Coping with NP-hardness:
Approximating minimum bisection
and heuristics for maximum clique

THESIS FOR THE PH.D. DEGREE
by

ROBERT KRAUTHGAMER

QONKIZZA
RN AY
7 Ny gL

<

O ¥ %

h
I" N
|‘" e \:.

Supervisor: Prof. Uriel Feige
Department of Computer Science and Applied Mathematics
The Weizmann Institute of Science

Submitted to: Feinberg Graduate School
Weizmann Institute of Science
Rehovot 76100, Israel

April 16, 2001

(Revised December 2001)

i

Abstract

Many important optimization problems are known to be NP-hard. That is,
unless P = NP, there is no polynomial time algorithm that optimally solves these
problems on every input instance. We study algorithmic ways for “coping” with
NP-hard optimization problems.

One possible approach for coping with the NP-hardness is to relax the re-
quirement for exact solution, and devise approzimation algorithms, i.e. efficient
algorithms that produce a solution that is guaranteed to be nearly optimal. In
the last decade, our understanding of many NP-hard optimization problems was
greatly improved, both from the direction of approximation algorithms and from
the direction of hardness of approximation. However, there is still a large gap in
our understanding of the approximability of several fundamental problems.

A notable example is the minimum bisection problem, that requires to find
in a graph a minimum-cost cut that partitions the vertices into two equal-size
sets. This problem has applications both in theory and in practice. The seminal
work of Leighton and Rao (1988) was largely motivated by this problem, and
led to algorithms with approximation ratio O(logn) for several related problems.
However, prior to our work no sublinear (in n) approximation ratio was known
for this problem, and its approximability is a famous open problem.

We significantly improve the known approximation ratio for minimum bisec-
tion. Our algorithms achieve an approximation ratio O(log® n), which is “in the
same ballpark” as the current approximation ratios for many related problems.

Another approach for coping with the NP-hardness is to relax the requirement
for worst-case analysis, and consider instead heuristic algorithms that are suc-
cessful on average-case input instances. One main difficulty in providing rigorous
analysis of heuristics lies in realistically modeling average-case instances.

Consider for example the hidden clique problem. In a random model for the
problem, a random graph on n vertices is chosen (i.e. Gy, 1/2) and then a clique of
size k is randomly placed in the graph, and the goal is to find the planted clique
in the graph. A semi-random model may extend this random model by allowing
an adversary to remove any edge that is not inside the planted clique.

We devise for the hidden clique problem a heuristic that is based on the Lovasz
theta function, a well-known semidefinite programming relaxation of maximum
clique. Our heuristic is successful in the semi-random model when k& > Q(y/n).
In contrast, previous heuristics have similar success in the random model but fail
in the semi-random model.

We also study relaxations that are stronger than the Lovasz theta function,
namely those obtained by the “lift-and-project” method of Lovasz and Schrijver
(1991). We show that on a random graph Gpn,1/2 the value of these stronger
relaxations is comparable to the theta function, and hence they do not extend
our heuristic mentioned above to a planted clique of smaller size k = o(y/n).

il

This thesis is based on the following papers.

1. U. Feige and R. Krauthgamer. Finding and certifying a large hidden clique
in a semirandom graph. Random Structures Algorithms, 16(2):195-208,
2000.

2. U. Feige, R. Krauthgamer, and K. Nissim. Approximating the minimum
bisection size. In 32nd Annual ACM Symposium on Theory of Computing,
pages 530-536, May 2000.

3. U. Feige and R. Krauthgamer. A polylogarithmic approximation of the
minimum bisection. In 41st Annual IEEE Symposium on Foundations of
Computer Science, pages 105-115, November 2000.

4. U. Feige and R. Krauthgamer. The probable value of the Lovasz-Schrijver
relaxations for maximum independent set. Manuscript, April 2001.

Declaration. [, Robert Krauthgamer, declare that this thesis summarizes my
independent work under the supervision of Professor Uriel Feige, with the excep-
tion of Section 2.6, whose results were obtained jointly with Kobbi Nissim.

v

Acknowledgments

It is a great pleasure to acknowledge the people who helped me along the
way. My first and foremost gratitude goes to my advisor, Uri Feige, who helped
me open the door into the world of scientific research. I am indebted to his
remarkable guidance, which led me through many unknown paths during this
work. Working with him was a fascinating experience from which I (hope I have)
learned a lot.

The Weizmann Institute was a wonderful environment to be a student in.
I thank the entire staff for actively creating this environment, and particularly
Oded Goldreich, Shafi Goldwasser, David Harel, Moni Naor, David Peleg, Ran
Raz, and Adi Shamir for valuable interactions and feedback, and for many courses
and seminars.

[am grateful to colleagues with whom I had the pleasure to do research (that
did not get into this thesis). I thank Nati Linial, Ori Sasson, Michael Mitzen-
macher, Andrei Broder, Guy Kortsarz, T.S. Jayram, Tracy Kimbrel, Baruch
Schieber, Maxim Sviridenko, Kobbi Nissim, Shai Halevi and Eyal Kushilevitz for
collaborating with me.

Many thanks go to my fellow students at Weizmann for an abundance of in-
formal sessions and discussions, and for their exciting company. A short (but
definitely incomplete) list includes Kobbi Nissim, Yehuda Hassin, Michael Lang-
berg, Benny Pinkas, Omer Reingold, Sitvanit Ruah, Elad Shachar, Alon Rosen,
Yehuda Lindell, Michael Elkin and Hillel Kugler.

My deepest gratitude goes to my entire family, for their love and for their
belief in me. In particular, my parents, Arnon and Rita, deserve all the credit for
motivating me since my childhood and for supporting me on this long journey.

Finally, [am most grateful to my wife, who accompanied me in these doctoral
studies with great patience and fidelity. Gali, your endless love and encourage-
ment gives me confidence in my way.

vi

Contents

1 Introduction

2

1.1
1.2
1.3
14
1.5

Basic terminology
Approximation algorithms
Analysis of heuristics
Overview of our results
Perspectives L

Approximating minimum bisection

2.1

2.2
2.3

2.4

2.5

2.6

2.7

Introduction
2.1.1 Previouswork
2.1.2 Ourresults
2.1.3 Conventions and notation L.
Overview and techniques
Finding an amortized cut
2.3.1 Min-ratio cuts are O(1)-amortized
2.3.2 Approximate min-ratio cuts might be poor amortized cuts
2.3.3 Finding O(7)-amortized cut
The bisection algorithm o o oL
2.4.1 Decomposition stage Lo
2.4.2 Labelingstage
2.4.3 The charge of a bisection
2.4.4 Combining stage L
Extensionso
25.1 Edgecosts
2.5.2 Polynomial vertex weights
2.5.3 Separating two vertices from each other (s —¢cut)
2.5.4 Cutting an arbitrary given number of vertices
2.5.5 Cutting into a fixed number of parts
2.5.6 Bicriteria approximation and balanced cuts.
Cutting a few vertices from a graph
2.6.1 A randomized algorithm oo
2.6.2 Extensions
Concluding remarks.o

Vil

0 W N

10

3 Heuristics for maximum clique 47

3.1 Introduction L 47
3.1.1 Semi-random model for the hidden clique problem 49
3.1.2 Relaxations of the problem 50
3.1.3 Ourresults 52

3.2 The theta function in a hidden clique graph 54

3.3 Algorithm for the hidden clique problem o7
3.3.1 Thebasiccase. 57
3.3.2 Smaller valuesof £ o 59
3.3.3 A sandwiched graph G* oL 60
3.3.4 Extension to other edge probabilities 61

3.4 The matrix-cut operators of Lovasz and Schrijver 61
3.4.1 Definitions 62
3.4.2 Basic propertieso 66
343 Boundsontherank. 71

3.5 The Lovasz-Schrijver relaxations in a random graph 78
3.5.1 Lower bound on the value of N{(Gpni/2) - 79
3.5.2 Upper bound on the value of N7 (Gpi2) - 83

Bibliography 85

viil

Chapter 1

Introduction

Optimization problems arise naturally in a variety of practical and theoretical contexts.
Many such important problems are known to be NP-hard; that is, unless P = NP, there is
no polynomial time algorithm that optimally solves these problems on every input instance,
see e.g. [GJT9].

