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Abstract

The natural relaxation for the Group Steiner Tree problem, as well as for its generalization, the
Directed Steiner Tree problem, is a flow-based linear programming relaxation. We prove new lower
bounds on the integrality ratio of this relaxation. For the Group Steiner Tree problem, we show the
integrality ratio is Ω(log2 k), where k denotes the number of groups; this holds even for input graphs
that are Hierarchically Well-Separated Trees, introduced by Bartal [Symp. Foundations of Computer
Science, pp. 184–193, 1996], in which case this lower bound is tight. This also applies for the Directed
Steiner Tree problem. In terms of the number n of vertices, our results for the Directed Steiner problem
imply an Ω( log2 n

(log log n)2 ) integrality ratio.
For both problems, these are the first lower bounds on the integrality ratio that are superlogarithmic

in the input size. This exhibits, for the first time, a relaxation of a natural optimization problem whose
integrality ratio is known to be superlogarithmic but subpolynomial. Our results and techniques have
been used by Halperin and Krauthgamer [Symp. on Theory of Computing, pp. 585–594, 2003] to show
comparable inapproximability results, assuming that NP has no quasi-polynomial Las-Vegas algorithms.
We also show algorithmically that the integrality ratio for Group Steiner Tree is much better for certain
families of instances, which helps pinpoint the types of instances (parametrized by optimal solutions to
their flow-based relaxations) that appear to be most difficult to approximate.

Keywords and phrases. Group Steiner Tree, Directed Steiner Tree, flow-based relaxation, linear pro-
gramming relaxation, integrality ratio, approximation algorithms.

Proposed running head: Integrality ratio for Group Steiner Trees

1 Introduction

The Group-Steiner-Tree problem is a network design problem that generalizes both Set-Cover
and the Steiner-Tree problem. The Directed-Steiner-Tree problem is a further generalization of
Group-Steiner-Tree. The natural relaxation for these two problems is a flow-based linear programming
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relaxation. We show a polylogarithmic (about log squared) lower bound on the integrality ratio of this
relaxation. For both problems, these are the first such lower bounds that are superlogarithmic in the input
size, and our bounds are, in fact, nearly tight in the important special case of input graphs which are tree
networks. Let n be the number of vertices and k the number of groups. Our probabilistic approach and
our analysis have been used in [HK03] to show that for every fixed ε > 0, the Group-Steiner-Tree
and Directed-Steiner-Tree problems admit no efficient Ω(log2−ε k) and Ω(log2−ε n) approximations
respectively, unless NP has quasi-polynomial time Las-Vegas algorithms. We also present improved ap-
proximation algorithms for certain families of instances of the Group-Steiner-Tree problem, shedding
light on the type of instances that appear to be most difficult for the flow-based relaxation.

(a). The Group Steiner Tree problem. The (undirected) Group-Steiner-Tree problem is the
following. Given an undirected graph G = (V, E), a collection of subsets (called groups) g1, g2, . . . , gk of
V , and a weight we ≥ 0 for each edge e ∈ E, the problem is to construct a minimum-weight tree in G
that spans at least one vertex from each group. We can assume without loss of generality that there is
a distinguished vertex r ∈ V (called the root) that must be included in the output tree. The case where
|gi| = 1 for all i is just the classical Steiner Tree problem; the case where G is a a star can be used to
model the Set-Cover problem (c.f., [GKR00]).

A natural flow-based relaxation for this problem is the following. Find a capacity xe ∈ [0, 1] for each edge
e ∈ E so that the capacities can support one unit of flow from r to gi, separately for each gi (as opposed to
supporting a unit flow simultaneously for all gi). Subject to this constraint, we want to minimize

∑
e wexe.

It is easy to check that the feasible solutions which satisfy xe ∈ {0, 1} for all e, exactly correspond to
feasible solutions for the Group Steiner Tree problem; hence, the above flow-based relaxation is indeed a
valid linear programming (LP) relaxation for the problem. This is a natural relaxation for this problem
(and for some of its generalizations), and is the main subject of investigation in this paper.

We start with a useful definition from [Bar96].

Definition 1.1. Let c > 1. A c-Hierarchically Well-Separated Tree (c-HST) is a rooted weighted tree such
that (i) all leaves are at the same distance from the root, (ii) the edges in the same level are equal-weighted,
and (iii) the weight of an edge is exactly 1/c times the weight of its parent edge.

(Remark: Item (ii) is slightly stronger than the original definition from [Bar96], but can be assumed
without loss of generality due to the analyses of [Bar96, Bar98, KRS01].)

We simply say “HST” when referring to a c-HST for an arbitrary constant c > 1.

The first polylogarithmic approximation algorithm for the Group-Steiner-Tree problem was achieved in
the elegant work of Garg, Konjevod and Ravi [GKR00]. A brief sketch of their O(log n log log n log N log k)–
approximation algorithm, where n = |V | and N = maxi |gi|, is as follows. First, the powerful results of
[Bar98] are used to reduce the problem to the case where G is a tree T , with an O(log n log log n) factor loss
in the approximation ratio. T can be furthermore assumed to be a c-HST for any desired constant c > 1.
Next, solve the flow-based LP relaxation on T and round the fractional solution into an integral solution
for T by applying a novel randomized rounding approach that is developed in [GKR00]. It is established in
[GKR00] that for any tree T , this randomized rounding leads to an O(log N log k)–approximation. Thus,
for the input graph G, we get an O(log n log log n log N log k)–approximation. From a technical viewpoint,
one of the main difficulties in [GKR00] is that a non-trivial analysis of the randomized process is required.
The analysis uses Janson’s inequality in an interesting way. The work of [GKR00] has been extended
and expanded in several ways: Their algorithm was derandomized in [CCGG98, Sri01]; an alternative
(combinatorial) algorithm is devised in [CEK06]; the loss incurred by the reduction to an HST is improved
to O(log n) in [FRT04].

Since the first appearance of a polylogarithmic approximation for Group-Steiner-Tree (in the confer-
ence version of [GKR00] in 1998), there has been much interest in whether the approximation ratio can
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be improved. One concrete notable question in this regard has been the following: Can we achieve an
approximation ratio better than O(log N log k) for trees? This is interesting for at least two reasons. First,
since [GKR00] shows a reduction to the case of trees as seen above, an improved approximation for trees
(or even for the case of c-HSTs for some constant c > 1) would directly lead to an improved approximation
for general graphs. Further, even the case where G is a star (which is a tree) captures the Set-Cover
problem, for which o(log k)–approximation is hard [LY94, Fei98, RS97], so there is an intriguing gap even
on trees.

Our main technical result is that the integrality ratio of the flow-based relaxation for HSTs is Ω(log2 k).
This bound is in fact tight – an O(log2 k) bound on the integrality ratio holds for HSTs, as we show
in Section 2.7. Both bounds hold for c-HSTs where c > 1 is any fixed constant. Recall that the upper
bound of [GKR00] for trees in general is O(log N log k); our methods show an Ω(log N log k/ log log N)
lower bound on the integrality ratio, even for a class of HSTs. The same lower bounds hold also for trees
where all weights are the same (i.e., unit-weight trees). Finally, we show randomized rounding algorithms
for the flow-based relaxation that lead to improved approximation algorithms for certain special families
of HSTs; this sheds light on the type of instances that are most difficult to approximate.

