Object Location in Realistic Networks

[Extended Abstract]

- . *
Kirsten Hildrum
University of California, Berkeley
Berkeley, CA 94720, USA

hildrum@cs.berkeley.edu

ABSTRACT

We devise an object location scheme that achieves a guar-
anteed low stretch in a wider and more realistic class of net-
works than previous schemes. The distinctive feature of our
scheme is that it is inherently adaptive to the underlying
topology. In particular, the system achieves 1 + € stretch
(for arbitrarily fixed e > 0), with a neighbor list size that
depends on the local density around the node (but not on
the global growth rate bound). As a byproduct, our scheme
has several advantages over existing ones, such as robust-
ness to errors in network measurements, and simpler design
choices of system builders, which may lead to improved and
more robust deployments.

Categories and Subject Descriptors

E.1 [Data Structures|: Distributed Data Structures,
Graphs and Networks; F.2.2 [Nonnumerical Algorithms
and Problems]: Routing and Layout; C.2.4 [Distributed
Systems]: Distributed Applications

General Terms
Algorithms, Theory

Keywords

Networking, overlay, locality, peer-to-peer, distributed ob-
ject location, DOLR, distributed hash table, DHT

*Research supported by NSF career award #ANI-9985250,
NFS ITR award #CCR-0085899, and California MICRO
award #00-049.

TPart of this work was done while this author was with
the International Computer Science Institute and with the
Computer Science Division of U.C. Berkeley, supported in
part by NSF grants CCR-9820951 and CCR-~0121555 and
DARPA cooperative agreement F30602-00-2-0601.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SPAA' 04, June 27-30, 2004, Barcelona, Spain.

Copyright 2004 ACM 1-58113-840-7/04/0006 ...$5.00.

.I.
Robert Krauthgamer
IBM Almaden Research Center
San Jose, CA 95120, USA

robi@almaden.ibm.com

- - *
John Kubiatowicz
University of California, Berkeley
Berkeley, CA 94720, USA

kubitron@cs.berkeley.edu

1. INTRODUCTION

Peer-to-peer networks unite computers around the globe
via the Internet to accomplish a common goal. Although
each participant maintains links (via the Internet) to only
a few others, the goal is to form an efficient and versatile
overlay network. These highly scalable peer-to-peer net-
works have many potential applications, ranging from file
sharing [5,18,27] to database query and indexing [14].

A central problem in these highly-scalable distributed sys-
tems is object location (aka lookup), or finding an object (e.g.,
a file or service) in the network.! One easy solution to this
problem is to build a centralized directory that lists all the
items and their locations. However, this would put a huge
load, in terms of both computation and bandwidth, on that
centralized directory. Moreover, the directory becomes a
single point of failure.

A common solution to this problem is to maintain the
directory via a Distributed Hash Table (DHT), which is a
dictionary data structure implemented in a distributed way.
A lookup for an object accesses this distributed dictionary
to get a pointer to the object (or the object itself). Typi-
cal DHT algorithms, such as [1,21, 23, 26, 28, 31], build an
overlay network among the participants, where every partic-
ipant maintains links to only a few other participants, called
its netghbors, and the DHT operations are implemented by
routing messages through the resulting overlay topology. A
full-fledged DHT should support insertion and deletion of
items, allow nodes to join and leave the overlay network,
balance the load placed on different participants, and be
resilient to failures.

1.1 Performance and locality

The efficiency of a DHT is often measured in terms of
the number of neighbors per participant and the number of
hops per message routed. These measures are well-suited to
networks in which all possible overlay links have the same
cost, in which case the total cost of an object location is
proportional to the number of hops in a route. However,
in many real-life networks, internode communication cost
varies significantly. For instance, hops in a local area net-
work are much cheaper (e.g., faster, more reliable and over-
provisioned) than hops across the Pacific. Since popular
objects are likely to be replicated, many lookups could be

"We consider only “structured” peer-to-peer networks,
which are guaranteed to return a copy of the object if
one exists. Commonly used unstructured networks include
KaZaA, Gnutella, and Skype.

satisfied by a nearby copy of the object. This suggests that
it is important to keep lookups local when possible; for ex-
ample, for a request made in Berkeley for a file stored at
IBM Almaden, routing through Stanford is reasonable, but
routing through Australia is not.

Keeping lookups local is extremely important. First, for
the searcher, it means that many lookups are much cheaper
to perform (e.g., complete faster), because the searched ob-
jects have nearby replicas. Second, local lookups reduce
the total bandwidth usage, decrease congestion at backbone
routers, and limit the effect of faults at remote unrelated
regions. Furthermore, in schemes that are locality-aware, a
node’s neighbors tend to be closer to the node (compared
with random nodes), and thus maintenance traffic tends to
put less stress on the network. These effects on the net-
work performance may be particularly important since most
peer-to-peer applications in use today, such as KaZaA, are
bandwidth hogs.

Typical DHTs are limited in their ability to keep lookups
local. They place objects in a location dependent on the
object’s ID. Since these IDs are hashes, these locations are
typically random. This means that an object created and
accessed from Stanford could be located in Australia, or
vice-versa. As a result, most lookups are inherently non-
local, and no cleverness of algorithms or data structures can
change that. If most requests must cross the entire net-
work (ie, going from Australia to Stanford), attempting to
optimize the case when requests go from Berkeley to Stan-
ford is useless. In this case, optimizations focus on efficient
routing—that is, making the length of the overlay path be-
tween two nodes is as close as possible to the path in the
underlying network. See for example [6,9,26], and an algo-
rithm with provable bounds in [15].

In contrast to the DHT scenario, this paper considers a
model in which the objects are placed arbitrarily; that is,
our algorithm has no control over object placement. We also
allow multiple copies of a given object to be placed in the
network. Our challenge is really to effectively take advan-
tage of good object placement.The measure of performance
is stretch, the ratio between the total cost of a lookup route
and the cost of direct link to the cheapest (for us, cheapest
means “nearest”) copy of an object.Thus, we present what
is sometimes called a DOLR [7], or a Decentralized Object
Location and Routing structure. In such a structure, per-
formance is measured relative to the least possible cost of
accessing a copy of the object.?

A DHT that stores pointers to objects can be used to
locate objects, but with very high stretch. Consider a user
in a dorm downloading popularsong.mp3. Even though a
copy of the song may be available within the same dorm, the
DHT will force a request to go to an arbitrary and probably
distance location to find the nearby copy, incurring a high
stretch. (Note that determining which copy is nearby is not
a trivial problem.) A good object location system would find
the in-dorm copy without sending a message that leaves the
dorm.

2Essentially, our algorithm is working against an adversary
that places objects in the network to maximize stretch obliv-
iously, i.e., without being able to see random coin tosses (ID
assignments) of our algorithm. We do not use this terminol-
ogy because locating nearby objects is the most difficult, so
our worst “adversary” is one who places objects near their
accesses—something that is actually desirable!

Stretch guarantees. In a seminal paper [21], Plaxton,
Rajaraman and Richa (PRR) pinpoint this issue of locality
and measure it in terms of stretch. Their object location
scheme achieves rigorous stretch guarantees, and had influ-
enced both theoretical work and deployed systems.