We study algorithmic ways for “coping” with NP-hard optimization problems. In many
cases, merely classifying a problem as NP-hard does not suffice, and one needs to apply some
algorithm for dealing with the problem at hand. It is therefore desirable to devise algorithms
that cope with the NP-hardness, by means of relaxing some of the requirements.

One approach for coping with the NP-hardness is to relax the requirement for ezact
solution, and settle for an approximate solution, i.e. a solution that is guaranteed to be nearly
optimal. These approzimation algorithms are usually evaluated by their approximation ratio,
which is the worst-case ratio between the values of the solution provided by the algorithm
and that of the optimum solution.

Another approach for coping with the NP-hardness is to relax the requirement for worst-
case analysis, and consider instead the behavior of an algorithm on average-case input in-
stances. We are interested in evaluating these heuristic algorithms by providing for them
rigorous performance guarantees (and not by experimental methods such as benchmarks).

In this work we restrict our attention to the two approaches mentioned above, namely
approximation algorithms and analysis of heuristics, but we remark that there are also other
approaches. For example, one may relax the polynomial time restriction and seek subexpo-
nential time algorithms, trying to improve over straightforward exhaustive search. Another
approach examines whether a problem is fixed-parameter tractable, which means that there
exists for the problem an algorithm whose running time is polynomial when some parameter
of the problem (e.g. the value of the optimum solution) is fixed independently of the input
size. It is also possible to combine several approaches, such as heuristics that produce (on
average) nearly optimal solutions, or (superpolynomial) branch and bound algorithms that
save running time by using approximation algorithms (or heuristics) to skip branches that
do not contain (or are unlikely to contain) an optimal solution.

The literature on coping with NP-hard optimization problems is immense, and we will
only mention a few references of a broader scope. The famous example of the traveling sales-
man problem (TSP) is studied thoroughly in [LLKS85], including approximation algorithms,

average-case analysis, empirical evaluation, polyhedral methods, and branch and bound
methods. The approach of approximation algorithms is studied in [Hoc97] and in [Vaz01]
(see also the compendium [CK95]). Average-case analysis (from the viewpoint of random
graphs) is surveyed in [FM97]. The approach of fixed-parameter tractability is studied
in [DF99]. Various heuristics are evaluated empirically in [Rei94] and in [JT96].

One may wonder whether this diversity of approaches for coping with NP-hardness is re-
ally necessary. One possible reason for this is that no one approach seems to be suitable in all
cases and effective for all problems. Approximation algorithms, for example, seem promising
in several problems (e.g. Euclidean TSP [Aro98]), where an arbitrarily good approximation
can be found in polynomial time, but other problems (e.g. maximum clique [Has99]), cannot
be approximated within ratio of n'~¢, for any fixed € > 0, unless P = ZPP. The diversity of
approaches seems essential also because of the difficulty in comparing different approaches.
In particular, an algorithm that performs well with respect to one criterion, might perform
poorly with respect to another criterion.

1.1 Basic terminology

An optimization problem is a search problem, i.e. each problem instance has a set of feasible
solutions, where the size of each solution is polynomial in the size of the instance. Each
solution is associated with a value (e.g. cost or benefit), which is a positive integer that
can be computed from the instance and the solution in polynomial time. The optimization
problem can be either a minimization problem or a maximization problem, and it requires
to find a feasible solution with an optimal (minimal or maximal, respectively) value.

In general, we specify the computational resources (time, space and randomness) used by
an algorithm as a function of the input size, where the input is assumed to be coded in an
alphabet of a fixed size (e.g. in binary). However, in graph problems it is more convenient
to characterize the input size by the number of vertices in the input graph, which is denoted
throughout by n. We say that an algorithm is efficient if its running time is polynomial (in
the input size).

We next define the optimization problems that we address in this work. These graph
problems are known to be NP-hard, see e.g. [GJ79, CK95].

MINIMUM BISECTION. A cut of a graph is a partition of the graph vertices into two nonempty
subsets called the sides of the cut, and consists of the edges with one endpoint in each subset.
The edges of a cut are also said to cross the cut. The cost of a cut is the number of edges
that cross it. A bisection is a cut whose two sides are of equal cardinality. The minimum
bisection problem requires to find in an input graph a bisection of minimal cost.

MAXIMUM CLIQUE. A clique in a graph is a subset of its vertices that induce a complete
subgraph, i.e. every two vertices in the subset are connected by an edge. The size of a clique
is the number of vertices in it. The maximum clique problem requires to find in an input
graph a clique of maximal size.

MAXIMUM INDEPENDENT SET (A.K.A. STABLE SET). An independent set in a graph is a
subset of its vertices that induce an empty subgraph, i.e. every two vertices in the subset

are not connected by an edge. The size of an independent set is the number of vertices in it.
The mazimum independent set problem requires to find in an input graph an independent
set, of maximal size.

It is well-known that that a clique in a graph G corresponds to an independent set in
the edge complement graph G, and therefore there is an equivalence between the maximum
clique problem and the maximum independent set problem.

1.2 Approximation algorithms

In many applications it is reasonable to compromise on a solution whose value is close to the
optimum, if such a solution can be found efficiently. Therefore, the quality of a solution is
measured by the proximity of its value to that of the optimal solution. Most commonly, the
proximity between two values is measured by their ratio (although it is sometimes plausible
to measure it by their difference).

Definitions. A polynomial time algorithm A has approximation ratio r > 1 if for any
instance of the problem, algorithm A produces a solution whose value is within a ratio
of r from the value of an optimal solution for this instance. We also say that A is an r
approximation algorithm. Note that the approximation ratio is measured for the worst-case
instance of the problem. Typically, r is allowed to be a function of the instance size (e.g. of
the number of vertices n in the input graph for graph problems). In the case of a randomized
approximation algorithm we consider the expected value of the algorithm’s solution to the
instance (where the expectation is taken over the coin tosses of the algorithm).

A family of algorithms is called a polynomial time approzimation scheme (PTAS) if the
family contains algorithms with approximation ratios that are arbitrarily close to 1, i.e. the
family contains a 1+ € approximation algorithm for every e > 0. Such a family of algorithms
is called a fully polynomial time approximation scheme (FPTAS) if for every € > 0, the family
contains a 1 + € approximation algorithm whose running time is polynomial in 1/e.

Background. The approximation ratio of an NP-hard problem is usually studied from
two directions. An approximability result shows that this problem can be approximated
within some ratio r;, by devising an approximation algorithm for it. An inapprozimability
result shows that the problem cannot be approximated within some ratio 5, unless P = NP
(or a similar assumption). For some problems, the approximability and inapproximability
results are essentially tight, namely r; and ry are equal up to low order terms, yielding an
approximation threshold that completely classifies this problem in terms of approximation.
For other problems, there is currently a large gap between the two types of results, and
they are not well-understood in terms of approximation. The compendium [CK95] contains
references to most of the results achieved in this field, and many important results are
described in [Hoc97] and in [Vaz01].

NP-hard optimization problems might differ quite substantially in terms of their approx-
imation ratios. We mention below a few typical examples, although it should be noted that
there are also other (less typical) approximation ratios, see e.g. [GKR™99] and [EP00].

3

Some problems are known to be NP-hard to solve exactly but have an arbitrarily good
fixed approximation ratio. One example for a problem that admit an FPTAS is Knapsack[IK75].
Examples for problems that admit PTAS include Bin-Packing [FdIVL81] and Euclidean-
TSP [Aro9g].

The “next” level in the quality of approximation is a constant ratio. On the one hand,
many problems are known to be approximable within a constant ratio. On the other hand,
many of them do not have a PTAS, unless P = NP. That is, for each such problem there
is an inapproximability result to within some constant ratio larger than 1. Many of these
results are proved using a general technique that follows from the connection between Prob-
abilistically Checkable Proofs (PCPs) and inapproximability [FGL196, AS98, ALM*98]. For
example, each of the problems MAX-SAT, MAX-CUT, Vertex cover, Metric-TSP, Multiway
cut and Steiner tree is approximable within some constant ratio, but inapproximable (assum-
ing P # NP) within another constant ratio, see e.g. [PY91, ALM*98]. A few problems have
a constant approximation threshold, e.g. for a version of MAX-SAT known as MAX-E3SAT,
a 8/7 approximation algorithm [Joh74] is matched by an inapproximability result [Has97]
within a ratio of 8/7 — ¢, for any fixed € > 0 (assuming P # NP).