A log-squared lower bound on the integrality ratio for trees had been conjectured circa 1998 by Uri Feige.
The specific (randomly constructed) instance he suggested for this purpose (see Section 2 for more details)
has proven to be quite difficult to analyze. Our lower bound is shown via a slightly different random
instance, which eliminates one source of correlation in the random choices, and makes the construction
more amenable to analysis. Nevertheless, we are required to do intricate estimates that delve into low-order
terms, in particular when crafting the precise induction hypothesis lying at the heart of the proof.

(b). The Directed Steiner Tree problem. This is the directed version of the (undirected) Steiner-
Tree problem. Given an edge-weighted directed graph G = (V, E) that specifies a root vertex r and k
terminal nodes v1, v2, . . . , vk, the goal is to construct a minimum-weight out-branching rooted at r, which
spans all the terminals. This problem is easily seen to generalize the undirected Group-Steiner-Tree
problem, as well as to be equivalent to the directed Group-Steiner-Tree problem. Aside from intrinsic
interest, this problem is also of current interest, e.g., in the context of multicasting in the Internet (where
inter-node distances are often not symmetric). The polynomial-time approximation ratio currently known
for this problem is kε, for any constant ε > 0 [CCC+99]; their algorithm extends to a polylogarithmic
approximation ratio in quasi-polynomial running time. The flow-based relaxation here is similar: install
for every edge e ∈ E a capacity xe ∈ [0, 1], so that a unit of flow can be shipped from r to vi, separately for
any given i. Intriguingly, it was recently shown in [ZK02] that this relaxation has an integrality ratio of
Ω(
√

k), precluding a polylog(k)–approximation algorithm based on this relaxation. However, the examples
constructed in [ZK02] have k = Θ( log2 n

(log log n)2
); hence, the result of [ZK02] does not exclude an O(log n)

integrality ratio. Our Group-Steiner-Tree lower-bound result above proves also an Ω( log2 n
(log log n)2

) lower
bound on the integrality gap for the Directed-Steiner-Tree problem. The only lower bound known
previously for Directed-Steiner-Tree was Ω(log n), since this problem generalizes Set-Cover.

As mentioned above, our results have paved the way to the improved hardness of approximation results
of [HK03], which show that, for any fixed ε > 0, Group-Steiner-Tree cannot be approximated within
ratio log2−ε k and Directed-Steiner-Tree cannot be approximated within ratio log2−ε n, unless NP
has quasi-polynomial time Las-Vegas algorithms. The influence of our work on these hardness results
is threefold. First, our lower bounds on the integrality ratio has motivated working on a hardness of
approximation result. Second, the insights our analysis provides regarding the (edge-weight) structure of
instances that are difficult to approximate inspired specific details of the hardness reduction. Third, our
main technical lemma (whose proof is rather non-trivial) is in fact made crucial use of in [HK03].

3



Organization. Our lower bounds on the integrality ratio of Group-Steiner-Tree and Directed-
Steiner-Tree are shown in Section 2. We then prove algorithmically that the integrality ratio of the
former problem is much better for certain families of instances in Section 3; this pinpoints the type of
instances that appear difficult for this relaxation. Finally, concluding remarks are made in Section 4.

2 Lower bounds on the integrality ratio

In this section we prove a lower bound of Ω(log2 k) on the integrality ratio of the flow-based relaxation
of the Group-Steiner-Tree problem even on HSTs. In terms of n, the gap is Ω( log2 n

(log log n)2
). We start

(Section 2.1) by describing the linear programming relaxation and constructing a family of 2-HST instances,
accompanied by an overview of the analysis; then, the main technical parts (Sections 2.2 and 2.3) analyze
the fractional and the integral solutions of this linear program. We also show how simple modifications
to this construction extend the integrality ratio to unit-weight trees (Section 2.4) and to c-HSTs for an
arbitrary constant c > 1 (Section 2.5). We further point out how this immediately leads to a lower bound
of Ω( log2 n

(log log n)2
) on the integrality ratio for the Directed-Steiner-Tree problem (Section 2.6). Finally,

the lower bound of Ω(log2 k) is shown to be tight (in Section 2.7).

2.1 The relaxation and the instance

The cut-based relaxation (that is equivalent to the flow-based relaxation) for Group-Steiner-Tree is as
follows. (Here, δ(S) is the set of edges with exactly one endpoint in S ⊂ V .)

Minimize
∑

e∈E

wexe

∑

e∈δ(S)

xe ≥ 1 , ∀S ⊆ V s.t. r ∈ S and S ∩ gj = ∅ for some group gj

0 ≤ xe ≤ 1 , ∀e ∈ E

(1)

Let Tn be a 2-HST tree with n nodes defined by the following random process. Let the collection of groups
be G = {g1, g2, . . . , gk}. The groups are defined by a random process. The value of k, as well as those of
two other parameters H and d, will be defined shortly (in terms of n). The height (i.e., depth) of Tn is H,
and every non-leaf vertex has d children. The root of Tn is denoted r. The level of a vertex is its depth; r is
at level 0, and there are H +1 levels. An edge is said to be at level i iff it connects a vertex at level i−1 to
a vertex at level i. Each edge at level i has weight 1/2i; thus, for instance, edges incident at r have weight
1/2. Each group gj is a subset of the leaves, described as follows. We shall associate a subset A(`) ⊆ G of
the groups with each leaf `, and define each group gj to be the set of leaves ` for which gj ∈ A(`). Thus, a
solution that reaches a leaf ` by a path from r, covers all groups in A(`). To define A(`) for each leaf `, we
now recursively and randomly define a set A(v) for every node v in the tree (including non-leaf nodes), as
follows. Proceed independently for each group gj as follows. We start by letting gj ∈ A(r) with probability
1. In general, if gj ∈ A(u) for some non-leaf node u, then for each child v of u, we independently put gj in
A(v) with probability 1/2. Thus, this random process goes top-down in the tree, independently for each
group. Note that the number of vertices in Tn is n ' dH , where H is the height of the tree. Clearly, the
expected size of every group is dH/2H .

Parameters and notation. We set d = c0 log n for some universal constant c0 > 0; this will be used
in some Chernoff bound arguments in Section 2.2. It then follows that H = log n

log d = Θ(log n/ log log n).
We further set k = 22H ; thus, log k = Θ(log n/ log log n). Throughout, with high probability means with
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probability that is at least, say, 1 − 1/n. All probabilities refer to the randomness in constructing the
instance Tn.

Feige’s instance. The construction suggested by Feige circa 1998 is the following: Take a complete tree of
arity 4 (i.e., every non-leaf vertex has 4 children) and height log2 k; now generate k groups, each containing
k leaves, by an independent randomized branching process that starts from the root and randomly picks
two out of four children until the leaves are reached. This random instance differs from Tn in its degree,
which is constant rather than logarithmic, and in that the choices made (when generating a single group)
at each child of a vertex are correlated (rather than independent).