In the PRR model [21], the cost of communication be-
tween two nodes u, v in the network is given by a distance
function d(u,v) that forms a metric space (X,d), i.e., sat-
isfies triangle inequality. One motivation of this model is
network latency, which may serve as a rough estimate for
the distance between nodes. The PRR scheme achieved
constant expected stretch, assuming that the node metric
satisfies the following growth rate bound: Let B(v,r) denote
the set of nodes within distance r from v; then there are
known constants C' > C’ > 1 such that C' < % <
C for every node v and (effectively) every r > 0. The
work of [21] inspired deployed systems such as Pastry [26]
and Tapestry [32], and was followed by subsequent schemes
that addressed various technical shortcomings. In particu-
lar, provably-good algorithms for node arrival and departure
are devised in [11-13], a simplified scheme is given in [20], a
fault-tolerant extension is provided in [10], and a much sim-
plified scheme with 1 + € deterministic stretch and without
the need for the lower bound C” is designed in [1]. Outside
the context of peer-to-peer networks, several structures have
been proposed for object location in general metric spaces.
See for example, [4] and [22]. The distance oracles of [29] and
the compact routing schemes of [2,3] also address this prob-
lem, though they don’t phrase their results in this context.
These schemes achieve polylogarithmic space and polyloga-
rithmic stretch. However, these structures are impractical
in the peer-to-peer world because they require the underly-
ing network to be fixed from the start. In addition, some
cannot be constructed in a distributed fashion, and many
are not even load-balanced, requiring a central server. Until
our work, there was no low-stretch object location system
for dynamic networks that did not require the corresponding
metric space to be uniformly growth-restricted.

Limitations of previous systems. All the existing low-
stretch schemes intrinsically rely on knowing a global growth
rate upper bound C. These systems are based on assigning
node IDs that are represented in some base B > C', and
routing messages toward a given destination ID by fixing
one digit at a time. It follows that the number of neigh-
bors each node has to maintain is (at least) proportional
to C. Since a larger number of neighbors immediately in-
creases the amount of maintenance traffic, it is crucial for
deployment that C is assigned a modest value.

In practice, however, it is likely that in many regions the
global value C would be much larger than the actual local
value,

pon = B 20|
T B,)]

which we call the local growth rate around node v at scale r >
0. This would be consistent, for example, with the transit-
stub model [30] of the Internet, which features stub do-
mains (modeling local networks) and transit domains (mod-
eling backbone networks that interconnect stub domains);
see Figure 1 for an illustration. Traffic between two nodes
within a domain is routed inside the domain, and is typi-
cally fast compared to interdomain links. Each stub domain
probably has an internal structure, but we cannot expect

{

Interdomain
Edges

Berkeley

IBM Almaden

Figure 1: An illustration of a (non-hierarchical)
transit-stub graph.

that the Berkeley stub domain would be similar to the IBM
Almaden one. It is therefore only natural to require that
the neighbors selection policy in the Berkeley stub domain
is kept independent of the internal topology of unrelated
domains such as IBM Almaden.

A partial remedy is to set C ignoring a few regions of
extremely high local growth rate, giving up on low stretch
in those regions. But even then significant gaps between
the local growth rate and C might occur for the following
reasons.

e The local growth rate is likely to vary significantly
between different subnetworks—a local network at a
small liberal arts college is probably very different from
the one at a large research university.

e The local growth rate probably varies significantly be-
tween scales, because networks of different scale (e.g.,
local area networks vs. a nationwide network) have dif-
ferent technologies.

e Systems based on a global value C are designed with
the value of C being determined before the network
is first launched. In a dynamic system, this means
that C must be increased by a large safety margin to
guarantee future performance.

Large gaps between the local growth rate p, , and the global
value C' might have a tremendous impact on the overall net-
work. Many low-provisioned subnetworks would probably
suffer from excessive maintenance traffic, resulting in a high
network stress and poor network utilization.

It should be noted that low-stretch guarantees might re-
quire some dependency on p,,,. Consider for example a
subset S of k nodes, every two of which are at the same
distance 1, and suppose all other nodes are at least ¢ away
from every node of S. Then, a lookup whose source and
destination are in S can achieve 1 + € stretch only if it is
performed in one hop, which means that every node v € S
must have at least kK — 1 neighbors, where k ~ p, 4 for any
% < v < 1. Notice that this scenario is likely to happen
in large local area networks. See also [16,17] for a related
notion and similar lower bounds.

1.2 Our Results

We present a scheme that achieves a guaranteed low
stretch object location without requiring a global growth
rate bound C, and is thus effective in a wider and more
realistic class of networks than previous schemes. The dis-
tinctive feature of our scheme is that it is inherently adaptive
to the underlying topology, as its operations in any locale

depend on the locale’s properties. In particular, our system
achieves the same 1+ € stretch as LAND [1], with a neighbor
list size does not depend on C', but only on the local growth
rate py,r, on €, on the normalized diameter of the network
Dy = D/dmin, where D is the largest distance between two
points in the network and dmin are the largest and smallest
pairwise distances in the network, respectively), and on the
following bounds on the rate of change of p, ,:

0 = sup{—pw veX,r> 0}7
Pv,2r

which upper bounds the change in growth rate over different

but nearby scales, and

04 ::sup{M cu,v € X, r >0, and d(u,v) gr},

Pu,r
which upper bounds the change in growth rate over different,
but nearby (relative to the scale in question), nodes.

THEOREM 1.1. There exists a randomized scheme that
achieves object location with 1 + € stretch, such that the
expected number of neighbors of each mode v is at most
f(maxy » py,r, ds, 0d, €) - log;2 Dn, for some function f.

Our system design takes a direct approach toward achiev-
ing low stretch. As a byproduct, we get the following ad-
vantages (over existing schemes), which we believe will cul-
minate in improved and more robust deployments of low
stretch object location schemes.

e The system is adaptive to the local growth rate, which
may be significantly smaller than the global upper
bound C|, thereby using less resources in many regions
of the network.

e [t operates without requiring a predetermined value C
and it is therefore more practical in any underlying
topology, since a single value of C' might be hard to
find. In fact, our approach identifies the algorithmic
problem of estimating the distribution of the latencies
between a node v and all other nodes in the network,
and such an algorithm is sketched in Section 5.2.

e Our construction is robust to small errors in network
measurements. Since accurate network measurements
are difficult to make and require lots of bandwidth, this
is important. While a node needs to count the number
of nodes within a certain distance from it, having this
number off by a factor of two will have only a slight
effect.®

e Our scheme has low node congestion; that is, no node
is unfairly burdened with requests from the rest of
the network. In our scheme, if every node generates
at most t requests, the expected node-congestion is
O(tlog D). For comparison, note that, by averaging,
the expected node congestion in any scheme must be
at least ¢ times the expected number of hops.®

e The scheme lends itself to large local area networks,
where the local growth rate is large, but many cheap
hops are acceptable in practice; see Section A.

3This property may possibly be true also in existing
schemes, but proving it would require an indirect and more
complicated analysis.

In addition, because our system uses a form of prefix rout-
ing, the fault tolerance results of [10] apply naturally. In
practice, one may also use a “hybrid” system that combines
our scheme with a ring [9,24-26].

Organization. The low stretch scheme is based on a con-
struction of an overlay network with an O(diameter) routing
data structure. To gain intuition, we outline the construc-
tion, focusing on a simplified case, in Section 2.2, and defer
some details of the general case to Section 3. We then use a
technique of LAND [1] to extend the routing algorithm to a
low stretch object location in Section 4. Next, we use a tech-
nique of [11-13] to adapt the system to arriving and depart-
ing nodes in Section 5. Finally, we touch upon a heuristic
improvement for large local area networks in Section A.

