies not in [n].

Proof. The contribution to the value of the equilibrium from outside the upper
left block is 0, because over there the game is zero-sum. Inside that block the two
players receive identical payoffs, which are according to A and thus upper bounded
by 1. Thus,

1− δ ≤ 1

2
x�(R+ C)y =

∑
i,j∈[n]

xiyjAij ≤
⎛
⎝∑

i∈[n]

xi

⎞
⎠

⎛
⎝∑

j∈[n]

yj

⎞
⎠ ,

and it immediately follows that both
∑

i∈[n] xi and
∑

j∈[n] yj are at least 1− δ.

Claim 5.2. Given an ε̂-equilibrium where at most δ of each player’s probability
mass resides on strategies not in [n], we can find an (ε̂ + 3Mδ)-equilibrium that is
supported only on A and whose value is at least as large.

Proof. Given an ε̂-equilibrium (x, y), we obtain a new equilibrium (x̃, ỹ) by re-
stricting each player’s support to [n], i.e., removing strategies not in [n] and scaling to
obtain a probability distribution. Since the game is zero-sum outside of A, removing
strategies not in A does not change the value, and since the entries in A are nonnega-
tive, the scaling operation can only increase the value, i.e., x̃�(R+C)ỹ ≥ x�(R+C)y.

To bound defections, consider without loss of generality the row player. First, her
payoff when defecting to strategy i ∈ [N ] does not change much, i.e., |e�i Rỹ−e�i Ry| ≤
Mδ, because the total mass of y moved around is at most δ, and because entries in
the same row (or same column) of R differ by at most M . Furthermore, her payoff
in the new equilibrium does not change much, i.e., |x̃�Rỹ − x�Ry| ≤ 2Mδ, again
because at most 2δ of the total probability mass of x and y was moved.

Lemma 5.1 now follows immediately from the two claims above by setting δ = ε̂.

5.2. Proof of Lemma 5.2. To prove this lemma, we first need the following
structural claim.

Claim 5.3. With high probability, in every 1/2-equilibrium supported only on the
matrix A, the total probability mass every player places on every set of c2 logn pure
strategies is ≤ 2/M .

Proof. For convenience, denote d = c2 logn. Suppose that one of the players,
say the column player, has probability mass of more than 2

M on a given set of d
strategies. Let us compute the probability that there exists a row in B in which the
d corresponding entries all have a value of M . If this event happens, then we do
not have an ε-equilibrium, since the row player can defect to this particular row, to
obtain payoff ≥ 2

M ·M = 2, while her current payoff is ≤ 1. The probability this event
happens for a single row is very small, namely pd for p = 3

4M . But we have N − n
rows, and they are independent. Thus, the probability that no row has a streak of
M ’s in the particular d columns is at most

(1− pd)N−n ≤ exp(−pdN/2) = exp(−nc1−c2 log 4M
3 /2) = exp(−n2/2),

where the last inequality is by our choice of c1 and c2. Hence with probability ≥
1− e−n2/2, there is such a row, and this cannot be an equilibrium.

We now need to rule out all possible subsets sets of size d. There are
(
n
d

) ≤ nd

such subsets, and each one cannot be an equilibrium with probability ≥ 1 − e−n2/2.
We can rule out all of them by a union bound, since nd · e−n2/2 ≤ e−Ω(n2).
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Proof of Lemma 5.2. Let (x, y) be such a (4Mε̂)-equilibrium. Define T =
{j ∈ supp(y) : x�Aej ≥ 4

5}, where ej is the jth standard basis vector. Observe
that T is nonempty, since x�Ay ≥ 1 − ε̂. Furthermore, its total probability mass
must be

∑
j∈T yj >

2
M , as otherwise x�Ay ≤ 2

M ·1+(1− 2
M ) · 45 < 1− ε̂ by our choice

of ε̂. Since
∑

j∈T yj > 2
M and (x, y) is a (4Mε̂)-equilibrium, we have by Claim 5.3

that |T | > c2 logn. To get size exactly c2 logn, we can just take an arbitrary subset
of T and rename it to be T . Thus we assume henceforth |T | = c2 logn. Denoting by
uT the uniform distribution on T , the pair (x, uT ) satisfies

x�AuT ≥ 4
5 .