Overview of the analysis. We first show (Section 2.2) that with high probability the instance Tn has
a feasible fractional solution of cost O(H). In this solution, all edges e in the same level of the tree are
assigned the same value xe, and this value is chosen so that the total cost of every level in the tree is
the same, namely, O(1). The feasibility of this solution is shown by employing a sequence of Chernoff
bound arguments, and this is the reason why the degree d of the tree must be (at least) logarithmic. This
is in contrast to Feige’s instance, where the feasibility (of a similar fractional solution) is guaranteed by
construction, i.e., with probability 1, and thus the tree can have a constant degree.

We then show (Section 2.3) that with high probability the cost of any integral solution for Tn is lower
bounded by Ω(H2 log k). At a high level, we imitate the argument known for Set-Cover; we show that
for any single low-cost integral solution (i.e., subtree of Tn), with high probability over the randomness in
constructing the groups this solution is infeasible (i.e., does not cover all the groups), and then we take a
union bound over all possible integral solutions. In fact, any single vertex of Tn together with its children
is essentially a “standard” Set-Cover instance with integrality ratio Ω(log k).

The main technical work is to estimate the probability that an arbitrary (but fixed in advance) integral
solution is feasible. Unlike in the Set-Cover scenario, where this is a straightforward calculation, in the
Group-Steiner-Tree instance Tn the solution’s structure comes into play. For instance, the integral
solution might not be a regular subtree of Tn, and its cost need not be split evenly among the different
levels (of Tn). We prove some upper bound on the probability that this solution for Tn is feasible. Our
analysis shows that to maximize this upper bound on the probability, it is essentially best to have an
even “split” of the cost used under a vertex v (i.e., the edges of the solution that belong to the subtree
rooted at v). While we do not claim that this is the worst-case for the exact probability of feasibility, our
upper bound gives a good enough estimate. However, the analysis does not specify how many children
of v should have a non-zero cost under them; in fact, this value is very sensitive to lower-order tradeoffs
between different levels in the tree.

The main difficulty in the analysis is to distill the effect of H, the height of the tree, on the feasibility
probability. Our proof is by induction on the height of the tree, and uncovers a very delicate tradeoff
between the height of a subtree and its cost. This tradeoff eventually translates to the cost of the integral
solution for Tn having, on top of the log k term which comes from Set-Cover (i.e., a single level), also
a linear dependence on the height H. Due to seemingly technical limitations this proof works only for
H ≤ 1

2 log k, but we show in Section 2.7 that this is unavoidable. Interestingly, there is an analogy with
the approximation algorithm of [GKR00], whose rounding procedure pays, at some intermediate stage, an
O(H log k) factor, and then shows that, in effect, H can be upper bounded by O(log N).

2.2 The fractional solution

Recall that d = c0 log n. We start with a couple of propositions which show that if the constant c0 is
sufficiently large, then certain quantities related to our randomly chosen groups stay close to their mean.
Henceforth, the phrase “with high probability” will mean “with a probability of 1− o(1)”.
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Proposition 2.1. Let c0 be a sufficiently large constant. Then, with high probability, all groups have size
at least (d/2)H/3.

Proof. Fix j. We now show that if c0 is large enough, then Pr
[|gj | < (d/2)H/3

] ≤ 1/n2. We may then
apply the union bound over all j to conclude the proof.

Let δ = 1/4. Let X1 be the number of vertices u at level 1 (i.e., children of r) such that gj ∈ A(u). Then
X1 has Binomial distribution X1 ∼ B(d, 1/2), so by a Chernoff bound on the lower-tail (see e.g. [MR95]),

Pr
[
X1 ≤ (1− δ)

d

2

]
≤ e−

1
2
δ2· d

2 .

Let X2 be the number of vertices u at level 2 such that gj ∈ A(u). Then X2 has binomial distribution
X2 ∼ B(X1 · d, 1/2). Suppose that X1 > (1− δ)IE[X1] = (1− δ)d

2 . Then, it is immediate that X2 | (X1 >

(1−δ)d
2) stochastically dominates a random variable X ′

2 ∼ B((1−δ)d
2 ·d, 1/2), i.e., Pr[X2 ≤ t] ≤ Pr[X ′

2 ≤ t]
for all t. By applying the Chernoff bound on X ′

2 we get

Pr
[
X ′

2 ≤ (1− δ

2
)(1− δ)(

d

2
)2

]
≤ e−

1
2
( δ
2
)2·(1−δ)( d

2
)2

Continue similarly for i = 3, . . . , H, by defining Xi to be the number of vertices u at level i such that
gj ∈ A(u), and by assuming that Xi−1 > (1− δ

2i−2 ) · . . . · (1− δ
2)(1− δ)(d

2)i. We get by the Chernoff bound
that

Pr
[
X ′

i ≤ (1− δ

2i−1
) · . . . · (1− δ

2
)(1− δ)(

d

2
)i

]
≤ e−

1
2
( δ

2i−1 )2·(1− δ

2i−2 )·...·(1− δ
2
)(1−δ)( d

2
)i

. (2)

For any 0 < δ′ ≤ 1
2 we have 1− δ′ ≥ 1

1+2δ′ ≥ e−2δ′ . Thus, (1− δ
2i−1 ) · . . . · (1− δ

2)(1− δ) ≥ e−
δ

2i−2−...−δ−2δ ≥
e−4δ > 1

3 . It follows that the tail-bound obtained in the righthand side of (2) is at most e−Ω((d/8)i).
Applying the union bound on these H events we get that with high probability none of them happens (if
the constant c0 is sufficiently large), and in particular, XH ≥ (1− δ

2H−1 ) · . . . · (1− δ
2)(1− δ)(d

2)H ≥ 1
3(d

2)H .
This concludes the proof of Proposition 2.1.

The following proposition has a similar proof; the main difference is that we will now employ Chernoff
bounds on the upper-tail.

Proposition 2.2. Suppose that the constant c0 is large enough. Then with high probability, the following
holds for every level i and every group gj: If a vertex u at level i is such that gj ∈ A(u), then the number
of leaves ` in the subtree rooted at u which satisfy gj ∈ A(`), is at most 3(d/2)H−i.

Proof. Fix a pair (i, j) and a vertex u at level i such that gj ∈ A(u). Let L(u) be the set of leaves of the
subtree rooted at u. We now show that if c0 is large enough, then Pr

[|gj
⋂

L(u)| > 3(d/2)H−i
] ≤ 1/n3.

We then apply a union bound over all (i, j, u) to conclude the proof.

Let δ = 1/4 < ln 3
2 . Let X1 be the number of vertices v at level 1 of the subtree rooted at u (i.e., children

of u) such that gj ∈ A(v). Then X1 has Binomial distribution X1 ∼ B(d, 1/2), so by a Chernoff bound on
the upper-tail (see e.g. [MR95]),

Pr
[
X1 ≥ (1 + δ)

d

2

]
≤ e−

δ2

3
· d
2 .