2. ALGORITHM OUTLINE

Our object location scheme is based on an O(diameter)
routing overlay that does not rely on a global bound C, as
summarized in the following theorem.

THEOREM 2.1. There ezists a randomized routing scheme,
such that the expected number of neighbors of each node v is
at most f(maxy, - pu,r,0s,04) -log® D, for some function f,
and any message travels a total distance of O(D) en route
to its destination ID.

All previous low stretch object location schemes [1,21,32]
(and their extensions) use prefix routing, i.e., every hop “cor-
rects” one additional digit by matching it to the destination
ID, and hence the ith hop in the routing is guaranteed to
have ID that matches the destination ID in the first ¢ digits.
In all these systems, the digit size is determined in advance
so as to accommodate for the growth rate of the network.
In contrast, our scheme does not have a fixed digit size. In-
stead, we match a varying number of bits in each step, which
is essentially like having a variable digit size. This leads to
using, in every locality of the network, the optimal digit size
for that locale. More precisely, the number of bits matched
at a given step depends on the local growth rate p,,,. As a
result, it can vary both over the nodes and over the scales.
For example, one message may match two bits at the first
hop (scale) and five at the second, while another may match
four at the first hop and three at the second; in fact, the to-
tal number of bits fixed in the first two hops need not be the
same, unless the two messages have the same destination ID
and they meet after two hops. See Figure 2 for illustration.

The rest of this section outlines the proof of Theorem 2.1,
by focusing on a simplified case. Details of the general con-
struction are given in Section 3. We then use this routing
overlay in Section 4 to get 1+ € stretch by additional “pub-
lish” pointers on nodes that are in the vicinity of the search
path, similar to LAND [1]. The additional pointers increase
storage by a factor that depends on the growth rate and
on e. Throughout, we shall assume p, is known exactly,
although it can be easily seen that it suffices to know p, »
within a constant factor.

21 A Simple Scheme

Each node v in the overlay network is assigned a randomly
chosen identifier, called an ID. These IDs are sufficiently
long bit strings so that no two are the same. Suppose a
node u wishes to send a message, given only the destina-
tion’s ID. If, say, dmin and D are powers of 2, then the mes-
sage will route through at most log Dx hops, where the ith

hop is, by definition, no longer than 2°dmin, as depicted in
Figure 2(left). Thus, the total length of a routing path is at
most EifODN 2 dmin < 2D, i.e., twice the network diameter.

The routing is a variant of prefix routing, where instead
of fixing one bit at a time, the number of fixed bits depends
on the local growth rate at the corresponding scale. The
last hop will fix all the bits, thereby guaranteeing arrival to
destination. This is in contrast to previous systems, such as
PRR [21], Tapestry [32], Pastry [26], and LAND [1], which
choose a predetermined number of bits to fix at each step;
their aim is to get the i¢th hop travel at most a distance
of 2'dmin, but this property is only indirectly guaranteed
via the growth rate bound. Figure 2(center) depicts our
bit fixing along two routing hops. Notice that in the dense
region (represented by darker shading), more bits are fixed
at the earlier hop, but after two hops the same number of
bits have been fixed.

Routing Entities. We divide the routing state of a node
into routing entities, and describe the routing as a transac-
tion between entities. A routing entity corresponds to a level
of the neighbor table in [1,21,26,32]. A scale is a number
2 e [dmin, 2D], where 7 is an integer. Each node hosts a seed
entity for every scale 2¢, and may host additional emulated
entities, as will be described below.

Each entity has an ID, denoted E.id. The ID of a seed
entity is the ID of the hosting node. To determine which
messages £ may accept, each entity E also has a prefiz re-
quirement, denoted FE.req, that we shall define later and a
scale, denoted FE.scale. The neighbors of an entity E are all
seed entities E’ such that?

(a). E'.scale = 2- E.scale;
(b). E’ is within distance E.scale of F; and
(c). E'.id agrees with E.id on the E.req first bits.

Routing Algorithm. A given message passes through en-
tities of increasing scales. Denoting the ith entity in the
route as Fj;, the first entity Fo is the minimum scale (i.e.
scale 2° € [dmin, 2dmin)) seed entity of the node that gener-
ated the message. At the ith step, the entity F; forwards
the message to the entity F;;1 that is chosen as the entity
E’ whose ID prefix matches the destination ID in the most
bits possible among all nodes meeting requirements (a), (b),
and

(") E'.id agrees with the destination ID on the E’.req first
bits.

The routing always terminates when the scale is the mes-
sage reaches an entity F; whose scale F;.scale is greater than
twice the diameter of the network D. Indeed, by defini-
tion, the previous entity F;_1 stores all nodes in the network
(more precisely, seed entities of scale at least D) that agree
with the destination ID on FE;_;.req bits, so the destination
node must be in this list. Notice that the shorter E.req, the
more neighbors £ will have to store. But if E.req is long,
it can only accept routing requests for objects with a long
ID match, which means that other nodes cannot use E as
a neighbor quite as easily. Lemmas 2.1 and 2.2 show this
tradeoff.

4Note that this asymmetric definition of being a neighbor
provides a directed link from E to E’. The actual imple-
mentation of this may be bi-directional.

e IS Y

Figure 2: The leftmost picture depicts the ith and i+1st hops in the route of three messages, showing that

when dnin = 1, each ith hop travels distance at most 2t

The center picture shows the number of (additional)

bits that are fixed along a single hop in these routes. Darker shading represents a higher density of nodes,
which leads to fixing more bits, but by the time the messages reach v, all routes fix a total of seven bits. The
rightmost picture shows that the left two pictures are only a piece in a larger scheme.

Unfortunately, there is no guarantee for F; that an entity
matching (a),(b) and (c’) exists. For example, suppose an
entity F; with prefix requirement 11 is trying to route a
message to ID 11011. If the nodes with prefix 110 are all
more than 2° away, E cannot use any of them in its neighbor
table without violating the invariant that the ith hop does
not travel too far away. In this case, where no suitable seed
entity is found, we use a technique of LAND [1] and let the
node create an emulated entity with the required ID prefix
(e.g., 110) and scale (e.g., 2°™"). This emulated entity stores
all the information that a seed entity would.

Note that emulating entities is not quite the same as giv-
ing the node v another ID, as that would be the equivalent of
creating an entire new node, while an emulated entity only
corresponds to a single level of the routing table. Nonethe-
less, it is important the total number of emulated entities
per node is small, and proving this is the main technical dif-
ficulty. A standard argument regarding branching processes
shows that if the expected number of emulated entities that
are directly generated by any single entity is upper bounded
by a constant A < 1 then the total number of emulated
entities per seed entity is expected to be a constant. The
intuition is that if that expectation was A > 1, then each
seed entity generates, in expectation, A emulated entities,
each of which generates A more emulated entities, and so
on, resulting in an exponential blow up in the total number
of neighbors that poor node has to maintain.