Other problems, such as Set-Cover, Hitting-Set and Dominating-Set, can be approx-
imated [Joh74| within a logarithmic order, but cannot be approximated [Fei98] within
(1 —€)lnn, for any € > 0 (unless NP C DTIME(n®Ueesm)) Several problems have a
polylogarithmic approximation ratio and a far from tight (if any) inapproximability result,
e.g. cutwidth [LR99], bandwidth [Fei00] and minimum bisection (see Section 1.4).

There are problems which are even harder to approximate. Several problems, such as
Label cover, Nearest Lattice Vector (CVP), Nearest Codeword and Longest Path cannot
be approximated [ABSS97, KMR97] within 26" " for any fixed ¢ > 0, unless NP C
DT1IM E(nP°%¥'em) (for some of these problems, these inapproximability results were slightly
improved in [DS99, DKRS99]). However, there is still a large gap between the inapproxima-
bility results and the approximability results for these problems, and it is possible that they
are even harder to approximate.

Some problems, such as maximum clique and chromatic number, cannot be approx-
imated [Has99, FK98] within n'~¢, for any fixed ¢ > 0, unless P = ZPP. Known al-
gorithms achieve approximation ratios of O(n/log?n) for maximum clique [BH92] and
O(n(loglogn)?/log® n) for chromatic number [Hal93].

1.3 Analysis of heuristics

Although hard to solve in the worst-case, NP-hard problems may be significantly easier
on “average” instances encountered in practice. It is therefore desirable to devise heuristic
algorithms, that successfully produce an optimal solution on average-case instances. We wish
to evaluate heuristics by rigorous analysis methods that explain or predict good behavior of
the heuristic in real-life instances.

Most commonly, a rigorous analysis of a heuristic consists of an input model and of
performance guarantees. The input model defines which input instances are considered as
average-case instances. The performance guarantees are desired properties that the heuristic
should satisfy when it is applied on average-case instances from the input model.

4

Many results and open problems in this area are surveyed by Frieze and McDiarmid [FM97].

Random input models. A main difficulty in analyzing heuristics is to devise a input
model that realistically represents average-case instances that occur in practice. One possible
input model is a random model, that assumes some probability distribution on the input
instances. Usually, the desired performance guarantee is that the heuristic successfully finds
an optimal solution on all but a “vanishing” part of the input distribution. Formally, an event
in a distribution of graphs on n vertices is said to happen almost surely if its probability
is 1 — o(1) (i.e. approaches 1 as n tends to infinity); then the formal requirement of the
performance guarantee stated above is that the heuristic almost surely finds an optimal
solution.

A straightforward random model for graph problems is G, ,, the random graph on n
vertices with edge probability p, which is formally defined as the distribution generated by
placing an edge independently with probability p between each pair of n vertices. For
example, the distribution G/, 1/, represents a uniform distribution on all graphs on n labeled
vertices. In general, however, p may depend on n.

For some problems, the model of a random graph G,,, is an inadequate framework for
evaluating heuristics. We illustrated this by the minimum bisection problem. It can be seen
that for p > 1/n, almost surely all the bisections in a random graph G, , have cost roughly
pn?/4. Therefore, good and bad heuristics have nearly the same performance in this random
graph model.

Another random model that has been suggested is similar to the random graph model,
except that one solution is “planted” in the graph. That is, the graph is created by first
choosing a solution at random, and then placing edges in the graph at random in a way that
ensures that the chosen solution will almost surely be an optimal solution. For example, a
planted bisection model may first choose a random partition of the n graph vertices into two
equal-size subsets, and then place edges at random, so that an edge is placed with probability
q if it crosses the bisection defined by the chosen partition, and with probability p if it does
not. If ¢ is sufficiently smaller than p, then the bisection defined by the chosen partition is,
almost surely, a minimum bisection. Several heuristics for this and similar planted bisection
models were studied in [BCLS87, Bop87, DF89, JS98, CK99, FKO01a].

Semi-random input models. Although the input distributions employed by random
models are quite natural, there is usually no claim that these models represent instances that
occur in real-life applications. Furthermore, a heuristic that relies excessively on statistical
properties of the graphs in these distributions (e.g. all vertices have roughly the same degree),
might perform well on these specific distributions, but poorly on more realistic distributions.
It is therefore desirable to have input models that represent (effectively) a wider range of
instances.

To enrich the input model, Blum and Spencer [BS95] suggested a semi-random model, in
which the input is generated by a mixture of random and adversarial choices. In the strongest
of their semi-random models, a graph is first drawn at random from some distribution,
and then an adversary can modify this graph subject to some restrictions. The desired
performance guarantee is that regardless of the adversary (i.e. for all adversaries), the

heuristic almost surely finds an optimal solution. Here, the probability is taken over the
choice of the algorithm’s coin tosses and the choice of the graph from the distribution (before
modification by the adversary).

Feige and Kilian [FKOla] formalized this semi-random model of [BS95] as a monotone
adversary model, in which the adversary is allowed to add certain edges and /or remove certain
other edges (depending on the problem). For example, they consider the planted bisection
model described above, together with an adversary that is allowed to remove edges that cross
the planted bisection and to add edges that do not cross it. Clearly, such adversarial moves
can only decrease the cost of the planted bisection or increase the cost of other bisections,
and so it may appear, intuitively, that the adversary can only make the bisection problem
easier. However, as Feige and Kilian note, this monotone adversary can foil many popular
techniques for heuristics, e.g. it can alter the degrees of vertices, create bisections that are
“locally optimum”, and modify the spectrum (eigenvalues of the adjacency matrix) of the
graph. A heuristic that is successful in a semi-random model withstands such an adversarial
“help”, and is therefore more robust.

Interestingly, it is also possible to show hardness results for the semi-random graph model.
Blum and Spencer [BS95] show that in a certain semi-random model, there is no successful
heuristic for the problem of coloring a graph with 4 colors, unless NP C BPP. Feige and
Kilian [FKOla] show a similar result for the maximum independent set problem.

Evidence for optimality. An average-case algorithm does not have an apriori guarantee
on its performance, and it is therefore valuable to certify that the solution it produced on
the particular instance at hand is indeed optimal. The algorithm of Boppana [Bop87] for
the minimum bisection problem has such a certification property (see also [FKO0la]). His
algorithm outputs a bisection together with a lower bound (that is obtained by a relaxation)
on the minimum cost of a bisection. If the cost of the output bisection is equal to the lower
bound then it is clear that the output bisection is indeed an optimal solution. Boppana’s
analysis shows that this is indeed the case, almost surely.

Average polynomial time. Another possible performance guarantee is that of average
polynomial time, which means that on any instance the heuristic finds the planted solution
(or an optimal solution) and that the expected running time of the heuristic (over the
distribution of the input instances) is polynomial. For example, Dyer and Frieze [DF89]
show for several graph problems an average polynomial time algorithm in a random model
with constant edge probabilities. Some improvements (to smaller edge probabilities and for
semi-random models) are given in [SFVM98, Sub99].

Related areas. Note that NP-hard problems are not necessarily easy on the average.
Distributions on which a problem is hard on the average case are necessary for cryptography.
It is therefore important to identify problems and corresponding distributions, on which the
problem is hard on the average.

Levin [Lev86] put a basis for a theory of average NP-completeness. The emphasis in
Levin’s theory appears to be to identify distributions on which the underlying problem is
hard. In contrast, the emphasis in our work is to provide algorithms that perform well on

average with respect to distributions that occur in practice, and not necessarily with respect
to the most difficult distributions.

1.4 Overview of our results

Our research on coping with NP-hard optimization problems spans the two approaches de-
scribed above, namely approximation algorithms and analysis of heuristics. In each approach,
we concentrate on one graph problem that is fundamental in the sense that a better under-
standing of it may reflect on our understanding of many other problems and, possibly, of the
whole approach.