Now define S = {i ∈ supp(x) : e�i AuT ≥ 3
5}. Its total probability mass must

be
∑

i∈S xi > 2
M , as otherwise x�AuT ≤ 2

M · 1 + (1 − 2
M ) · 3

5 < 4
5 , by our choice

of M > 4. By again applying Claim 5.3 to the 1/2-equilibrium (x, y), we then have
|S| > c2 logn. Again, to get size exactly c2 logn, we can just take an arbitrary subset
of S and rename it to be the set S itself. Let uS be the uniform distribution over
the set S. Then u�

SAuT ≥ 3
5 , i.e., S, T define a bipartite subgraph of size c2 logn and

density ≥ 3
5 .

5.3. Proof of Lemma 5.3. The main step in proving Lemma 5.3 is the following
claim, which shows that a dense bipartite subgraph can be used to recover a large
clique.

Claim 5.4. With high probability, given a bipartite subgraph of size c2 logn and
density ≥ 3

5 in the input graph, we can efficiently find a clique of size 100 logn.
Proof. Let S∗, T ∗ ⊂ V (G) be the two sets forming a bipartite subgraph with

density(S∗, T ∗) ≥ 3
5 , and let W ⊂ V (G) denote the vertices of the planted clique, i.e.,

|W | = k. In what follows, we use a union bound to show that with high probability
at least 1

20 of the vertices in S∗ must lie in the planted clique W .
The number of possible sets S, T ⊂ V (G) with |S| = |T | = c2 logn and |S ∩W | <

1
20 |S| is at most

(
n
|S|

)(
n
|T |

) ≤ n2c2 logn. Now fix two such sets S, T . For the event

density(S, T ) ≥ 3/5 to occur, it is necessary to have density(S \W,T ) ≥ 0.55, because
otherwise

density(S, T ) = |S∩W |
|S| density(S∩W,T )+ S\W

|S| density(S\W,T ) < 1
20 ·1+ 19

20 ·0.55 < 3
5 .

We can bound the probability of this necessary event as follows. The density be-
tween S \W and T is essentially the average of Θ(c2 logn)

2 Bernoulli random vari-
ables each with expectation 1/2 (strictly speaking, there are two exceptions: some
Bernoulli variables are included twice, and at most c2 logn terms correspond to self-
loops). Thus, by the Chernoff–Hoeffding bound above, Pr[density(S \W,T ) ≥ 0.55] ≤
exp(−Ω(c2 logn)

2). Putting these facts together using a union bound,

Pr
[
∃S, T s.t. |S| = |T | = c2 logn,

|S∩W |
S < 1

20 , density(S \W,T ) ≥ 0.55
]

≤ n2c2 logn · e−Ω(c2 logn)2

≤ 1/nΩ(1).

We conclude that with high probability, the set S∗ given to us must satisfy that
at least 1

20 of its vertices lie in the planted clique. We can try all subsets of S∗ of size
1
20c2 logn by exhaustive search (the number of such sets is nO(c2) = nO(1)), and find
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the largest subset S′ ⊂ S∗ that forms a clique in G. By the above analysis, with high
probability |S′| ≥ 1

20c2 log n = 100 logn.
Lemma 5.3 now follows by combining the above claim with Lemma 2.2. This

completes the proof of Theorem 1.1 also.

6. Concluding remarks. We have shown that a PTAS for the “best” Nash
equilibrium implies an efficient algorithm to a seemingly difficult combinatorial op-
timization problem. The measure of quality for equilibria we have used is the total
payoff to the two players. It seems plausible that other quality measures, such as those
considered by Gilboa and Zemel [21], can be reduced to the hidden clique problem in
much the same way.