The Prefix Requirement. The challenge in defining the
prefix requirement is to create a self-organizing overlay net-
work that adapts to the local growth rate, but still ensures
that there is a routing path from any locale to any possible
destination. A fast growing F.req (as a function of the scale)
means that there will be few matching nodes inside the ball
of radius F.scale, and so many emulations will be required.
On the other hand, a slow growing FE.req means that there
will be many matching nodes, and so E’s neighbor table will
be large. The crux is to show that one can define a prefix re-
quirement that simultaneously satisfies these two competing
needs.

2.2 Sketch of Analysis

Before considering the general case (in Section 3), we an-
alyze the case where the local growth rate is “smooth” in
the sense that p,,r &~ pw, whenever v and w are close,
i.e., within distance r of each other. Notice that this does

not preclude the growth rate from varying considerably be-
tween distant points. In this simplified case, we shall scale
all the distances in the network so that the smallest dis-
tance is 1, and the largest (i.e., the diameter of the net-
work) is D. Hence, a scale is a number 2¢ for an integer
0 <i < [log D]+ 1. we further assume here that all quanti-
ties are integral to avoid rounding notation, and denote by
log a base 2 logarithm.

For each scale s entity E located at a node v, we set the
prefix requirement E.req to be

pref(v, s) := log|B(v, s/2)| — a,

where a represents a universal comfort factor.® Setting a

picks the tradeoff point between table size and the number of
emulated entities. Note that F.req depends on the node’s lo-
cale, unlike the analogous prefix requirement in [1,21,26,32].
We next show in Lemmas 2.1 and 2.2 that our prefix require-
ment indeed satisfies the two competing needs mentioned
above.

LEMMA 2.1. The expected table size of an entity of scale
5 on node v 15 2%, 5 /2.

PROOF. There are |B(v, s)| nodes in the ball of radius s
around v. Each one matches v’s required prefix with prob-
ability 27 Pef(v:9) — so the entity’s expected table

size is |B(v, s)| -

\B(v s/2)”

7\}3(”,3/2” =2%py,s/2. O

LEMMA 2.2. Ifa is chosen large enough, the expected num-
ber of directly emulated entities is less than 1.

PROOF. Let pref(v,s) denote the prefix length required
by v at scale s.

An entity E at scale s located on node v requires an em-
ulated entity for every extension of E.req by pref(v,2s) —
pref(v, s) bits where E knows of no suitable seed entity E’
(in terms of ID, scale, and distance from E). Think of the
pref (v, 2s) — pref (v, s) bits as describing a digit to match. In-
tuitively, we match as many digits as possible so long as we
can find a suitable neighbor in the ball around F of radius
FE.scale.

Think of the 2°ref(v:2s)—pref(v.s) _ pv,s possible extensions
as bins, and of the nodes within distance s from E as balls.

®In this simplified exposition a would actually have a weak
dependence on the local growth rate. This is eliminated in
our general scheme, using a more complicated prefix require-
ment function.

The assumption that p,» & pw,r means that pref(w,2s) =
pref(v, 2s), and so if w as the right prefix and the right scale,
its prefix requirement does not prevent it from being a neigh-
bor of v.

We then wish to bound the expected number of empty
bins. By Lemma 2.1, the expected number of balls is 2%, s,
and, clearly, each of them lands in a random bin. Notice
that this is just a coupon collecting problem; so if there are
N bins and more than N In N balls, the expected number
of empty bins falls below a constant less than one. Here,
we only know the expected number of balls, but the argu-
ment is similar. It follows that the expected number of
directly emulated entities is strictly less than some constant
a < 1if 2%y s > pu,slnp,,s, so a needs be larger than
logy In py,r. O

The above shows how to build a system when the local
growth rate p,, is “smooth”. The rest of the paper deals
with the case where the local growth rate allowed to vary
(in a bounded way) across scales and between nearby points
in the network. The proof of this more general case follows
the same basic outline as the above.

3. MORE GENERAL NETWORKS

In this section we prove Theorem 2.1 by constructing an
O(diameter) routing overlay for the general case. The al-
gorithm and terminology in this section is exactly the same
as that in Section 2. In particular, recall that the routing
state of each node was divided into entities.® The difference
is that here we need to handle a more complicated network
model, which may have significant changes in local growth
rates, and hence we employ a less naive definition of the pre-
fix requirement of an entity £ and a more involved proof.
In particular, we set E.req of an entity at node v at scale r
to be

pref(v,r) := max{0, log |B(v,r/2)| — clog(pu,r) — a}.

(We round down if it is not an integer.) Here and through-
out, log denotes a logarithm to base 2; a and ¢ are param-
eters; we will show in Section 3.2 that setting ¢ > 2 and
a > max{3 + log, 04,2 + log,(c + 2) + log, log,(8s04)} are
sufficient for our purposes, i.e., that the expected size of
the neighbor table of a node is small. But first we bound
the total distance traveled by a message before reaching its
destination.

3.1 Guaranteed Delivery and o(p) Routing

Let D denote the diameter of the network (i.e., the maxi-
mum distance between two points), and let dmin denote the
minimum distance between two points. Let Dy = D/dmin
be the normalized diameter. We shall show that messages
are delivered in O(log D) steps, and the total distance trav-
eled is only O(D). Before proving the efficiency, we prove
that every message is delivered.

LEMMA 3.1. The routing network described always deliv-
ers any given message.

PROOF. Let the path of message m through the network
be entities F1, Ea, ..., E;. At every step, the ID of E; matches

5 A routing entity corresponds to a level of the neighbor table
in PRR [21], Tapestry [32], or Pastry [26]. Since we later
“duplicate” some levels of the neighbor table via emulation,
we need a convenient way to talk about a level.

the destination ID in Fj.req bits. This is proved by induc-
tion on 4. The base case is E1, where F1.req = 0. The third
routing property (c') ensures that a message is sent only
to an entity E’ that matches the destination ID in at least
E'.req bits, so the inductive step holds.

Finally, when FE.scale is larger than the diameter D, the
entity F stores a seed entity for every node ID (throughout
the network) that match in F.req bits, so the next hop goes
directly to the destination. If the message arrives at the
destination at some intermediate scale, it remains there. []

COROLLARY 3.1. Ewvery message is routed through at most
log D + O(1) hops, and the total distance it travels is O(D).

PRrROOF. The first hop travels distance at most 2dmin, and

this upper bound is doubled at every hop. The final hop is of
length at most 2D. The total distance is E{:FIOD; din] 2t =
O(D). The number of hops is equal to the number ‘of terms
of the sum; this is [log D] — [log dmin| +1 = log Dy + O(1)
hops. O

3.2 Space Complexity

We turn to bounding the expected number of neighbors
of a node. The high level argument, where dependency on
Pu,r, s, 04 is suppressed by assuming they are constant, goes
as follows. By definition, each node hosts O(log Dn) seed
entities. Now for some constant A < 1, each seed entity is
expected to directly generate at most A emulated entities;
where each of those is, in turn, expected to directly gener-
ate at most A\ additional emulated entities, and so forth. By
a standard branching process bound, the total number of
emulated entities that a single seed entity is expected gen-
erate is at most -1 < O(1). Finally, the expected number
of neighbors of each entity (seed or emulated) is O(1), and
therefore each node is expected to have a total of O(log D)
neighbors.