Approximation algorithms for minimum bisection. In the last decade, our under-
standing of the approximability of many NP-hard optimization problems was greatly im-
proved, due to both approximation algorithms and hardness of approximation results. For
many problems, known algorithm ratios match the hardness of approximation results, up to
an order of magnitude or less. However, there is still a large gap in our understanding of the
approximability of several fundamental problems.

Notable examples to large gaps between approximability and inapproximability results
are graph partitioning problems, and, in particular, minimum bisection. (Recall from Sec-
tion 1.1 that a bisection is a cut that partitions the vertices into two sets of equal cardinality;
the minimum bisection problem requires to find in an input graph a bisection of minimum
cost).

In a seminal work, Leighton and Rao [LR88, LR99]| obtained a bicriteria approximation
(a.k.a. pseudo-approximation) algorithm. That is, given an input graph on n vertices, their
algorithm finds a 2/3-balanced cut (i.e. a cut that partitions the vertices into two sets, each
of cardinality at most 2n/3) whose cost is at most O(logn) times that of the minimum cost
bisection. The techniques and results of Leighton and Rao found many applications and
inspired additional work, see e.g. [LR99, Shm97, ENRS99|.

However, prior to our work there was no major progress on the approximation ratio of
minimum bisection (i.e. when the strict constraint on the cardinalities of two sides of the
cut cannot be relaxed). On the one hand, there is no hardness of approximation result that
excludes the possibility that minimum bisection admits a PTAS. On the other hand, the
known approximation ratio was n/2, due to Saran and Vazirani [SV95].

We devise an algorithm that approximates the minimum bisection within a ratio of
O(log®n). This approximation ratio improves over the previous (linear in n) approximation
ratio significantly, and is, in particular, “in the same ballpark” as the bicriteria algorithms
of [LR88, LR99] and [ENRS99].

Our algorithm extends (with the same approximation ratio) to minimum bisection in
graphs with arbitrary nonnegative edge costs and polynomially bounded nonnegative integer
vertex weights. It also extends to cutting away from the graph k vertices, where £ is given
as part of the input, and to cutting the input graph into any fixed number of parts of equal
cardinality.

Our approximation algorithm follows a divide and conquer approach, where the input
graph is recursively divided into smaller parts based on a new cut notion that we define,
and the parts’ solutions are combined using dynamic programming. Our new cut notion is
related to a min-ratio cut (i.e. a cut with the minimal ratio between the cost of the cut and
the number of vertices in the smaller of its two sides), and we show how it can be computed
from an approximate min-ratio cut using flow techniques (i.e. min (s, t)-cut).

The approximation ratio of our algorithm can be described as O(rlogn), where 7 is
the approximation ratio for the problem of finding in a graph a min-ratio cut. Known
algorithms for general graphs achieve 7 = O(logn), see [LR88, LR99] and [AR98, LLR95].
For graphs excluding any fixed graph as a minor (e.g. planar graphs), known algorithms
achieve a constant ratio, i.e. 7 = O(1), see [KPR93|, and hence in these graphs our algorithm
approximates minimum bisection within ratio O(logn).

We also devise a simpler (randomized) algorithm for minimum bisection, whose approx-
imation ratio is better (than the one above) in the variant that requires to cut away a
relatively small number of vertices. Namely, the algorithm finds a cut that separates k ver-
tices (where k is given as part of the input) at a cost that is within a ratio of 1 + ek/logn
from the minimum, for an arbitrarily small constant ¢ > 0. In particular, this algorithm
yields a PTAS for the problem of cutting £ = O(logn) vertices from a graph (a problem
that is not known to be in P). The algorithm extends to graphs with arbitrary nonnegative
edge weights.

These two approximation algorithms for minimum bisection are described in full in Chap-
ter 2. Preliminary versions of these results appeared in [FK00b] and in [FKNO0O, Section 5].

Analysis of heuristics for maximum clique. The maximum clique problem appears to
be difficult on the input model of a random graph G, 1/,. It is known that the maximum
size of a clique in G, 12 is roughly 2log, n, almost surely, see e.g. [AS92]. Several simple
and natural algorithms (e.g. the greedy one) find a clique of size roughly log, n, almost
surely. Karp [Kar76] suggested the problem of finding a clique of size significantly larger
than log, n, but no efficient algorithm is known to achieve that. Finding cliques of size
%loan in a random graph G, 1/, was even suggested in [JP0O] as a hard computational
problem on which to base cryptographic applications

We focus on the hidden clique problem, which is a variant with a planted solution. In the
random model of this problem, a random graph G, 1/, is chosen, and then a clique of size k
is randomly placed in the graph. The goal is to find in the graph a clique of size k.

For the hidden clique problem in the random model, Kucera [Ku¢95] observed that taking
the vertices with highest degrees almost surely succeeds in finding the hidden clique, when
k > cy/nlogn for a sufficiently large constant ¢ > 0. Alon, Krivelevich and Sudakov [AKS98]
showed an algorithm based on eigenvalue techniques that almost surely finds the hidden
clique, when k£ > Q(y/n). Jerrum showed that the Metropolis process does not find the
clique, almost surely, when k& = o(y/n).

We devise another heuristic for the hidden clique problem. Our heuristic also finds the
hidden clique, almost surely, when k& > Q(y/n), but it extends to a semi-random model
of the problem, in which an adversary is allowed to remove (from the random graph with

8

the planted clique) any edge that is not inside the planted clique. In contrast, the previous
algorithms of [Kuc95, AKS98| have similar success in the random model, but fail in the semi-
random model, unless & = Q(n). An additional useful property of our heuristic is that it
almost surely certifies the optimality its solution. Namely, the heuristic produces its solution
together with an upper bound on the size of the maximum clique in the input graph, and
the value of the solution matches, almost surely, the upper bound.

Our heuristic is based on the Lovasz theta function, a well-known semidefinite program-
ming relaxation of the maximum clique problem. For the random model, our main argument
is that the relaxation is almost surely tight and corresponds to the planted clique. We then
extend the result to the semi-random model by using the monotonicity of the relaxation with
respect to removing edges from the graph. Note that in the worst case, the Lovasz theta
function is far from being tight [Fei97], so in terms of approximation ratio it gives a poor
guarantee.

A possible direction for extending our heuristic to a planted clique of smaller size k =
o(y/n), is to use a stronger relaxation than the Lovasz theta function. In particular, if the
relaxation is monotone with respect to adding edges, it may be plausible to compare the
almost sure value of the relaxation on a random graph G, ;/», which we denote by I?;, with

the size k of the planted clique. If £ < k then, almost surely, the relaxation value on the
hidden clique graph would be at least k and the relaxation would not be tight. However,
if k > k then it may be the case that, almost surely, the relaxation is tight on the hidden
clique graph (i.e. has value k), and can be used to find the planted clique. For example, our
heuristic mentioned above implements this approach, based on Juhész' proof [Juh82] that
the theta function of a random graph G, 1/, is almost surely ©(y/n).

Lovéasz and Schrijver [LS91]| designed a powerful “lift-and-project” procedure that pro-
duces semidefinite programming relaxations that are stronger than the Lovasz theta function.
Their general technique (it can be applied to any 0-1 integer programming problem) pro-
duces a sequence of tighter and tighter relaxations, so that the nth relaxation in the sequence
is guaranteed to be tight (where n is the number of variables in the integer program). For
the maximum clique problem, they show that the first relaxation in the sequence is already
at least as tight as the theta function. Furthermore, for any fixed r, the rth relaxation in
the sequence can be computed in polynomial time, up to an arbitrarily small error, and is
therefore a plausible candidate for a hidden clique heuristic.

We show that on a random graph G/, 1/, the value of the rth relaxation in the sequence

of Lovész and Schrijver [LS91], for r = o(logn), is almost surely roughly \/n/27. It follows
that the rth relaxation for r = O(1) almost surely has a value of ©(y/n), which is comparable
(up to constant factors) to the Lovdsz theta function. Hence, on the hidden clique graph
with planted clique size k = o(y/n), those relaxations in the sequence that are known to be
computable in polynomial time are not tight, almost surely, and offer no improved heuristic
under the approach outlined above (since improvement by arbitrarily large constant factors
can be achieved by other methods due to [AKS98]).