Let X2 be the number of vertices v at level 2 of the subtree rooted at u such that gj ∈ A(v). Then X2

has binomial distribution X2 ∼ B(X1 · d, 1/2). Suppose that X1 < (1 + δ)IE[X1] = (1 + δ)d
2 . Then,

it is immediate that X2 | (X1 < (1 + δ)d
2) is stochastically dominated by a random variable X ′

2 ∼
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B((1 + δ)d
2 · d, 1/2), i.e., Pr[X2 ≥ t] ≤ Pr[X ′

2 ≥ t] for all t. By applying the Chernoff bound on X ′
2

we get

Pr
[
X ′

2 ≥ (1 +
δ

2
)(1 + δ)(

d

2
)2

]
≤ e−

1
3
( δ
2
)2·(1+δ)( d

2
)2

Continue similarly for l = 3, . . . ,H − i, by defining Xl to be the number of vertices v at level l of the
subtree rooted at u such that gj ∈ A(v), and by assuming that Xl < (1 + δ

2l−1 ) · . . . · (1 + δ
2)(1 + δ)(d

2)l. We
get by the Chernoff bound that

Pr
[
X ′

l ≥ (1 +
δ

2l−1
) · . . . · (1 +

δ

2
)(1 + δ)(

d

2
)l

]
≤ e

− 1
3
( δ

2l−1 )2·(1+ δ

2l−2 )·...·(1+ δ
2
)(1+δ)( d

2
)l

. (3)

The tail-bound obtained in the righthand side of (3) is clearly at most e−Ω((d/8)l). Applying the union
bound on these H−i ≤ H events we get that with probability at least 1−1/n3 none of these events happen,
if the constant c0 is sufficiently large; in particular, XH−i ≤ (1+ δ

2H−i−1 )·. . .·(1+ δ
2)(1+δ)(d

2)H−i ≤ 3(d
2)H−i.

(This is because of the following. For any δ′ we have 1 + δ′ ≤ eδ′ . Thus, (1 + δ
2l−1 ) · . . . · (1 + δ

2)(1 + δ) ≤
e

δ

2l−1 +...+ δ
2
+δ ≤ e2δ < 3.) This concludes the proof of Proposition 2.2.

We now upper bound the value of LP (1) for the tree Tn by exhibiting a feasible solution for it: Let each
edge e at each level i have value x̂e = 9 · (2/d)i.

Lemma 2.3. With high probability, x̂ is a feasible solution to LP (1). Its value is 9H.

Proof. Observe that x̂ satisfies the constraints of LP (1) if (see also [GKR00]), for every group gj , every
cut (S, S̄) separating r from all the vertices of gj has capacity at least 1, where the capacity of each edge
e is x̂e. By the (single-source) max-flow min-cut theorem (or, say, weak duality) it suffices to show that
for every group gj , a unit of flow can be shipped from the root r to the vertices of gj while obeying the
“capacity” x̂e of each edge e. To this end, fix a group gj and define the flow f as follows. For every vertex
v in gj (i.e., for every leaf v such that gj ∈ A(v)), ship 3 · (2/d)H units of flow along the unique simple
path from r to v. By Proposition 2.1, the total flow shipped to gj is at least |gj | · 3 · (2/d)H ≥ 1 with high
probability. Next, consider an edge connecting a node u at some level i to its parent. If gj /∈ A(u), no flow
is shipped through this edge; if gj ∈ A(u), the total flow shipped through this edge (i.e., through u) is, by
Proposition 2.2, at most 3(d/2)H−i ·3(2/d)H = 9(2/d)i with high probability. In both cases, the flow along
the edge obeys the edge’s capacity. We conclude that with high probability x̂ is a feasible solution to LP
(1).

The value of the solution x̂ is
∑H

i=1 di · 1/2i · 9(2/d)i = 9H since each level i contains di edges of weight
1/2i.

2.3 The integral solution

We now show that with probability 1− o(1) (over the random choice of the groups), all integral solutions
have value Ω(H2 log k). Whenever we say that some T ′ is a subtree of Tn, we allow T ′ to be an arbitrary
connected subgraph of Tn. Since Tn is rooted, any subtree T ′ of Tn is also thought of as rooted in the
obvious way: the node in T ′ of the smallest depth is the root of T ′ (and is denoted root(T ′)). Also, when
we say that some T ′ is a subtree of Tn with root u, we allow T ′ to be an arbitrary connected subgraph of
Tn with root u.

Let M(c) be the number of subtrees of Tn which are rooted at r and have total weight at most c. Fix
gj ∈ G. For any given subtree T ′ of Tn, let pj(T ′) be the probability that no leaf of T ′ belongs to the group
gj , conditioned on the event that gj ∈ A(root(T ′)). Since by symmetry pj(T ′) = pi(T ′) for all i, j, we will
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simply denote it by p(T ′). We now define a key value f(H, i, c) as follows. Choose an arbitrary vertex u at
level i. Then f(H, i, c) is the minimum value of p(T ′), taken over all possible subtrees T ′ that are rooted
at u and have total weight at most c. (If there is no such T ′, then f(H, i, c) = 1. Also, it is easy to see
by symmetry that f(H, i, c) does not depend upon the choice of j or u.) Let Pc be the probability that
there exists an integral solution of weight c. We wish to show that Pc = o(1) for c that is smaller than a
certain threshold of the order H2 log k. Using the independence between the different groups and applying
a union bound over all possible subtrees rooted at r that have total weight c, we obtain

Pc ≤ M(c)(1− f(H, 0, c))k. (4)

We now have to lower bound f and upper bound M . We employ the following crude bound on M(c). Note
that it suffices to count only subtrees of Tn that span distinct sets of leaves (since the groups gi contain
only leaves). Observing that Tn has dH leaves, and a subtree of total weight at most c spans at most c2H

leaves (since each spanned leaf requires a distinct edge at level H), we get that

M(c) ≤
(

dH

c2H

)
≤ dcH2H

. (5)

Our goal in the next subsection is to prove the following key lemma.

Lemma 2.4. For H ≤ 1
2 log k and a constant γ > 0 that is sufficiently large, we have f(H, 0, c) ≥ e−γc/H2

.
Thus Pc ≤ M(c)(1− f(H, 0, c))k ≤ M(c) · exp{−k · e−γc/H2}.

2.3.1 Bounding f(H, 0, c).

We start with some preliminaries. The main technical result is Lemma 2.7 below. It gives a more general
bound for f than stated in Lemma 2.4, and hence the proof of the latter would follow quite easily.

Proposition 2.5. Let l ≥ 2 and β > 0. Then the minimum of
∑

S⊆{1,...,l}
∏

i∈S e−βxi over all (x1, . . . , xl)

with a given
∑l

i=1 xi is attained when all xi are equal.

Proof. The minimum is clearly attained at some point (x1, . . . , xl), so assume to the contrary that at this
point not all xi are equal, say without loss of generality that x1 >

∑
i xi/l > x2. We will show that

changing both x1 and x2 to x1+x2
2 decreases the above sum while maintaining

∑
i xi, which contradicts the

assumption that (x1, . . . , xl) is a minimum point. Actually, it suffices to prove that

∑

S′⊆{1,2}

∏

i∈S′
e−βxi >

∑

S′⊆{1,2}

∏

i∈S′
e−β·x1+x2

2 , (6)

since multiplying (6) by
∏

i∈S′′ e
−βxi and summing over all S′′ ⊆ {3, . . . , l} shows that changing x1, x2

indeed decreases the above-mentioned sum. To prove (6), observe that it simplifies to

e−βx1 + e−βx2 > 2e−β(x1+x2)/2

which follows from the arithmetic mean-geometric mean inequality since x1 6= x2. This completes the proof
of Proposition 2.5.