Technically, this argument is flawed, because it does not
account for certain correlations. First, the upper bound on
the branching process requires certain events to be indepen-
dent, which is not true in our case — the events of emulating
a scale r and a scale 2r entities at the same node u depend
on the IDs of nodes in B(u,r) and B(u,2r), respectively,
and these two balls are clearly non-disjoint. Furthermore,
in some extreme cases (e.g., if the node u is in Hawaii) these
two balls might be equal, and then any emulated entity at
scale r generates (deterministically) an emulated entity at
scale 2r. In particular, this shows that A might be as large
as 1; as a result, the branching process bound might be as
large as O(log D), increasing the final bound of the above
high level argument to O(log? Dy), similar to Theorem 2.1.
A second correlation is between the total number of emu-
lated entities generated a single seed entity at a node u, and
the number of neighbors of each of these emulated entities
— these random variables both depend on the IDs of nodes
around u.

In this extended abstract, we prove that the bounds men-
tioned in the above high level description hold for seed en-
tities. Analyzing emulated entities is more complicated be-
cause their existence is correlated with the IDs of nearby
nodes, and at the end of this section we briefly explain
the technique used to analyze the corresponding conditional
probabilities and expectation.

LEMMA 3.2. The expected number of neighbors for a scale
s seed entity located at node v is O(2%py spu,s/2)-

PROOF. A scale s seed entity E located at a node v has
to store all the scale 2s seed entities matching E.req within
distance s of v. There are |B(v, s)| = py, s/2|B(v, s/2)| nodes
within distance s of v, and the probabilitay Cthat any single

. . 2%p% s
one matches the prefix requirement is B

pected number of matching nodes in B(v, s) is 2*p, ;py /2. O

so the ex-

LEMMA 3.3. If for every entity, the expected number of
emulated nodes it directly generates is at most a constant
A < 1 independently of the other entities, then the expecta-
tion of the total number of entities generated from one seed
entity (directly or indirectly) is at most = < O(1).

PrOOF. For the purposes of this proof, we define an ith
degree emulated entity recursively as follows. An ith degree
emulated entity as an entity that created by a i — 1st degree
entity. Let a seed entity be a Oth degree emulated entity
(that is, one that is not emulated at all). Let X; be a random
variable denoting the expected number of degree-i entities
stemming from one seed entity. Then E[X;11]X;] < X; - A,
and taking expectation on both sides gives E[X;11] < X -
E[X;]. Since Xo = 1, we have that F[X;] <)\, and thus
YLEX:) <1/1-XN). O

LEMMA 3.4. The expected number of entities directly em-
ulated by a seed entity is at most 1/e, if ¢ > 2 and a >
max(3 + log 4, 2 + log(c + 2) + loglog d504).

PRrROOF. Let E be a seed entity of scale r at node v. Con-
sider a message m that may be routed through E. By
definition, this message’s destination ID must agree with
with E.id on the first pref(v,r) = max{0,log, |B(v,r/2)| —
clogs(pv,r)—a} bits. Now fix anode w € B(v,r) and let’s see
whether E can forward this message m to w’s scale 2r seed
entity w.E[2r]. This is possible if the destination ID matches
w.id on the first pref(w,2r) bits. Since w’s ID is random,
this event happens with probability 27P*(*2") Hence,

H (1_27pref(w,2r))‘

weB(v,r)

Pr[F has to emulate to route m] <

Letting @ be the node w € B(v,r) whose prefix requirement
pref(w, 2r) is maximal, we get the upper bound

Pr[E has to emulate to route m] < (1 — 27 P (@2 IBv.nl

Let Yr be a random variable representing the number of
entities directly emulated by E. In order to upper bound
E[Yz], we need to consider all possible messages m that may
be routed through E. The point is that the many possible
destination IDs can be grouped into relatively few distinct
events. Notice that our arguments above for the message m
actually depend only on the first pref(w, 2r) bits of the des-
tination ID, while the first pref(v,r) bits of the destination
ID must be the same as those of v.id. Thus, we can group
the possible destination IDs by their contents in positions
pref(v,r) + 1,..., pref(w,2r). By the analysis above, the
probability that (the destination IDs of) a single group re-
quires an emulated entity is at most (1 — 27Pref(@:2))IBv.r)],

There are at most 2P (@27 =pef(v:7) oroups and hence

E[YE] < 2Pf€f(ﬁ)72T)*Pfef(U7T) . (1 _ 27pref(ﬁ),2r))\B(v,r)|

<

epref('u},Q'r)fpref(v,r)f\B(v,r)|/2pref(w’27‘)

It remains to upper bound the righthand side by 1/e.
This requires some technical calculations, whose intuition
is the following. Suppose that any ball of radius r in
the network contains about r? nodes, for all r. If we
were to define pref(v,r) = log|B(v,r)|, then pref(w,2r) —
pref(v,7) ~ log[(2r)¢/rY] = d, and |B(v,r)|/2Pf(®27) ~
|B(v,7)|/|B(w,2r)| ~ 1/2% which yields a poor upper
bound E[Yz] < 2¢exp{—27¢}. But we can easily overcome
this by setting pref(v,r) = log |B(v,r)| — 3d, and then Y is
at most 2¢ - exp{—274"34} = o(1).

Now, to the actual calculations. Notice that B(w,r) C
B(v,2r), and that |B(v,2r)| = pv,rpu,r/2|B(v,7/2)|. Hence,

pref(w, 2r) — pref(v,7) < log % + clog ppj’v;" +1
) 0,27
< log(pv,r'pv,r'/Z) + ClOg ;v—g +1

Second, by the definition of the prefix requirement we have
2° Hpa,2r)©
|B(w,)]
2(171 (Pli),2r)c
Pu,r

Noticing that p, /2 < 6spu,r and pyr < dapw,r < 6adspuw,2r,
we obtain

E[Yr] < exp{log(ds(8adspa,2r)?) + clog(dads)
+1=2""(pa2r) "/ (a8s)}
<exp{2log pg,2r + (¢ + 3) log(dads)
+1 -2 (pa,2r) " /(8a05)}

To conclude that the righthand side is at most 1/e, it suffices
to show that

|B(o, r)| /2702 |B(v,r)| -

>

2log puw,2r — 2a73(p1i),2r)671/(6d53) <
(¢ +3)1og(6ads) — 2 (pu,2r) ' /(8ads) <
1—=2""(pp2,) 7 /(8a0:) < —1
Rearranging these three inequalities we get
c—1

8405 10g pi,2r < 2°*(pa,2r)
(c 4 3)(5465) 10g(8ads) < 2° % (paar) "
20405 < 2° 2 (pa2r)®"

Since py,2r > 1, the third inequality holds whenever a > 3+
log,(049s). Since log pw,2r < puw,2r, the first inequality holds
whenever ¢ > 2 and a > 4 + log,(d40s). Since pgp2r > 1,
the second inequality holds whenever a > 3 + log(c + 3) +
log(d4ds) + loglog(dqds).