Our results on heuristics for maximum clique are described in full in Chapter 3. One
part of these results appeared in [FK00a] and another part is based on [FKO1b].

9

1.5 Perspectives

An important goal in the area of approximation algorithms is to achieve an approximation
threshold for minimum bisection and other graph partitioning problems. Our results in
Chapter 2 are a significant improvement in the known approximation ratio for minimum
bisection, but there is still a considerable gap in the understanding of this problem in terms
of approximation, as no hardness of approximation result is known.

Our new cut notion, called amortized cut, is useful to both approximation and bicriteria
approximation algorithms for minimum bisection. We show that an algorithm that finds a
p-amortized cut, can be used to find a bisection whose cost is at most O(plogn) times that
of the minimum cost bisection, and also to find a 2/3-balanced cut whose cost is at most
O(p) times that of the minimum cost bisection (see Section 2.5.6). Our algorithm achieves
an amortized cost p = O(logn) by using an approximation algorithm for min-ratio cuts.
However, we show that any graph contains an O(1)-amortized cut (which does not follow
immediately from the definition, since p is not an approximation ratio). Therefore, further
investigation of the values of p that can be achieved by an efficient algorithm, is interesting
in the context of improved algorithms for minimum bisection, and may possibly have other
applications.

Devising a realistic model of average-case input instances is a main difficulty in any
rigorous analysis of heuristics. Our results for the hidden clique problem in Chapter 3,
extend results that were previously known in the random model, to a semi-random model
that represents a wider range of input graphs. A semi-random model improves over a random
model in many respects, but it also has certain drawbacks. For example, in many semi-
random models that use a planted solution, this planted solution is almost surely a unique
optimal solution. It is therefore possible that heuristics that perform well in this model,
perform poorly in other settings where the optimal solution is not unique.

The technique of Lovasz and Schrijver [LS91] can be used for many optimization prob-
lems, as it allows to produce efficiently computable relaxations that are tighter than before
for (almost) any 0-1 integer programming problem. In particular, the relaxations that it
produces can be used in various approaches for coping with the NP-hardness of a problem.
So far, this technique has not found applications in the area of approximation algorithms,
possibly because many aspects of this powerful technique are not well-understood. We view
our work in Chapter 3 as a step in the direction of understanding this technique from various
aspects, and our analysis of its performance (for maximum clique) on a random graph, is
the first application of the technique to average-case analysis.

10

Chapter 2

Approximating minimum bisection®

2.1 Introduction

Let G(V, E) be an undirected graph with n vertices and m edges, where n is even. For a
subset S of the vertices (with S # 0, V), the cut (S,V '\ S) is the set of all edges in G with
one endpoint in S and one endpoints in V' \ S; these edges are said to be cut by (S,V '\ 5).
The cost of a cut is the number of edges in it.

A cut (S,V'\9) is called a bisection of G if its two sides, S and V'\ S, are each of size n/2.
We denote the minimum cost of a bisection of G by b. Minimum bisection is the problem of
computing b for an input graph G. Garey, Johnson, and Stockmeyer [GJS76] show that this
problem is NP-hard, and we address the problem of approximating it.

An algorithm is said to approzximate a minimization problem within ratio » > 1 if it runs
in polynomial time and outputs a solution whose value (or, if the algorithm is randomized,
its expected value over the coin tosses of the algorithm) is at most r times the cost of the
optimal solution. A problem is said to have a polynomial time approzimation scheme (PTAS)
if for every fixed r > 1 there is an algorithm with approximation ratio r.

A cut (S, V\S) with |S| = kis called a (k,n—k) cut of G. Let by, denote the minimum cost
ofa (k,n—k) cut in G. In the minimum (k,n—k) cut problem, we are given a graph G and a
number k € {1,...,n—1}, and we wish to compute b;. The minimum (k,n— k) cut problem
is NP-hard, as it includes minimum bisection as the special case k = n/2. Furthermore, the
proof of Bui and Jones [BJ92] actually shows that it is NP-hard to compute by in graphs of
maximum degree 3 and for £ = an (and even k = n*) for any fixed 0 < o < 1. We address
the problem of approximating by.

It is not known whether by is polynomial time computable when £ is a slowly growing
function of n, say k£ = logn. Note that a straightforward exhaustive search on all vertex
subsets of size k can find by in time n*+®() which is polynomial only if & = O(1), i.e. a
fixed constant independent of n.

*This chapter is based on the full versions of [FK00b] and of [FKNO0O, Section 5].

11

2.1.1 Previous work

Leighton and Rao [LR88, LR99] showed how to approximate within ratio O(log n) minimum-
quotient cuts, which we shall call min-ratio cuts. In these cuts, one wishes to minimize the
cut ratio (also called edge expansion or fluz) ¢/|S|, where c is the number of edges cut, and
|S| is the cardinality of the smaller of the two vertex sets.

A B-balanced cut is a cut that partitions the graph into two parts, each of size at most fn.
Leighton and Rao [LR88] used the approximate min-ratio cuts to find a 2/3-balanced cut
(also called edge separator) with at most O(blogn) edges, see also [LR99, Shm97]. Note that
such a 2/3-balanced cut does not provide an O(logn) approximation for the value of b. For
example, when the graph consists of 3 disjoint cliques of equal size, an optimal 2/3-balanced
cut has no edges, whereas b = Q(n?).

A straightforward approach for obtaining an exact bisection is to first find an almost
balanced cut (e.g. using approximate min-ratio cuts) and then move a few low degree
vertices from one side to the other. Using this approach one can approximate bisection
within a ratio of O(,/m/b) (we use O(f) to denote O(f -polylog n)) see e.g. [LR99, Footnote
10] and [FKNOO]. This is a dramatic improvement over the naive ratio of O(m/b) (achieved
by arbitrarily picking n/2 vertices), but might still be larger than n.

In terms of n, the best approximation ratio known prior to our work was n/2, due to
Saran and Vazirani [SV95]. We presented in [FKNO0O] an approximation algorithm that
achieves approximation ratio O(y/n). In [FKOO0b], we improved the approximation ratio
to polylogarithmic in n, by using similar techniques (e.g. approximate min-ratio cuts and
dynamic programming), but in a more sophisticated way. In this thesis, we describe the im-
proved approximation algorithm from [FK0O0b], and a related result (that was not improved)
from [FKNOO, Section 5.

Additional related work include the following. In [AKK99], Arora, Karger and Karpinski
show that bisection has a PTAS for everywhere-dense graphs, i.e. graphs with minimum
degree Q(n). In [GSV99], Garg, Saran and Vazirani give an approximation ratio of 2 for
the problem of finding a 2/3-balanced cut of minimum cost in a planar graph. Their result
extends to a f-balanced cut, for any 5 > 2/3, but does not extend to a bisection, which
is a 1/2-balanced cut. In [BJ92], Bui and Jones show that for any fixed € > 0, it is NP-
hard to approximate the minimum bisection within an additive term of n? €. In terms of
approximation ratio, however, there is no known hardness of approximation result which
excludes the possibility that bisection has a PTAS. Several heuristics for minimum bisection
are studied (in terms of average-case behavior) in [BCLS87, Bop87, DF89, JS98, CK99,
FKO01a].

2.1.2 Our results

Our main result is an algorithm for approximating the minimum bisection within a polylog-
arithmic ratio.

Theorem 2.1. A bisection of cost within ratio of O(log? n) of the minimum can be computed
in polynomial time.

12

In Section 2.2 we give an overview of the algorithm. On a high level, the algorithm
follows a divide-and-conquer approach. The input graph is recursively divided into parts,
using a new cut notion which we call an amortized cut, and then the parts are combined into
a bisection using dynamic programming.

In Section 2.4 we describe our algorithm for approximating bisection, based on a subrou-
tine for finding an amortized cut. If the subroutine is guaranteed to find a p-amortized cut
in a graph, the algorithm computes a bisection whose cost is within ratio of 1 4+ O(plogn)
of the minimum.