It is easy to check (by considering higher derivatives) that for all B ≥ 0,

e−B ≥ 1−B +
B2

2
− B3

6
. (7)
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Proposition 2.6. For all B0 > 0 there exists δ > 0 such that for all B ≥ B0 we have 1+e−B

2 ≥ e−
B

2+δ .

Proof. Fix B0 > 0. We first make sure that the inequality holds at B0. By the arithmetic mean-geometric
mean inequality 1+e−B0

2 > e−B0/2 (since B0 > 0) so a sufficiently small δ > 0 satisfies 1+e−B0

2 > e−B0/(2+δ).
It now suffices to make sure that for all B ≥ B0 the derivative of the lefthand side is at least that of the
righthand side, i.e., that −1

2e−B ≥ − 1
2+δe−B/(2+δ). This holds for any 0 < δ < B0 since 2+δ

2 = 1 + δ/2 ≤
1 + B0/2 ≤ eB0/2 ≤ eB/2 ≤ eB−B/(2+δ), completing the proof of Proposition 2.6.

Lemma 2.7. Let γ be a sufficiently large constant. Then f(H, h, c) ≥ exp(− γc2h

(H−h)2
) for all c > 0 and all

0 ≤ h ≤ H − 1.

Proof. Fix B0 to be an arbitrary positive constant, and let δ > 0 be the corresponding constant from
Proposition 2.6.

The proof is by backward induction on h, i.e., we assume that the claim holds for h + 1 and prove it for
h, where h ≤ H − 2. We will consider the base case, which is the case that h ≥ H − 1 − 6

δ , later on. In
order to bound f , we derive a recurrence relation for f(H, h, c). Recall the definition of f(H, h, c): fix an
arbitrary vertex u at level h, and take the minimum value of p(T ′), over all possible subtrees T ′ rooted
at u such that the total weight of T ′ is at most c. We bound f(H,h, c) by considering all possibilities of
u having l = 1, 2, . . . , d children and all possible partitions ~x(l) = (x1, x2, . . . , xl) of the weight c to (the
subtrees under) these l children; since the edge from u to each of its children has weight 1

2h+1 , we get that∑l
i=1 xi = c− l

2h+1 . We then get that

f(H,h, c) ≥ min
1≤l≤d

{ min
~x(l):xi≥0,

P
i xi=c− l

2h+1

{ 1
2l

∑

S⊆{1,...,l}

∏

i∈S

f(H, h + 1, xi)}};

since once the l children of u are chosen, we only need to consider the subset S of all children with gj in
their A(·) set. (Each such set S occurs with probability 1/2l.) Plugging the induction hypothesis in, we
get that

f(H,h, c) ≥ min
1≤l≤d

{ min
~x(l):xi≥0,

P
xi=c− l

2h+1

{ 1
2l

∑

S⊆{1,...,l}

∏

i∈S

exp(− γxi2h+1

(H − h− 1)2
)}}. (8)

For any l, we have by Proposition 2.5 that the righthand side of (8) is minimized when all xi are equal to
c
l − 1

2h+1 . We thus get that

f(H,h, c) ≥ min
1≤l≤d

1
2l

∑

S⊆{1,...,l}

(
exp

(
−γ( c

l − 1
2h+1 )2h+1

(H − h− 1)2

))|S|

= min
1≤l≤d

1
2l

l∑

i=0

(
l

i

)(
exp

(
−γ( c

l − 1
2h+1 )2h+1

(H − h− 1)2

))i

= min
1≤l≤d




1 + exp
(
−γ( c

l
− 1

2h+1 )2h+1

(H−h−1)2

)

2




l

.

Fix l arbitrarily such that 1 ≤ l ≤ d. Let B =
γ( c

l − 1
2h+1 )2h+1

(H − h− 1)2
and C =

γ c
l 2

h

(H − h)2
. To complete the
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induction, we want to prove that
(

1+e−B

2

)l
≥ e−Cl, i.e., that

1 + e−B

2
≥ e−C . (9)

We have four cases.

Case 1: In this case we assume that C ≥ B
2 . By the arithmetic mean-geometric mean inequality we have

that 1+e−B

2 ≥ e−B/2 ≥ e−C , which proves (9).

Case 2: In this case we assume that B ≥ B0 and B
2+δ ≤ C ≤ B

2 ; recall that δ is the constant from

Proposition 2.6. Then we have from Proposition 2.6 that 1+e−B

2 ≥ e−
B

2+δ ≥ e−C , which proves (9).

Case 3: In this case we assume that C ≤ B
2 and B < B0. Then by (7) we have 1+e−B

2 ≥ 1− B
2 + B2

4 − B3

12 .
Since C ≥ 0, we have (by Taylor’s Theorem) that e−C ≤ 1− C + C2

2 . Thus, it suffices to prove that

1− B

2
+

B2

4
− B3

12
≥ 1− C +

C2

2
.

Since B < B0 ≤ 1
2 we have that B3

12 ≤ B2

24 , and then since 2C ≤ B, we have that B2

4 − B3

12 ≥ 5B2

24 ≥ 5C2

6 . It
therefore suffices to prove that

C +
C2

3
≥ B

2
.

Note that
B

2
− C ≤ γ2h+1 c

l

(H − h− 1)2(H − h)
− γ

2(H − h− 1)2
.

Plugging in the values of B and C and simplifying we get that it suffices to prove that

γ2h+1 c
l

(H − h− 1)2(H − h)
≤ γ

2(H − h− 1)2
+

γ2 c2

l2
22h

3(H − h)4
.

If 2h+2 c
l

H−h ≤ 1, then the desired inequality indeed holds since γ2h+1 c
l

(H−h−1)2(H−h)
≤ γ

2(H−h−1)2
. Otherwise, the

inequality holds for any γ ≥ 96, since then,

γ2 c2

l2
22h

3(H − h)4
=

γ

6
· 2h+2 c

l

H − h
· γ c

l 2
h−1

(H − h)3
≥ 16

γ c
l 2

h−1

(H − h)3
≥ γ2h+1 c

l

(H − h− 1)2(H − h)
.

Case 4: In this case we assume that C < B
2+δ . Note that for h ≤ H − 2,

2 + δ ≤ B

C
= 2

c
l − 1

2h+1

c
l

· (H − h)2

(H − h− 1)2
≤ 2

(H − h)2

(H − h− 1)2
≤ 2 +

6
H − h− 1

.

Thus, h ≥ H − 1− 6
δ . Since δ > 0 is a constant, this is really the base case of the induction, which we shall

prove directly. Consider a subtree T ′ of weight at most c that is rooted at a vertex u at level h. Since u has
at most c2h+1 children in T ′, each not having the group gj in its A(·) set independently with probability 1/2,
with probability at least 2−c2h+1

the subtree T ′ does not cover gj . Thus, f(H, h, c) ≥ e−c2h+1
. Choosing a

constant γ ≥ 2(1 + 6
δ )2, we get that γ ≥ 2(H − h)2, and thus

f(H, h, c) ≥ e−c2h+1 ≥ exp(− c2h · γ
(H − h)2

).

This concludes the proof of Lemma 2.7.
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Proof of Lemma 2.4. Lemma 2.7 implies that f(H, 0, c) ≥ e−γc/H2
. Plugging this into (4), we get that

Pc ≤ M(c)(1− f(H, 0, c))k ≤ M(c) · exp{−k · e−γc/H2}.

