
Online server allocation in a server
farm via benefit task systems

T.S. Jayram (IBM Almaden)

Tracy Kimbrel (IBM Watson)

Robert Krauthgamer (Hebrew University)

Baruch Schieber (IBM Watson)

Maxim Sviridenko (IBM Watson)

Optimization in the service industry

Optimization problems arise naturally not only in
manufacturing but also in the service industry.

The outsourcing trend calls for highly efficient
competitive service providers that

Rely on economy of scale & sharing of resources and thus

Wish to maximize utilization of available resources.

We illustrate this on web content hosting service
That hosts and serves (clients) web pages from farms
of commodity servers.

Web content hosting
Retail

Brokerage

Entertainment

Internet

periodic
updates

Advantages of a server farm

Cost effective (economy of scale)
Increases resources utilization.

Improves availability.

Assumptions:
Server is allocated to one site at a time (for security).

The time it takes to reload a server with another site s
data is relatively short (5-10 minutes).

Problem: How to allocate the servers optimally
(especially with unknown usage pattern) ?

The web server farm model

Time is divided into intervals of fixed length.

Each site s demand is assumed to be uniform
throughout an interval.

Each server has a rate of requests it can serve in an
interval (normalized to be 1).

During an interval, a server can either
Serve requests (demand) of its allocated site, or

Change its allocation (and serve no requests).

The model (cont.)

Each site s demand is associated with a benefit.
Benefit (and demand) can vary across servers and time.

Servers allocated for a site gain the benefit of the
demand that they satisfy (at the same time interval).

Demand not satisfied within the interval is lost.

Objective: Find a time-varying server allocation
that maximizes the total benefit.

Three versions: offline, fully online, lookahead.

Web server farm problem

Input:
s web sites that are to be served by k servers,

a nonnegative demand matrix di,t , i∈[1..s], t∈[1..τ],

a nonnegative benefit matrix bi,t , i∈[1..s], t∈[1..τ].

Output:

Time-varying allocation ai,t , i∈[1..s], t∈[1..τ],

that satisfies for every t, and

maximizes the total benefit gained:
,i ti

a k≤∑

, , , , 1min{ , , }i t i t i t i tt i
b d a a −⋅∑ ∑

Benefit task system problem

Input:
a set of possible states Yt for all t∈[1..τ],
the benefit accrued by each transition, given by a
nonnegative benefit function

Output:
a sequence of states {yt}, that
maximizes the total benefit gained .

Includes benefit maximization versions of the
k-server problem and metrical task system.

1: ()t t tB Y Y R+ +× →∪

1(,)t tt
B y y +∑

Results for web server farm problem

Offline: Can be solved in polynomial time.

Competitive ratio = worst-case ratio of optimal
offline benefit to the benefit accrued by online
(with or without lookahead) algorithm. (≥1)

Fully online (no lookahead): Unbounded comp ratio.

Online with lookahead L: nearly tight bounds for
deterministic and randomized algorithms. Even
tighter bounds for two special cases (L=1 s=2,*).

Results for lookahead L (both problems)

Randomized

Deterministic L>1

44-εDeterministic L=1

Upper boundLower bound

2
1 1

1
1 L L +

+ +
4

7

1

min 1 ,

(1) 1

{

}
L

L
L L

−+

+ +

11 L ε+ − 11 L+

Competitive ratio

Offline web server farm problem

Can be solved efficiently by dynamic
programming when k = O(1) or s = O(1).
Can be reduced to min-cost flow problem.

Each server is represented by a unit of flow.
Recall that (minimum cost) maximum flow is integral.
The network size is linear in demands matrix size.
Hence, can be solved in polynomial time.

Used by lookahead algorithms to compute optimal
moves sequence for the foreseeable future.

The future discounting algorithm

Motto: Bird in the hand is worth α in the bush .
I.e., discount the future exponentially: Repeat every step
1. Let b0,b1, ,bL be possible benefits in the next L moves.
2. Follow the step that maximizes b0+b1/α+ + b L /αL.

Using offline (min-cost flow) algorithm

Theorem: When , competitive ratio is

.
(E.g. L=1 ⇒ α = 2 ⇒ competitive ratio = 4 is optimal.)

()log(1 1/) 1 1L LL L L+ + = + Θ

1L Lα = +

The intermittent reset algorithm

Motivation (from a randomized algorithm):
Sacrifice one out of (roughly) L steps to gain
optimal benefit in all other steps.

Iteratively,
Choose a time T∈[now+L/2, ,now+L], whose
maximum benefit (over all transitions) is minimal.
Follow the optimal path from now to step T.

Theorem: Competitive ratio is
(Nearly optimal for large L.)

()1 4 (7) 1 1L L+ − = + Θ

Experimental results

We tested experimentally the offline, discount and
reset algorithms.

We used inputs generated at random and inputs
generated from commercial retail web servers logs.
Surprisingly, all algorithms performed very well.
In general, the discount algorithm performed better
than the reset algorithm.
In case of underload, the discount algorithm was
optimal (not surprising).

Concluding remarks

Is the discount better than the reset algorithm?

The discount algorithm is more suitable when
demands are steady (naive forecasting).

Can we make the model more realistic?

A restricted, more realistic, adversary.

Consider errors in forecasting of future demands.