In Section 2.3 we devise an algorithm for finding an O(logn)-amortized cut in a gen-
eral graph. By using this algorithm as a subroutine in the 1 + O(plogn) approximation
algorithm for bisection, we are guaranteed that p = O(logn), proving Theorem 2.1. The
subroutine uses a 7-approximate min-ratio cut in order to find an O(7)-amortized cut. The
best known approximation algorithms for min-ratio cut in general graphs, due to Leighton
and Rao [LR88, LR99] and due to [AR98, LLR95], have approximation ratio 7 = O(logn).

In certain graph families, there is a better approximation ratio 7 for the min-ratio cut
problem. If these graph families are closed under taking induced subgraphs, then we can
approximate bisection within an improved ratio of O(7logn). For example, it is shown
in [KPR93] that in graphs excluding any fixed graph as a minor (e.g. bounded-genus graphs)
min-ratio cut can be approximated within a constant ratio, i.e. 7= 0O(1).

Theorem 2.2. In graphs excluding any fived graph as a minor (e.g. planar graphs), a
bisection of cost within ratio of O(logn) of the minimum can be computed in polynomial
time.

In Section 2.5 we show that our results extend to several natural generalizations of the
bisection problem. These extensions include, for example, bisection of graphs with arbitrary
nonnegative edge costs and graph partitioning into three parts of equal size.

Cutting few vertices. We present a simple randomized algorithm that is aimed towards
approximating the minimum (k, n—k) cut problem when £ is relatively small. The algorithm
and its analysis are described in Section 2.6, where we prove the following theorem. We say
that an event happens with high probability if its probability approaches 1 as n goes to
infinity.

Theorem 2.3. For every fized € > 0, there is a polynomial time randomized algorithm that

finds, with high probability (over the coin tosses of the algorithm), a (k,n—k) cut whose cost
is at most (1 + ek/Inn)by.

In particular, the above algorithm implies (by the Markov inequality) the following ap-
proximation ratios for £ = O(logn) and for £ = Q(logn). Note that Corollary 2.2 should be
used only when £k is slightly larger than O(logn), while for larger k£ the approximation ratio
of Theorem 2.1 is preferable.

Corollary 2.1. For any k = O(logn), there is a PTAS for the minimum (k,n — k) cut
problem.

Corollary 2.2. For any k = Q(logn), the minimum (k,n — k) cut problem can be approzi-
mated within a ratio of O(k/logn).

13

2.1.3 Conventions and notation

We will often denote the two sides of a (not necessarily optimal) bisection as white W and
black B. A graph may have several different bisections of minimum cost. For the analysis,
let us fix one of them (arbitrarily) and call it the fized optimal bisection (W*, B*).

For Vi, V, two disjoint subsets of vertices in a graph, let e(V},V;) denote the number of
edges with one endpoint in V; and the other endpoints in V5. Subsets V}, Vy, C V are called a
partition of V' if they are nonempty, disjoint, and their union is equal to V. In our context,
V' is the vertex set of a graph, and then a partition V' = V; U V; is equivalent to the cut
(1h. Va). B

A subset of vertices S C V' with 0 < |S| < |V, corresponds to a cut (S,.5) in the graph,

where S = V'\ S. We denote by r(S) the ratio of this cut, i.e. 7(S) = ﬁs"g‘)@}, and by '(S)
e(S,S)

the ratio of this cut towards S, i.e. 7'(S) = ER We call S a part of the graph, referring
either to the set of vertices S or to the subgraph induced on S, depending on the context.

2.2 Overview and techniques

Our approximation algorithm for minimum bisection has three stages, as outlined below.

Stage 1: Decomposition. This stage consists of a sequence of divide steps. The input to
a divide step is a part of the input graph G, i.e. a vertex set and the subgraph induced on
it, and the output is a partition of the vertex set into two nonempty subsets, giving two new
parts of the graph. These divide steps are applied on the input graph G recursively, until it
is decomposed into individual vertices.

The output of the whole decomposition stage is a binary tree T', that we call the decom-
position tree. Each node 7 of the tree contains a part V; obtained in a divide step, as follows.
The root of the tree contains the input graph G, the leaves of the tree contain individual
vertices of G, and the two direct descendants of a node 7 are the two subparts obtained in
the divide step of its part V;.

To complete the description of the decomposition stage, we need to explain how a divide
step is performed. This is done using a new notion called an amortized cut, which we define
later in this section. We devise an algorithm for finding amortized cuts in Section 2.3. The
decomposition stage is described in more detail in Section 2.4.1.

Stage 2: Labeling. Consider a labeling of the decomposition tree 7', which labels each
(nonleaf) tree node as either white or black. Fixing a parameter 1/2 < o < 1, we say that a
labeling is a-consistent with respect to a white-black bisection (W, B) of the input graph if
every part V; (at a tree node i) satisfies that |IW N'V;| < a|V;| if the label of node i is white,
and that |BNV;| < «|V;] if the label of node i is black.

The desired outcome of the labeling stage is a labeling which is a-consistent with the fixed
optimal bisection (W*, B*), called in short an opt-consistent labeling. However, an optimal
bisection is not known to the algorithm, so instead of finding an opt-consistent labeling,
this stage produces a family of labelings, such that at least one member of the family is

14

opt-consistent. The description of how this is done is deferred to Section 2.4.2. For the
purpose of this overview, it will be convenient to think of the labeling stage as if it produces
only one labeling, which is opt-consistent.

Stage 3: Combining. Given a decomposition tree 7" and an arbitrary (not necessarily
opt-consistent) labeling of it, the combining stage assigns to each vertex v of the input graph
G a white charge and a black charge. The two charges are simple to compute based on the
labels along the path from the root of T to the leaf that contains the vertex v.

The charge of a bisection (W, B) of the input graph G (with respect to the labeling) is
defined as the sum of the white charges of the vertices of W and the black charges of the
vertices of B. The functions white charge and black charge have the property that for every
bisection, charge is an upper bound on cost (regardless of the labeling).

If the charge is defined with respect to an opt-consistent labeling of 7" then our notion
of amortized cut used in the decomposition stage guarantees in addition that the charge
of the fixed optimal bisection is within a polylogarithmic factor of its cost b. Hence, using
the opt-consistent labeling produced by the labeling stage ensures that the input graph G
contains a bisection whose charge is within polylogarithmic ratio of b.

Finding a bisection of minimum charge in G is relatively straightforward. Associate with
each vertex a net-charge, which is its white charge minus its black charge, and pick the n/2
vertices with smallest net-charge to form one side W, leaving the remaining n/2 vertices in
another side B. The bisection (W, B) that we find has minimum charge, and its cost is thus
within a polylogarithmic factor of b, the cost of the minimum bisection.

It is interesting to note that finding a minimum cost bisection is an optimization problem
with a quadratic objective function (minimizing the number of edges, where edges are pairs
of vertices). Finding a minimum charge bisection (given the decomposition tree and an
opt-consistent labeling) is an optimization problem with a linear objective function (sum of
net-charges over individual vertices). Hence in a sense, our algorithm performs a linearization
of a quadratic function, and loses a polylogarithmic factor in the process.

The above presentation of the combining stage was oversimplified. The output of the
labeling stage is not one labeling that is opt-consistent, but rather a large family of labelings,
such that at least one of them is opt-consistent. Moreover, this family has exponential
cardinality, so we cannot try the above net-charge approach on each labeling separately.
Instead, we exploit the structure of this family of labelings and use dynamic programming
to compute a labeling from the family and a bisection, such that the charge of this bisection
with respect to this labeling is minimum over all labeling-bisection pairs. Details appear in
Section 2.4.4.

In the rest of the overview we shall introduce and discuss the notion of amortized cut,
which is of central importance in bounding the ratio between the charge and the cost of the
fixed optimal bisection. To motivate this new notion we present our algorithm as a divide-
and-conquer algorithm. We then suggest a kind of cut that is desirable for the algorithm’s
divide step and call this cut notion an amortized cut.

15

Divide and conquer approach

A possible divide and conquer approach for a graph problem is to divide the input graph G
into two parts (using a cut), solve a subproblem for each part, and then combine the solutions
of the two subproblems into a solution for G. This approach can be applied recursively, and
then the input graph G is recursively divided into smaller and smaller parts, where each part
is associated with a subproblem. Note that the divide step cut is a tool of this approach,
and is not intended to be a solution to the subproblem.