2.3.2 Bounding the weight of an integral solution.

By Lemma 2.4 in conjunction with (5), we have

Pc ≤ exp{cH2H log d− ke−γ c
H2 }.

Now, suppose that c ≤ 1
4γ H2 ln k. Then cH2H = O(2HH3 log k). Recalling that H = 1

2 log k, we have

Pc ≤ exp{Õ(
√

k)− Ω(k3/4)} = o(1).

We conclude that with high probability no subtree of weight at most 1
4γ H2 log k covers all the groups, and

thus an optimal integral solution has value at least Ω(H2 log k). Since LP (1) has a fractional feasible
solution of value 9H, we get:

Theorem 2.8. The integrality ratio of the relaxation (1) for Group-Steiner-Tree is Ω(log2 k). In terms
of N, k, the integrality gap is Ω(log k log N/ log log N) and in terms of n it is Ω

(
log2 n

(log log n)2

)
.

2.4 Integrality ratio for unit-weight trees

The above analysis gives a lower bound on the integrality gap for Group-Steiner-Tree in HSTs. A
consequent interesting question is whether the LP is tighter for unit-weight trees. We show that a slight
modification of the trees described above gives the same integrality ratio lower bounds for unit-weight
trees. The idea is very simple – recall that in our random construction Tn, edges at level i had weight 1/2i;
replacing each such edge by a path of 2H−i unit-weight edges does not really change our integrality ratio
argument, because the resulting instance T′n is essentially equivalent to the instance Tn with edge weights
scaled up by a factor of 2H . Formally, it is easy to verify that our fractional solution for Tn naturally
yields a fractional solution for T′n with value 9H2H , and that an optimal integral solution for T′n with
value OPT′ corresponds to an integral solution with value OPT′/2H for Tn. Since we know the latter
value is at least Ω(H2 log k), we conclude that OPT′ = Ω(H22H log k), and the integrality ratio of T′n is
Ω(H log k) = Ω(log2 k) = Ω(log k log N/ log log N). Furthermore, the total number of vertices in T′n is at
most 2Hn = O(n2), and hence the integrality ratio is also Ω( log2 n

(log log n)2
) in terms of the number of vertices

in T′n.

2.5 Integrality ratio for c-HSTs

Straightforward modifications of our integrality ratio proof for Group-Steiner-Tree in 2-HSTs lead to
the same lower bounds for c-HSTs, for arbitrary constant c > 1. Here, we take an alternative approach;
instead of going through the whole proof, we show that our lower bounds for 2-HSTs imply (in a black-box
manner) similar bounds for c-HSTs, where c > 1 is an arbitrary constant. We first consider the case c > 2
and then use it to handle the case 1 < c < 2.

11



An arbitrary constant c > 2. In this case our 2-HST instance Tn can be modified into a c-HST instance
T′n as follows. The set of vertices of T′n is a subset of the vertices of Tn. For every j = 0, 1, 2, . . . iteratively
(up to about logc 2H), let i = i(j) be the (unique) integer such that 2i ≤ cj < 2i+1, and include all the
level i vertices of Tn as the level j vertices in T′n. For example, at j = 0, we include the root of Tn as the
root of T′n because 1 ≤ c0 < 2. We may assume that the height of Tn is chosen so that at some iteration
j0, we include in T′n the leaves of Tn (i.e., i(j0) = H), at which point the iterations are stopped. With this
assumption (and since all the groups in Tn contain only leaves), we also get that Tn and T′n have exactly
the same k groups. Finally, two vertices at two consecutive levels j−1, j in T′n are connected by an edge of
weight 1/cj whenever, in Tn, one of the two vertices is an ancestor of the other one. For example, the edges
incident at the root of T′n have weight 1/c. Notice that T′n is a c-HST with height j0 ' logc 2H = H/ log2 c.

A fractional solution LP for Tn, of value lp, say, naturally induces a fractional solution to T′n with value
at most lp. Indeed, we let the fractional value of an edge connecting a vertex u to its parent v′ in T′n be
the equal to the fractional value of the edge connecting (the same vertex) u to its parent v in Tn. It is
easy to see that whenever this fractional solution for T′n pays (fractionally) 1/cj for an edge, the solution
LP pays 1/2i for the corresponding edge in Tn, with 1/cj ≤ 1/2i. Since the corresponding edges in Tn are
distinct, the value of the constructed solution for T′n is at most lp.

An optimal integral solution OPT′ for T′n, of value opt’, say, naturally induces an integral solution INT
for Tn with value at most O(c) ·opt’. Indeed, simply take in Tn the (minimal) subtree that spans exactly
the same leaves (that are spanned by the solution for T′n). It is easy to see that whenever OPT′ pays 1/cj

for an edge connecting a vertex u to its parent v′ in T′n, the solution INT has to pay for the path between u
and its ancestor v′ in Tn. The total weight of this path is at most 1/2i′ +1/2i′−1 + · · ·+1/2i = O(1/2i′) =
O(c) · 1/2i = O(c) · 1/cj . We thus get an integral solution for Tn with value O(c) · opt’.

Combining these arguments with our bounds on the fractional and integral solutions for Tn yields a lower
bound of Ω(1

cH log k) on the integrality ratio in c-HSTs. Notice also that the number of vertices in T′n
is similar to that in Tn because they have the same leaves. For fixed c > 2, we thus get the same
integrality ratio lower bounds in c-HSTs as in 2-HSTs, namely, Ω(log2 k) = Ω(log k log N/ log log N) and
also Ω( log2 n

(log log n)2
) in terms of the number of vertices in T′n.

An arbitrary constant 1 < c < 2. Let t be the smallest integer such that ct > 2, and define q =
1 + c + c2 + . . . + ct−1. The above construction then yields a ct-HST instance T′n. Now replace every edge
of weight 1/(ct)j in T′n with a path of t edges having weights 1/(qctj−(t−1)), 1/(qctj−(t−2)), . . . , 1/(qctj).
Clearly, the resulting instance T′′n is a c-HST. Notice further that the total weight of the above t-path in
T′′n is (ct−1 + ct−2 + . . . + 1)/(qctj) = 1/ctj , i.e., equal to the edge in T′n it replaced. Hence, any fractional
solution for T′n yields a fractional solution for T′′n with the same value, and also an optimal integral solution
in T′n yields an integral solution for T′′n with the same value. Since the number of vertices in T′′n is larger
than that in T′n by only a constant factor of t ≤ logc 4 = O( 1

c−1), we get the same integrality ratio lower

bounds in c-HSTs as in 2-HSTs, namely, Ω(log2 k) = Ω(log k log N/ log log N) and also Ω( log2 n
(log log n)2

) in
terms of the number of vertices in T′n.

2.6 Integrality ratio for Directed Steiner Tree

The above results immediately lead to a lower bound of Ω( log2 n
(log log n)2

) on the integrality ratio for the

Directed-Steiner-Tree problem. Let Tn be an instance as described above with Ω( log2 n
(log log n)2

) integrality
ratio for Group-Steiner-Tree, and construct a Directed-Steiner-Tree instance as follows. Orient
all the edges of Tn away from the root r. Then, introduce new nodes v1, v2, . . . , vk, and for each j and
each u ∈ gj , introduce a zero-weight arc from u to vj . This defines a Directed-Steiner-Tree instance I
which is essentially the same as I: fractional solutions for the two problems map bijectively, with identical
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total weights, and the same thing holds also for integral solutions. Observe that the number of vertices in
the resulting graph is n + k ≤ 2n, and thus the lower bound of Ω( log2 n

(log log n)2
) on the integrality ratio for Tn

holds also for I.