To conclude, it suffices that ¢ > 2 and a > 3+1log(c+3) +
log(dads) + loglog(dqds). O

Analyzing emulated entities. Emulated entities located
at the same node are correlated, and therefore the branch-
ing process bound cannot be applied to the total number
of emulated entities that a seed entity generates. We over-
come this by considering a branching process over a subset
of the scales, which we call marked scales. These marked
scales are defined only for the sake of analysis — the algo-
rithm does not change. Starting with the scale of the seed
entity, which is always marked, iteratively increase the cur-
rent scale r by a factor of 2. If |B(v,r)| is at least twice
as large as the ball at the last marked scale, we mark scale

r. Let us denote the subset of marked scales by {mi}i;
thus, % > 2, and % < 2. Now a slight
generalization of Lemma 3.4 can bound the number of em-
ulated entities at a scale r € [m;, m;+1) conditioned on the
number of emulated entities in the marked scale m;_1 (or
the seed entity, if 7+ = 0), and this is enough to prove an
analogue to the branching process. The main points in
changing Lemma 3.4 are bounding the term corresponding
to pref(w,2r) — pref(v,r), and arguing that the IDs of at
least half the nodes in the ball corresponding to B(v,r) are
independent of the data we conditioned on.

Another issue is the expected number of neighbors of an
emulated entity. Fixing two seed entities, ¥ at node u and
E’ at node u’, we upper bound the expectation of the to-
tal number of links that all the emulated entities generated
(directly or indirectly) by E have to the entity E’. The
main point is that the expected number of the former enti-
ties (which are all of scale E’.scale/2) can be bounded, even
if we condition on a fixed ID for u’ (because for Lemma 3.4
it suffices that all nodes but one have random IDs), and now
the randomness in the ID of E’ makes the number of entities
that link to £’ have small expectation.

3.3 Load balance

We now consider the load balance of our scheme, mea-
sured as the number of message routed through any single
node, when every network node is the source of at most one
message to a random ID. The bound scales linearly by lin-
earity of expectation, if every node is the source of at most
t messages.

LEMMA 3.5. Consider a routing where every node is the
source of at most one message with a fixed destination ID.
The total number of messages expected to route through any
single node w (over the random choices of node IDs) is at
most O(2%p5) pu,r 2 1og D).

ProOF. Fix a node w € X, and consider a message sent
from source node u toward a given destination ID. The num-
ber of hops in our routing scheme is O(log D) by Lemma 3.1.
Let v, be the node visited in the scale r hop along the
route. We know that d(v,/,v-) < 7, and thus d(u,v.) <
r+71/24--- < 2r. Thus, w can only be the ith hop in the
route if u € B(w, 2r). Furthermore, for w to be the scale r
hop in the route it is necessary that it matches the destina-
tion ID on a prefix of length pref(w,r). We shall consider
only hops visiting a seed entity at w, because if the route
can contain an emulated entity then it must also contain at
least one seed entity at the same node. Now for a seed en-
tity, since w’s ID is random, the prefix match happens with
probability 1/2"'6“1“‘7“). Therefore, the expected number of
source nodes (and thus messages) that use w as their ith
hop is at most

L B2 2,
e = Bw,r/2)]

_ 20, c+1

|B(w,2r)| pw,rpw,r/2-

O

4. OBJECT LOCATION

This section shows how to use the overlay network con-
struction described in the previous section to do low-stretch
object location. The routing algorithm and its geometrically

increasing hop lengths will play a key role in achieving low
stretch. We use the notation of Section 3.

Objects are placed in the network by their publisher node.
An object location data structure (DOLR) such as the one
presented here determines where to place pointers to the ob-
jects so that a searcher node is able to locate object copies
efficiently. We measure the efficiency of an object-location
request in terms of stretch, the ratio between the total dis-
tance traveled searching for the object and the distance to
the closest copy of the object. It is possible to achieve a
stretch of one by placing pointers to the object at all poten-
tial searchers; this is too much. In this section, we show how
to place a small number of pointers and get O(1) stretch.
By placing more pointers in a manner similar to LAND [1],
1 + € stretch is possible.

The routing algorithm forms the basis for the object lo-
cation algorithm. The name of the object is hashed into the
same namespace as the node IDs, and the publisher of the
object routes toward the object’s ID. The node with the ID
most closely matching the object’s ID is the root. The pub-
lisher then places pointers along the routing path from the
object’s location to object’s ID (i.e., the root). To search
for the object, the searcher routes toward the object’s ID.
Suppose that a searcher and a publisher are within distance
r of each other. If they happen to have the same scale-r
routing hop when routing toward the object’s ID, then the
searcher finds a pointer to the object at that hop and is
able to shortcut the rest of the routing. In the worst case,
however, the first hop they share might be of a scale much
larger than r (such as the network’s diameter).

To solve this, the publisher places pointers to the object at
any possible scale-r routing entity that a searcher within dis-
tance r might visit when looking for the object. This yields
O(1) stretch, as we describe below. We call this new set of
neighbors “publish neighbors,” and the old set of neighbors
are “routing neighbors”.

More precisely, for an entity E at scale E.scale with prefix
requirement FE.req, maintain links to all scale FE.scale seed
and emulated entities E’ within distance 5 - E.scale of E
matching in min{F’.req, E.req} bits. Objects are published
by routing toward the object’s root. At every hop, pointers
to the object are placed on the publish neighbors of the cur-
rent entity. Search routes toward the object’s root, checking
for a pointer to the object at each entity en route.” We now
prove that this results in O(1) stretch.

LEMMA 4.1. If node y searches for an item published by
node x, the total length of the search path before a pointer
to the object is found is at most 18d(x,y).

PROOF. Let x, be the scale r hop on the path toward the
root from x, and let y, be the scale r hop on the path toward
the root from y. Choose r* such that r*/2 < d(z,y) < r*.
The key part of the proof is to note that d(xy=,yy+) < 5r*.
Figure 4 shows why this is so. In particular, notice that
d(z,zr+) < 2r*, and d(y,yr=) < 2r*, then d(zy=,yr=) <
d(z,y) + d(x,zr=) +d(y, yr=) < 5r*. When x,+ received the
publish request for the item, it sent an object pointer to y,
(since yr+ is within distance 5" and matches in the right
number of bits). Thus, when y searches for an object, it has

7An alternative would be to keep the publishing only along
the path to the root and have the searcher look in many
places at every scale. (See Awerbuch and Peleg [4] and their
discussion of read and write sets.)

scale 7* hop from v

Figure 3: The routes of messages that have the same
destination ID. If the two source nodes are within
distance r*, their corresponding scale r* hops are
within 5r* of each other.

to pay at most the distance to y,+ and then the distance from
yr= to the object. The first distance is bounded by 2r*, and
the second distance is at most d(yr», xr+)+d(zr+,x). Hence,
the overall the length is at most 2r* + 5r* 4+ 2r* < 9r*, and
since d(z,y) > r*/2, the stretch is at most 18. [

It remains to bound the expected number of publish neigh-
bors a node has to maintain. Similar to the discussion in
Section 3, we analyze below only the case of seed entities;
the analysis can then be extended to emulated entities using
similar techniques to those sketched in Section 3.

LEMMA 4.2. The expected number of publish neighbors for

a scale s seed entity at node v is O(2°05"¢ puv,sspl s 02075¢).

PROOF. A scale s entity E located at a node v has to
store all the nodes matching E.req within distance 5s of v.
There are |B(v, s)| = py,s/2|B(v, s/2)| nodes within distance
s of v, SO there are pv,s/Zp'U,spv,2sp'u,4s|B('U7C)| within 8s of
v, which bounds the number within 5s of v. The probability
that any single one matches the prefix requirement of E is
27pref(v,s) — 2apg’s

[B(v,s/2)]’
nodes in B(v,85s) is 2% py 4spv,250%,5Pv,s/2-

However, this only counts nodes that match v’s prefix
requirement. But recall that v needs to connect to all enti-
ties u such that match in min{pref(u, s), pref(v, s)}, so the
number of entities actually stored by v can be a factor of
2pref(v,s)7pref(u,z) greater.