In our context, the graph problem is minimum bisection, and we apply this divide and
conquer approach for the more general problem of cutting away an arbitrary number of
vertices that is given as part of the input (bisection is the special case where the given
number is n/2). Similarly, the subproblem of each part requires to cut away (from that
part) an arbitrary number of vertices that is given in the subproblem. Note that minimum
bisection is a cut problem, and therefore in addition to the divide step cuts we have here also
solution cuts (later called combined cuts). Note that the solution cut of a part need not be
the same as the divide step cut of this part.

Our three stage algorithm outlined above follows this divide and conquer approach. The
task of breaking the input graph into smaller and smaller parts is performed by the decom-
position stage, whose decomposition tree 1" represents the recursive structure of the divide
steps.

For such a divide and conquer approach to be successful, it is desirable that (i) each of
the two subproblems can be solved separately; and (ii) the solutions of the two subproblems
can be combined while incurring a relatively small additional cost. Below we provide an
overview of how our algorithms handles these issues.

Consider the problem of cutting away k vertices from a part U C V of the input graph.
The corresponding divide step uses a cut (U, Us) of U to break this problem into the two
subproblems of cutting away k; vertices from U; and of cutting away ko vertices from Us,
with & = k; + ko. (For the sake of exposition assume that ki, ks can be guessed.) Let
us assume that the subproblem associated with each subpart U; is solved separately (by
recursion) and the solution obtained for it is a cut (C, F;) with |C;| = k; (see also Fig. 2.1).
The two solution cuts are then combined into a cut of U that separates k = ki + ko vertices,
namely (C; U Cy, Fy U Fy). Let Cut(U', k") denote the cost of the cut of U’ that separates k'
vertices and is found by the algorithm. Then the cost of the combined cut is given by

CUt(U, k) == C’ut(Ul, 1{11) + CUt(UQ, k2) + 6(01, Fg) + 6(02, Fl) (21)

Previous accounting method

The approach of [FKNO00] is based on a straightforward upper bound on the cost (2.1) of the
combined cut. The additional cost incurred by the divide step, i.e. e(Cy, F») + e(Cy, FY), is

at most the cost of all the edges cut by the divide step, i.e. e(Uy,U,), yielding the upper
bound

CUt(U, k) S Cut(Ul, kl) + CUt(UQ, kg) + e(Ul, Ug) (22)

16

Divide

Uy Step

U
Uy
Uz

Figure 2.1: The divide and conquer paradigm

We remark that a bound similar to (2.2) is used in divide and conquer algorithms for
many other graph problems, such as minimum cut linear arrangement (a.k.a. cutwidth),
see e.g. [LR99].

The divide steps of [FKNOO] use an approximate min-ratio cut to break each part U.
This cut appears to be suitable for the bound (2.2) because it minimizes the cost of the cut
(U1, Us,), and at the same time tries to cut the part U into parts of roughly equal size, so as
to minimize the depth of the recursion.

It is particularly instructive to evaluate the quality of our upper bound in the case where
the computed cut (Cy U Cy, Fy U Fy) is just the cut induced on U by the optimal bisection
(W*, B*). Intuitively, we analyze the case where the algorithm happens to find the optimal
bisection. In fact, we will later use dynamic programming to find a bisection for which the
upper bound is minimized, so such an analysis bounds from above the cost of the output
bisection.

There are cases where the upper bound (2.2) is tight (i.e. holds with equality). Indeed,
the cuts within each U; are computed independently of each other, and so it might happen
that all the edges between the two parts U, Us end up in the combined cut. However, this
bound is insensitive to cases where only few of the edges that are cut in the divide step end
up in the combined cut, leading to a relatively poor approximation ratio.

New accounting method

We introduce a more sophisticated way of bounding the cost of the combined cut. Since
Fy C Uy and Fy C Uy we can bound the cost of the combined cut by

CUt(U, I{I) S CUt(Ul, 1{11) + CUt(UQ, k2) + 6(01, Ug) + 6(02, UI) (23)

Unlike the actual cost (2.1), the upper bound (2.3) can be used in a divide and conquer
approach, as follows. Let us call e(Cy,Us) + e(Cy, Uy) the charge of the divide step of U.
This charge can be distributed into a charge e(Cy, Us) of the part Uy, and a charge e(Cy, Uy)
of the part U,. The charge of a part U; consists of the edges going from C; to the other

17

part Us ;, and thus depends on the cut (C;, F;) chosen in the part U;, but not on the cut
chosen in the other part U; ;. We obtain two separate subproblems (as in each part U;
we want to find a cut (C;, F;) for which sum of the cost of this cut and the charge to this
part is minimal), enabling a recursive divide and conquer approach. In contrast, the terms
e(Cy, Fy) and e(Cy, Fy) of the actual cost of the combined cut depend on the cuts chosen in
both parts, and do not allow to break the problem into two separate subproblems.

The new accounting method makes a distinction between the two sides C' and F' of
the combined cut. Unlike e.g. in (2.2), these two sides have different roles in the upper
bound (2.3), and we will choose in a certain way which side is referred to as C' (and which
as F'). Since we wish to minimize the charge, it makes sense to choose the smaller of the
two sides to be C. In our analysis we have a somewhat relaxed condition, requiring that
|IC] < o|U], for a fixed 1/2 < o < 1. The task of identifying a side C' as required above
in each divide step (i.e. each node of the decomposition tree) is performed by the labeling
stage, as explained in Section 2.4.2.

The charge of a bisection is the upper bound that is obtained by applying the upper
bound (2.3) recursively, i.e. it is the sum of the charges of all the divide steps. In Section 2.4.3
we discuss this notion in more detail, and in Section 2.4.4 we show that its current formulation
is equivalent to the one from Stage 3 of the algorithm outline (where the identification of a
side C' at each divide step corresponds to labeling of the decomposition tree T'). ;From the
current formulation it is straightforward that the charge of a bisection is always an upper
bound on its cost (regardless of the identification of C' at each divide step, i.e. the tree
labeling).

We call the vertices of C' = C1UC5 charged and the vertices of F' = FiUF; free. The edges
in the part U can then be classified as charged-charged, charged-free or free-free, according
to their two endpoints.

Desired divide step

Rather than find a bisection of minimum cost, our approximation algorithm looks for a
bisection of minimum charge. Our desired divide step is therefore one that guarantees that
for the fixed optimal bisection, charge can be used to approximate cost. By the labeling
stage, it suffices to refer here to charge with respect to an opt-consistent labeling, so from
now on we assume that |C| < a|U| at each divide step.

Consider the charge of the fixed optimal bisection, and recall that it is the sum of the
charges of all the divide steps. The charge of a divide step of a part U is e(Cy, Uz) +e(Cy, Uy)
and can be written also as e(Cy, Fy) +e(Csq, F1) +2¢(C, Cy), i.e. the cost of the charged-free
edges that the divide step cuts and twice the cost of the charged-charged edges that it cuts.
Observe that a charged-free edge is always an edge of the fixed optimal bisection (and vice
versa) and that each edge is cut exactly once in the decomposition stage. Hence, all the
charged-free edges cut in all the divide steps are exactly all the edges of the fixed optimal
bisection. So for the fixed optimal bisection, the difference between charge and cost is twice
the cost of all the charged-charged edges cut in all the divide steps.

It is therefore desired that the divide step cuts relatively few charged-charged edges,
where relative here is with respect to b, the cost of the fixed optimal bisection. Since b

18

is the total cost of the charged-free edges that are cut in all the divide steps, we seek an
amortization scheme that amortizes the total cost of all charged-charged edges cut against
the total cost of all charged-free edges cut. The partition of vertices to charged and free is
not known to the divide step, and we therefore require that the amortization scheme holds
for every possible partition of vertices to charged and free.

A simple amortization scheme can consider each divide step separately and amortize the
cost of the charged-charged edges cut in a divide step against the cost of the charged-free
edges cut in the same divide step. Suppose that in every divide step the amortized cost in this
method is at most p, i.e. at every part U we have that e(Cy,Cy) < ple(Cy, Fy) + e(Cs, F1)].
Then the total cost of charged-charged edges cut in all divide steps is clearly at most pb, and
the charge of the fixed optimal bisection is at most (1 + 2p)b.