2.7 An O(log2 k)-approximation for Group Steiner Tree in HSTs

We now show a tight O(log2 k)-approximation algorithm for the Group-Steiner-Tree problem on HSTs.
This was obtained jointly with Anupam Gupta and R. Ravi, and we thank them for allowing us to include
this algorithm here.

Our algorithm uses the rounding procedure of [GKR00] as a subroutine and takes advantage of the
geometrically-decreasing-weights property of HSTs. Let T be the HST instance of the Group-Steiner-
Tree problem. We assume this tree is a 2-HST, i.e., the weight of each edge in the (i + 1)-st level equals
half the weight of its parent edge in the i-th level, and each edge in the first level has weight exactly one;
the algorithm extends in a simple way to c-HSTs. We also assume that the height of the tree is H > log k;
otherwise, the approximation ratio O(H log k) in [GKR00] already implies the O(log2 k) upper bound. It
is not difficult to arrange that all members of each group are at the leaves of the HST (with only a constant
factor increase in the optimum value). Our algorithm is as follows:

1. Create a new tree T ′ consisting of only the first H ′ = log k levels of T . For each leaf `′ in T ′ find
its corresponding node ` in level log k of T , and assign to `′ all groups that appear in the subtree of
rooted at ` in T .

2. Run the approximation algorithm of [GKR00] on the Group-Steiner-Tree instance T ′. Let SOL′

be the value of the solution obtained and let OPT′ be the value of the optimal solution in T ′. The
analysis of [GKR00] shows that SOL′ = O(H ′ log k ·OPT′) = O(log2 k ·OPT′).

3. From the solution SOL′ (which is a subtree of T ′), we construct a solution SOL for T as follows:

(a) Find the subtree S in T that corresponds to SOL′, and include S in SOL.

(b) For each group g ∈ G, repeat the following steps. Find a leaf `′ in SOL′ that belongs to g (there
must be such a leaf since SOL′ covers g), and let ` be the level H ′ vertex in T corresponding
to `′. Now find in the subtree under ` in T a leaf u that belongs to g (there must be such leaf
because of the way we assigned groups in T ′), and add to SOL the path that connects ` to its
descendant u.

It is easy to verify that the above procedure produces a valid solution SOL to the 2-HST instance T .
We claim that SOL = O(log2 k · OPT), where OPT is the optimum solution value in T . Indeed, SOL
consists of SOL′ and at most k paths (one path per group) added in step 3(b). Because T is an HST,
each of these paths has total weight O(1/k) (since its edges have geometrically decreasing weights), and
thus, SOL = SOL′ + O(1). Since the optimal solution must contain at least one edge in the first level
(and thus having weight one), we get that OPT ≥ 1. It is also obvious that OPT′ ≤ OPT, and therefore,
SOL = SOL′ + O(1) = O(log2 k ·OPT′) + O(1) = O(log2 k ·OPT).

3 Improved approximations for certain families of trees

To better understand the approximability of the Group-Steiner-Tree problem, one may consider the
following question: What are the instances (in particular, trees) that are difficult to approximate better
than within ratio O(log k log N)? We partially answer this question by presenting a significantly better
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approximation ratio for a certain family of trees, which differs from the trees constructed in Section 2 in a
crucial way.

This improved approximation also sheds light on the instances Tn constructed in Section 2. For example,
it may be tempting to believe, at a first glance, that the edge weights pose an unnecessary complication to
Tn. Notice that the uniform weight version of Tn (i.e., a tree similar to Tn, except that all its edges have
the same weight), has the same fractional solutions as Tn. Furthermore, it can be verified that for both Tn

and its uniform weight version, the fractional solution presented in Section 2.2 is, with high probability,
near-optimal, and that applying to it the rounding procedure of [GKR00] yields an integral solution with
value larger by a Θ(log k log N) factor than the relaxation value. However, in the uniform weight version
of Tn, the contribution of level-i edges to the relaxation value increases significantly with i; and as we shall
soon see, this implies that an approximation ratio better than O(log k log N) is possible. This explains why
the weights in Tn are necessary – they make every level have the same contribution to the relaxation value.
This also elucidates the disparity between the performance of a rounding procedure for a relaxation and
the integrality ratio of the relaxation – the uniform weight version of Tn exhibits a large ratio according
to the former measure, but a significantly smaller ratio according to the latter.

Technically, fix a Group-Steiner-Tree instance T on a tree of height H, and an optimal solution xe to
its flow-based relaxation LP (1). Define z∗i to be the total contribution of the edges at level i (of T ) to the
objective function of the relaxation. We show that the relationship between the different z∗i plays a crucial
role in the strength/weakness of the LP: if for some constant α > 1 we have z∗i+1 ≥ αz∗i for all i, then we
can achieve an O(log k · log log(kN)/ log α) = O(log k · log log(kN))–approximation. This may suggest that
instances with z∗i ' z∗i+1 for all/most i are among the worst cases for the relaxation.

The following lemma proves the improved approximation ratio for the case where α = 2. The argument
easily extends to any constant factor α > 1. We sometimes refer to a valid integral solution simply as a
cover.

Lemma 3.1. If z∗i+1 ≥ 2z∗i for all i, then we can find an integral solution of value O(z∗ · log k · log log(kN)),
where z∗ =

∑H
i=1 z∗i denotes the optimal LP value.

Before getting into the formal proof, let us outline the main ideas. We separate the tree T into a lower
part, that contains the lowest Θ(log log(kN)) levels of the tree, and an upper part, that contains the rest
of the tree. Let z∗(U), z∗(L) be the contributions of the upper and lower parts to the fractional solution
value z∗. Notice that z∗(U) ≤ z∗/polylog(kN) since z∗i+1 ≥ 2z∗i for all i. We can thus take care of the
upper part as follows. We use the same randomized rounding as in [GKR00] for the upper part, only that
now we repeat the process about O(log N) more times (multiplicatively) – this results in a solution that
is considerably more expensive with respect to z∗(U), but it is still not too much with respect to the total
fractional solution z∗. Since we repeat the rounding procedure more times, we cover each group more
“times” (in a way that is formalized in the proof). Now every leaf of the upper part that we managed to
cover, can be regarded, in the lower part, as the root of a subtree. This allows us to apply the algorithm
of [GKR00] to some of the subtrees in the lower part, namely, to those subtrees whose root was covered
by our upper part solution. By the analysis of [GKR00] we only need to pay proportionally to the height
of the lower part (times O(log k)), i.e. the lower part solution has value O(z∗(L) log k log log(kN)). In the
case where z∗i+1 ≥ αz∗i for all i, we define the lower part to be the lowest Θ(log log(kN)/ log α) levels of
the tree,

Proof. We may assume that all groups contain only leaves of T , by adding zero weight edges. Let Li be
the set of edges at level i. Let h = 2 log log(kN). Let U = {e : e ∈ Li for i ≤ H − h} and L = {e : e ∈
Li for i > H −h}. For every e ∈ U , let ye be xe rounded upwards to the nearest power of 2, increasing the
LP value by a factor of at most 2.