Consider some entity F located at a node u such that
d(u,v) < 8s. Since |B(u,16s)| > |B(v,8s)|, and using the
definition of §s and d4, we get

so the expected number of matching

pref(v, s) — pref(u, s) <

B 165)| \ B(v,5/2) P
< log +log —clog —
(0,83 "% [Blu,s/)] % s
< log Pu,8sPu,4sPu,2sPu,sPu,s/2 + clog pu,s
Pv,4sPv,25Pv,sPv,s/2
5 L)3510
<1 (0apv,ss)°ds _|_clog6§6dpv,85
Pv,4sPv,2sPv,sPv,s/2
5 5+c $10+43c
< o 85t pyedst

Pv,4sPv,2sPv,sPv,s/2

5+4+c 5+c §510+3c

Thus, v may need to match a factor of —4—%8°°
Pv,45Pv,25Pv,5Py,s/2

more nodes than the 2“pu,4spv,zsp$’spv,s/2 that
match its prefix requirement, which is at most
O(2°65 " pu,sspls 5 03°75).

This counts the number of seed entities stored. But at
a given scale, in expectation, each seed entity hosts only
a constant number of emulated entities, so the bound still
holds even when emulated entities are considered. []

Counting the number of publish neighbors from an emu-
lated entity is more complicated, but can be done using the
ideas mentioned in Section 3.

Finally, notice that we can reduce the number of pub-
lish neighbors if we make the search algorithm more exten-
sive. If nodes both push pointers to their publish neigh-
bors and search for objects on their publish neighbors, it
is sufficient for each node to keep only those entities in
B(v,5s) that match in pref(v, s) bits, resulting in a total of
O(2% pv,4sPv,25 0%, s Pu,s/2) Publish neighbors for a seed entity.
Using the notation of Lemma 4.1, suppose that a search re-
quest from y found a publish pointer at y,« search in the old
scheme. Then in the new scheme, either it finds a pointer
at y,-+ as before, or y,» searches for the item on z,=.

5. DYNAMIC SYSTEM

In order to be practical, this system must be able to adapt
to arriving and departing nodes. To build a table for a node
v and scale 7, we need

1. The number of nodes within distance r of v.
2. The local growth rate around v at scale r (i.e., py,r).

3. All the entities matching pref(v,) within r of v.

Items (1) and (2) are needed to determine pref(v,r). No-
tice that they are equivalent; given (1) for all r, one can
compute (2), and vice-versa. While the problem of com-
puting (1) and (2) is new, other systems [1,13,26,32] have
considered (3).

A first approach to estimating (1) and (2) is to find a
physically nearby node, and copy the values from there. In-
tuitively, this should work well, though it may be hard to
prove performance results, especially as the network evolves
over time. Section 5.2 gives a more rigorous technique.

Likewise, finding approximate neighbor lists can also be
done easily, if, as is typical in these systems, the data struc-
tures need only be close to the correct ones. In this case, the
algorithms of [26,32] can be used. These algorithms start
with a physically nearby node as before, copying its scale
ro (where ro is the smallest scale) neighbor table. Using
this list, the node routes toward its own ID, and takes that
node’s scale 2rg neighbors as its 2r¢ scale neighbors, and so
on. This would be complicated by the different prefix re-
quirements, but some immediate heuristics to deal with this
suggest themselves. These lists can be optimized by asking
all the scale r neighbors for their neighbors measuring the
distances to these neighbors of neighbors, and updating the
neighbor table appropriately.

The rest of this section sketches provable techniques for
finding (1)-(3). We first show how to find all nodes with a
given prefix within distance d of a particular starting point,
solving problem (3), and then explain how this primitive
can be used for finding the growth rates and the number of
nodes in the ball of radius 7.

5.1 Neighbors

The basic idea is to use the backward-routing techniques
first described in [13] and later refined in [11,12]. (Because
of the emulated nodes, the algorithm also resembles [17].)
We sketch the algorithm here. Consider particular entity F.
Its children are the entities that have E as a neighbor, and
its grandchildren are the entities that have children of F as
a neighbor, and so on. Also, if an entity E generates and
entity E’, we say that E is a child of E’. Define descendants
analogously as all entities on the routing path to entity FE.
The set of descendants form a tree. Note that all scale dmin
entities are descendants of every scale D entity.

LEMMA 5.1. All the descendants of a scale r entity are
within distance r of the entity.

PrOOF. The proof is by induction. For the base case,
consider an entity at scale dmin. It has no children, and so
all its descendants are within dmin. Now consider an entity
E at scale r. Its children are all within r/2 by construction.
If it has a child further than r/2 away, that child could not
keep E as a neighbor. Further, we know (by the inductive
hypothesis) that all the descendants of those child-entities
are within r/2, and so they are within r/2 + r/2 = r of
E. O

To build the table for a node v, we need an algorithm to
find all entities within distance d of v. The above suggests
the following algorithm. Start with any scale D entity E
(recall that D is the largest possible scale). Then, the set
S, will contain all the scale r descendants of E that are
ancestors of entities within d of v. Start with Sp = {E}.
Then, given Sa,, we find S, as follows:

1. For each entity e in Sar, put the children of e (all of
which have scale r) in S,.

2. For each entity e in S, measure d(e,v) (the distance
to v). If this distance is more than r + d, then remove
e from S,.

LEMMA 5.2. If u is within distance d of v, the above al-
gorithm never removes an ancestor of u.

PROOF. Denote u’s scale r ancestor by E;,. By Lemma 5.1,
we know that d(u,) < r. By assumption, d(u,v) < d, so
by the triangle inequality, d(v, E}) < r + d, so for each r,
E}, is kept in the set S’. [

The above algorithm finds all nodes within d starting with
any scale D entity. However, recall that v needs to find all
the nodes with a given prefix within d. Following nearly the
same algorithm, we can get this for free by carefully selecting
the starting entity so that its ID matches the desired ID.
Suppose, more precisely, that we want all the nodes within
d of v that match a particular ID « in at least k bits. Then
Sp is initialized to contain a scale D entity matching « in
at least k bits. Second, we add an additional step to the
algorithm.

3. For each e in S,, if e does not match « in at least k
bits, remove e from S,..

Notice that a search for the neighbors at r finds the scale
r’ > r neighbors with only a little additional work, so by
essentially running this algorithm once, a node v can find
neighbors for all the entities it hosts. Using techniques
from [11-13], one can bound the work in terms of the growth
rate and the number of neighbors returned.

5.2 Finding growth rate

The previous sections sketch an implementation of a prim-
itive that can be used to find all entities with a specified
prefix within a given distance efficiently. Because the pre-
fixes are assigned randomly, this function can be used to get
a random sample of the nodes at the rate 1/2° for any i by
picking a prefix of length 1.

This primitive can be used to estimate the number of
nodes in B(v,r) and p,r. Pick a prefix of length i. Then to
get an estimate of the number of nodes in B(v, r), count the
number of nodes (ignore any non-seed entities) matching in
i bit prefix and multiply by 2°. The error in this technique
can be made small if 7 is chosen so that there are enough
nodes matching the prefix in B(v,r). Estimates of the size
of B(v,r) and B(v,2r) can be used to calculate the py .