The problem from which we carry out the reduction, namely the hidden clique
problem, is nonstandard in the sense that it is an assumption about average-case
hardness (in addition to being easily solvable in quasi-polynomial time). It is plau-
sible that it suffices to assume worst-case hardness, and show, e.g., a reduction from
the problem of finding in an n-vertex graph a clique of size O(log n). In light of
the known quasi-polynomial time algorithms, an alternative complexity assumption
that could potentially be used is that (say) maximum clique cannot be solved in time
2O(

√
n logn); see, e.g., [17]. Yet another direction is to relate the hardness of com-

puting the best Nash equilibria to the complexity class logarithmically-restricted NP
(LOGNP) of [37], because it naturally captures the known (quasi-polynomial time)
algorithms for approximating Nash equilibria.

Finally, an intriguing question is whether such techniques can possibly be applied
to the problem of finding a PTAS for any Nash equilibrium, i.e., to the regime of the
PPAD complexity class.

Appendix. Deferred proof from section 2.
Proof of Lemma 2.2. Suppose there exists a polynomial-time algorithm A∗ that,

given the hidden clique problem with k ≥ c1 logn, finds a clique of size 100 logn.
We prove that there exists a (randomized) polynomial-time algorithm that solves the
hidden clique problem exactly for every k ≥ c0 logn, where c0 = 2tc1 for a sufficiently
large t to be determined later. The algorithm is composed of two stages.

Stage 1. Randomly partition the graph vertices into t parts. In each part, the ex-
pected number of vertices from the planted clique vertices is k/t ≥ c0 logn

t = 2c1 logn.
Furthermore, using Chernoff bounds it can be shown that with probability > 7/8,
every part contains at least c1 logn vertices from the hidden clique. In our analysis
we shall assume henceforth that this is the case.

In each part separately, first complete it into an instance of hidden clique of
size exactly n by adding n−n/t vertices and connecting all new potential edges with
probability 1

2 . Then apply the polynomial-time algorithm A∗. Observe that each part
is distributed exactly as a hidden clique instance, and by our assumption its hidden
clique size is large enough that algorithm A∗ succeeds, with probability ≥ 1/2, in
finding a clique of size at least 100 logn. Since the different parts are independent,
the probability that A∗ succeeds in one or less parts is ≤ (t + 1)2−t < 1/8 for, say,
t = 6.

Even if this does not occur, report fail. Henceforth assume that A∗ succeeds in
at least two parts.

In each part where A∗ succeeds, we may assume that the clique size is exactly
100 logn by removing arbitrary vertices from it. It can be shown that in the random
portion of the graph (i.e., not using the planted clique), the maximum clique size is
with very high probability at most 3 logn. In our analysis we shall assume henceforth
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that this is the case in all parts of the partition, and hence at least 97 logn among
the 100 logn vertices of the clique found belong to the planted clique.

Stage 2. In each part i apply the following. Identify another part j �= i, where A∗

succeeded in finding a clique of size 100 logn. Select the vertices in the part i whose
degree towards the clique found in part j is at least 97 logn. Call these vertices Qi

and report all selected vertices, i.e., Q = ∪iQi.
To analyze this stage, observe that a vertex v from part i that belongs to the

planted clique must have degree at least 97 logn towards the clique found in another
part j, and thus belongs to Qi. On the other hand, for a vertex v in part i that
does not belong to the planted clique, the expected degree towards any fixed subset
of 100 logn vertices in part j is 50 logn. Notice that the choice of the part j and
the clique found in it are determined only by the edges internal to the different parts
(possibly in a complicated way, e.g., if A∗ succeeds in more than two parts, then j will
depend on the tie breaking method), and are thus completely independent of the edges
connecting different parts. Thus, the probability that v has degree at least 97 logn
towards the corresponding clique in part j is, using the Chernoff bound,  1/n2. By
a union bound over all vertices we get that with very high probability all such vertices
do not belong to Qi. Combining this with the events mentioned earlier, we get by
a union bound that Q = ∪iQi contains exactly all the hidden clique vertices with
probability at least 2/3.
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