We first find a cover of U , as follows. Let c1 > 0 be a suitably large constant. For every e ∈ U ,
assign x̂e = min{1, xe · c1 log k log2(kN)}, and use one iteration of the rounding scheme presented in
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[GKR00] (w.r.t. x̂e) to solve the problem in U . The expected total weight of this solution is at most
O(z∗(U) log k log2(kN)) ≤ O(z∗ log k), where z∗(U) =

∑H−h
i=1 z∗i is the total contribution to z∗ of the edges

in U .

Using arguments similar to those in [GKR00], we now wish to show that from the perspective of U ,
every group g is covered “sufficiently many times”, with high probability. Let e1, . . . , em be the leaves
of (the subtree induced on) U that “lead” to g (i.e., g contains at least one of their descendants in T ′).
A unit amount of flow can be shipped in T from the root to g, under the LP values xe (as capacities),
because xe is a feasible solution. Let f1, . . . , fm be the corresponding flows on the edges e1, . . . , em.
Clearly,

∑
j fj = 1. Partition the m flows, letting Ai = {j : 1

2i < fj ≤ 1
2i−1 }. Let B(g) = {i : i ≤

2 log N and
∑

j∈Ai
fj > 1/4 log N}. It is easy to see that the flow in the remaining sets Ai is at most

( 2
N2 + 2

2N2 + · · · ) + (2 log N) 1
4 log N < 3/4, and thus

∑
i∈B(g)

∑
j∈Ai

fj ≥ 1/4. We can therefore ignore the
remaining sets and focus on the flows in B(g). Fix i ∈ B(g) and let Vi be the set of leaves (of U) ej , for
j ∈ Ai, that are chosen by the [GKR00] procedure in U according to x̂e.

For the sake of upper bounding the lower-tail of |Vi|, we may assume that the capacity xe on every edge
e equals the total flow shipped along the edge e (since a larger capacity xe just increases |Vi|). Thus, the
expectation of |Vi| is µi =

∑
j∈Ai

min{1, fj ·c1 log k log2(kN)}. If c1
2i ·log k log2(kN) ≥ 1, then |Vi| = |Ai| = µi

with probability 1. Otherwise, µi ≥
∑

j∈Ai

c1fj

2 · log k log2(kN) ≥ c1 log k log(kN)
8 , and by Janson’s inequality

[Jan90],

Pr[|Vi| ≤ µi/2] ≤ e
−Ω(

µi
2+∆i/µi

)
,

where ∆i =
∑

e∼e′ Pr[e and e′ are chosen]; here, the sum is over pairs of distinct edges e ∈ Ai and e′ ∈ Ai

whose events of being chosen are not independent. By the proofs in [GKR00, KRS02], it is easy to see
that ∆i ≤ O(µi log k), where the constant in the “O(·)” is an absolute constant that is independent of c1.
Thus,

Pr[|Vi| ≤ µi/2] ≤ e−Ω(µi/ log k) ≤ e−Ω(c1 log(kN)),

where the constants in the “Ω(·)” are absolute constants that are independent of c1. There are only k
groups, and for each one |B(g)| ≤ O(log N). Thus, by choosing c1 sufficiently large, we get by the union
bound (over a polynomial in kN number of Vi’s) that with high probability, for every group g and every
i ∈ B(g), |Vi| ≥ µi/2. Recall that at least 1/4 of the total flow in f1, . . . , fm is shipped through sets Ai

with i ∈ B(g), and that the flows among each such set Ai are all equal, up to a constant factor. Hence, at
least Ω(1) of the unit amount of flow into g must be shipped using the leaves of U chosen by the [GKR00]
procedure.

We next apply the rounding algorithm of [GKR00] to L with the values xe, starting from every chosen
vertex of U . Since we know from above that one can ship to any group g, an Ω(1) amount of flow from
the level H − h vertices chosen in the solution for U , we get that xe satisfies the LP constraints, up to
a constant factor. It is proven in [GKR00], that after O(h log k) iterations of the rounding scheme, with
high probability all the groups are covered. We now claim that the expected cost of each such iteration is
at most z∗. Indeed, the probability to choose and edge e is proportional to its fractional value xe, and the
claim follows by the linearity of expectation.

Therefore, the expected cost of this solution is O(z∗h log k + z∗ log k) = z∗ ·O(log k · log log(kN)).

4 Discussion

Our results improve the current understanding of the integrality ratio of the flow-based relaxation for
the Group Steiner Tree problem, but some very intriguing gaps still remain. Although for HSTs our
Ω(log2 k) lower bound is tight, for general trees there is a slight slack between our Ω(log k log N/ log log N)
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lower bound and the O(log k log N) upper bound of [GKR00]. Interestingly, an O(log2(kN)/ log log(kN))–
approximation by a quasi-polynomial time algorithm is devised in [CEK06]; their algorithm is combinatorial
(i.e., not LP-based). Does their algorithm hint that the known upper bound on the integrality ratio in trees
is not tight? Or perhaps there is a separation between polynomial and quasi-polynomial (approximation)
algorithms? A possible step towards closing this small gap (in the integrality ratio on trees) is to analyze
the random instance suggested by Uri Feige (see our description in Section 2).

For general graphs, there is an even bigger slack, as the known upper bound is O(log n log k log N) [GKR00,
FRT04] and the lower bound is just the lower bound for trees described above. It is worth noting that a
significantly better upper bound can be achieved in (general) graphs of small diameter. In particular, an
O(log k) upper bound for expander graphs is shown in [BM04]; this bound is tight since expanders contain
a large star metric. We therefore set forth the following question, which was formulated together with Yair
Bartal: What is the integrality ratio of the Group-Steiner-Tree problem on the (say two-dimensional)
grid graph?

The shortest-path metric of a grid contains, up to constant distortion, an HST which is a complete regular
tree (see e.g. [BBM01]). This tree is similar to our tree Tn (and to Feige’s tree described above), but differs
in parameters like arity and edge-weight; thus, one may suspect that the integrality ratio in grids is at
least as large as in HSTs. In comparison, the best upper bound that we are aware of for two-dimensional
grids is the one known for general graphs.

A broader message of our paper is that in some cases the study of inapproximability lower bounds is well-
served by proving a preliminary integrality gap result. If for no other reason, the proof of an integrality gap
might be somewhat easier. Recall that in our case, the hardness of approximation result of [HK03] uses
our integrality gap as a ”gadget”. Recently, in yet another breakthrough along these lines (an integrality
gap result that was strengthened into an inapproximability result) an Ω(log∗ n) hardness was obtained for
the Asymmetric k-Center problem [CGH+05] . It would be nice to see how far this paradigm can be
taken.

On the other hand, if a proof of integrality gap does not seem to be possible, one should perhaps try
to improve the approximation algorithm. For example, for the Covering-Steiner problem (another
generalization of Group-Steiner-Tree), a logarithmic term appearing in the approximation ratio of
[KRS02] was not known to have a counterpart in the integrality ratio. Recently it turned out that this term
is spurious–the approximation algorithm is improved in [GS06] by designing a better rounding procedure.
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