Other work [8,19] has shown how to sample randomly
from a peer-to-peer network, but these techniques give a
random sample from anywhere in the network, rather than
a sample from within a certain radius, so their results do
not seem applicable here.

6. CONCLUSION

We have shown how to build a low-stretch object location
system that is sensitive to the local growth rate. This is
useful not only in situations were the growth rate changes
but also in situations where the growth rate is fixed, but
unknown or hard to determine.

Though we require more space when the growth rate is
high, there are some indications that our system is close to
optimal. Defining optimality in this case and proving lower
bounds is an interesting open problem. In addition, the sim-
ilarity between the object location structure and the nearest-
neighbor search algorithm of [17] suggests that the two prob-
lems (low-stretch object location and neighbor search) may
be closely related.

Acknowledgments

Thanks to Dahlia Malkhi, Satish Rao, and Sean Rhea for
their insightful comments.

7. REFERENCES

[1] I. Abraham, D. Malkhi, and O. Dobzinski. LAND:
Stretch (1 + €) locality-aware networks for DHTs. In
15th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 543-552, Jan. 2004.

[2] M. Arias, L. J. Cowen, and K. A. Laing. Compact
roundtrip routing with topology-independent node
names. In Proceedings of 22nd Annual Symposium on
Principles of Distributed Computing, pages 43-52,
2003.

[3] M. Arias, L. J. Cowen, K. A. Laing, R. Rajaraman,
and O. Taka. Compact routing with name
independence. In Proceedings of 15th Annual ACM
Symposium on Parallel Algorithms and Architectures,
pages 184-192, 2003.

[4] B. Awerbuch and D. Peleg. Concurrent online tracking
of mobile users. In Proc. of SIGCOMM, pages
221-233, 1991.

[5] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
Proceedings of SOSP, pages 202-215, 2001.

[6] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek,
and R. Morris. Designing a dht for low latency and
high throughput. In Proceedings of the First
Symposium on Networked Systems Design and
Implementation, pages 85-98, Mar. 2004.

[7] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and
I. . Stoica. Towards a common API for structured P2P
overlays. In Proceedings of IPTPS, pages 33-44, 2003.

[8] C. Gkantsidis, M. Mihail, and A. Saberi. Random
walks in peer-to-peer networks. In Proceedings of
IEEE INFOCOM, 2004.

[9] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,
S. Shenker, and I. Stoica. The impact of DHT routing
geometry on resilience and proximity. In Proc. of
SIGCOMM, pages 381-394, 2003.

[10] K. Hildrum and J. Kubiatowicz. Asymptotically
efficient approaches to fault-tolerance in peer-to-peer
networks. In 17th International Symposium on
Distributed Computing, pages 321-336, 2003.

[11] K. Hildrum, J. Kubiatowicz, S. Ma, and S. Rao. A
note on finding the nearest neighbor in
growth-restricted metrics. In Proceedings of 15th
Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 553-554, 2004.

[12] K. Hildrum, J. Kubiatowicz, and S. Rao. Another way
to find the nearest neighbor in growth-restricted
metrics. Technical Report UCB/CSD-03-1267, UC
Berkeley, 2003.

[13] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Y. Zhao.
Distributed object location in a dynamic network. In
14th ACM SPAA, pages 41-52, 2002.

[14] R. Huebsch, J. M. Hellerstein, N. L. Boon, T. Loo,

S. Shenker, and I. Stoica. Querying the internet with
pier. In Proceedings of 19th International Conference
on Very Large Databases (VLDB), Sept. 2003.

[15] D. Karger and M. Ruhl. Finding nearest neighbors in
growth-restricted metrics. In Proc. of the 34th ACM
Symp. on Theory of Comp., pages 741-750, 2002.

[16] R. Krauthgamer and J. R. Lee. The black-box

complexity of nearest neighbor search. In 31st

International Colloquium on Automata, Languages

and Programming. July 2004. To appear.

R. Krauthgamer and J. R. Lee. Navigating nets:

Simple algorithms for proximity search. In 15th

Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 791-801, Jan. 2004.

[18] J. Kubiatowicz et al. OceanStore: An architecture for
global-scale persistent storage. In Proc. of ACM
ASPLOS, pages 190-201. ACM, 2000.

[19] C. Law and K.-Y. Siu. Distributed construction of
random expander networks. In Proceedings of IEEE
INFOCOM, 2003.

[20] X. Li and C. G. Plaxton. On name resolution in
peer-to-peer networks. In 2nd Workshop on Principles
of Mobile Computing, pages 82—89, 2002.

[21] C. G. Plaxton, R. Rajaraman, and A. W. Richa.
Accessing nearby copies of replicated objects in a
distributed environment. Theory of Computing
Systems, 32:241-280, 1999.

[22] R. Rajaraman, A. W. Richa, B. Vocking, and
G. Vuppuluri. A data tracking scheme for general

17

networks. In Symposium on Parallel Algorithms and
Architectures, pages 247-254, 2001.

[23] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network.
In Proc. of SIGCOMM, pages 161-172, 2001.

[24] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz.
Handling churn in a DHT. To appear in USENIX ’04
Annual Technical Conference.

[25] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz.
Handling churn in a DHT. Technical Report
UCB//CSD-03-1299, UC Berkeley, 2003.

[26] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In Proceedings of IFIP/ACM
Middleware, pages 329-350, 2001.

[27] A. Rowstron and P. Druschel. Storage management
and caching in PAST, a large-scale, persistent
peer-to-peer storage utility. In Proceedings of SOSP,
pages 188-201, 2001.

[28] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proc. of
SIGCOMM, pages 149-160, 2001.

[29] M. Thorup and U. Zwick. Approximate distance
oracles. In Proc. of the 33th Annual ACM Symp. on
Theory of Comp., pages 183-192, July 2001.

[30] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee.
How to model an internetwork. In Proceedings of
IEEE INFOCOM, pages 594-602, 1996.

[31] B. Y. Zhao, L. Huang, S. C. Rhea, J. Stribling, A. D.
Joseph, and J. Kubiatowicz. Tapestry: A global-scale
overlay for rapid service deployment. IEEE Journal on
Selected Areas in Communications, 2003. Special Issue
on Service Overlay Networks, to appear.

[32] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph.
Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Report
UCB/CSD-01-1141, UC Berkeley, 2001.

APPENDIX

A. TRADING STRETCH AND STORAGE
IN CERTAIN SUBNETWORKS

In a large local area network (LAN), where the local
growth rate is large but hops are cheap, it may be accept-
able to perform relatively many hops and give up on the
low stretch guarantee for nearby objects. This can be easily
achieved in our scheme by a simple modification — routing at
sufficiently low scales proceeds by fixing only a single bit at
every hop. This requires that every node maintains a seed
entity for every single bit that may be fixed, but the num-
ber of hops in a route would be logarithmic in the number
of nodes in the LAN. For example, if a LAN contains 1024
nodes, then instead of fixing 10 bits at the first hop, each of
the first 10 hops will fix only on additional bit, so routing
to any node in the LAN would take only 10 hops, and every
node only maintains 10 neighbors, instead of 1024.

Further, in a LAN, because the distances within in the
LAN are small compared to to the distance to the outside
of the LAN, the higher scales are unaffected. Proving this
in a more general metric becomes difficult, however.