The problem with this simple amortization scheme is that in order to guarantee that the
scheme holds for all possible partitions of vertices to charged and free, p might be required to
be at least n, a value that is too high for our intended application. For example, consider a
graph that consists of two cliques of size n/2 connected by an edge e. If the divide step breaks
any of the cliques, then letting this clique be C' and the other clique be F', the amortization
cost will be at least n. Otherwise, the divide step consists of the edge e and then letting C'
consist of the two endpoints of e, the amortization cost will be infinite.

We employ a more complicated amortization scheme that allows a small amortization
cost p but introduces an additional logarithmic factor. The reason for the logarithmic factor
is that this scheme amortizes against the same edge more than once (but, in a sense, not
too many times). Another complication is that this scheme actually has two amortization
methods, and it uses at each divide step the one that is better (for that divide step).

Amortized cut

We amortize the cost of the charged-charged edges cut in a divide step against the cost of the
charged-free edges in the part being divided, i.e. in the divide step of a part U we amortize
e(Cy,Cy) against e(C, F'). The edges that we amortize against are not cut in this divide
step, and hence an edge may receive an amortized cost in many divide steps. However, our
amortization scheme described below will guarantee that the total cost amortized against a
single edge is at most O(p-logn), for a suitable p. Since the edges that we amortize against
are charged-free edges and hence edges of the fixed optimal bisection, it would follow that
the total cost of the charged-charged edges cut in all the divide steps is at most O(plogn)-b,
and so the charge of the fixed optimal bisection is (1 + O(plogn)) - b.

For motivation, consider the case where the divide steps recursion has depth O(logn),
e.g. when all the divide steps are roughly balanced. In this case, an edge can receive an
amortized cost in at most O(logn) divide steps. Suppose that in every divide step the
amortized cost is at most p, i.e. in every part U we have that e(Cy,Cy) < p-e(C, F). Then
the total cost amortized against a single edge is at most O(plogn).

We do not require that the divide steps are balanced, but rather scale the amortization
cost at a part U according to the imbalance of its divide step. Out of the several possible
scaling factors we will use only the following two, where we assume, without loss of gener-
ality, that |U;| < |Us|. The first scaling factor is e(Cy, F1)/e(C, F), and its corresponding

19

amortization method requires that

e(C1,Cy) < p- % -e(C, F). (2.4)

The second scaling factor is |Cy|/|C|, and its corresponding amortization method requires
that

]
e(C1,Cy) < p- o e(C,F). (2.5)

Alternative formulations. The first amortization method (2.4) can be written also as
e(Ch,Cy) < p-e(Cy, Fy). A convenient interpretation of this formulation is that we amortize
against the charged-free edges inside Uy, the smaller side of the divide step cut (rather than
inside U, the part being divided), and the amortized cost is required to be at most p.

The second amortization method (2.5) can be written also as e(Cy,Cy) < p-1r'(C) - |C4|
where 7'(C) = e(C, F)/|C| (see Section 2.1.3 for the difference between r'(C) and r(C)). A
convenient interpretation of this formulation is that we amortize against the vertices in C',
the charged vertices inside the smaller side of the divide step cut, and the amortized cost is
required to be at most p - '(C).

Total amortized cost. The total cost amortized in the first method (2.4) is at most
O(plogn)-b. Indeed, let us use the alternative formulation in which the amortization is only
against edges inside Uj, the smaller side of the divide step cut. An edge can be inside U; in
at most logn divide steps (since the size of the part it is contained in reduces at each such
divide step by a factor of 2). Hence the total cost amortized in this method against a single
edge (of the fixed optimal bisection) is at most O(plogn), and the claim follows.

The total cost amortized in the second method (2.5) is also at most O(plogn)-b. Indeed,
we show in Section 2.4.3 that the total cost amortized in this method against a single edge
(of the fixed optimal bisection) is at most O(plogn) (essentially by careful summation of
the relevant terms of the form |C}|/|C]), and the claim follows.

Our amortization scheme. Our amortization scheme chooses at each divide step the
scaling factor that is better for this divide step, and so it suffices to have that at each part U
at least one of (2.4) and (2.5) holds. It follows from the above discussion (see Section 2.4.3 for
a full proof) that the total cost amortized in both methods together is at most O(plogn) - b.

We can now formally define our desired divide step according to the (alternative formu-
lations of) the two amortization methods described above. We call this cut an amortized
cut.

Definition (amortized cut). Let (U;,U,) be a cut with |U;| < |Uy| in a graph G'(U, E'),
and let U = C'U F be a partition of the graph vertices U to charged vertices C' and free vertices
F. Letusdenote C; =U;NC and F; =U;NC fori=1,2, asin Fig. 2.1. Let

6(01, Cg)

e(Cy, C
v el o)

= (O R (2.6)

Pe and

20

where 7'(C) = e(C, F)/|C|. We call p. the amortized cost for the edges, and p, the amortized
cost for the vertices (note that p., p, depend on C, F).

The amortized cost of the cut (U, Us,) is the maximum of min{p,, p,}, where the maximum
is taken over all partitions U = C'U F with 0 < |C| < a|U] for a fixed 3 < ov < 1. We say that
the cut (U, Us) is p-amortized if its amortized cost is at most p.

In order us to correctly handle cases where there is no cost to amortize against, we use the
convention that % is defined to be 0, and that % for t > 0 is defined to be oco. In particular,
we may extend (2.6) to the case where C' = () and then p,, p, are defined to be 0.

Convenient characterizations. A convenient characterization of an amortized cut is
given in the following proposition, whose proof is straightforward. (We will use this charac-
terization in Section 2.4.)

Proposition 2.3. A cut (Uy,Us,) with |Uy| < |Us| is p-amortized if and only if for every
C cU with |C| < a|U| and F =U \ C,
e(C1,Cy) < p- max{e(C’l,Fl) , % e(C, F)}

where C; =U;NC and F; =U;NC fori=1,2.

The restriction |C| < «|U| implies that the two terms r(C) = Frﬁ%ﬂ}'} and 7' (C) =
—e(‘%f) differ by no more than a constant factor. Indeed, min{|C|, |F'|} = ©O(|C|) and hence

—_eCF) _ e(GF)
r(C) = mmpernim = eqen = O0'(C)).
We can therefore characterize the amortized cost of a cut (up to constant factors) in

terms of (C) rather than r'(C). (We will use this characterization in Section 2.3).

Proposition 2.4. A cut (Uy,Us) with |Uy| < |Us| is O(p)-amortized if for every partition
U=CUF with0 < |C| <alU]|,

min e(C,Cy) e(C1, Cy)
{6(01,F1) ¢y .r(c)} <P (2.7)

where C; =U;NC and F; =U; NC fori=1,2.

Remarks. Observe that without the restriction |C| < «|U|, the amortized cost p might
be required to be Q(|U]), a value that is too high for our intended application. For example,
consider a clique on n vertices and a cut (Uy,Us) in it with |U;| < |Us|. Let one vertex of
U; be the only free vertex, and the rest of the vertices be charged. The number of charged-
charged edges cut is |U;| - ©(n). There are no charged-free edges in Uy, so the amortized
cost for the edges is p. = co. The number of charged vertices in the smaller side is |U;| and
r'(C) = 2= =1, so the amortized cost for the vertices is p, = ‘U|31®|-(1n) = O(n). Therefore,
the amortized cost of any cut would be p = Q(n).

In contrast, we show that the restriction |C| < «|U] allows to obtain relatively small
values of p. Namely, there always exists a cut whose amortized cost is p = O(1), and a

21

cut whose amortized cost is O(log|U|) can be computed efficiently. We remark that our
constructions are stronger than those required by Proposition 2.4, as they satisfy (2.7) with
no restriction on |C|. (The point is that we use r(C') rather than r'(C), which makes a
significant difference when |C| > |F|, as in the above clique example.)

Note that the amortized cost p is not an approximation ratio. On the one hand, it is not
clear from the definition that every graph has an O(1)-amortized cut. On the other hand,
the amortized cost of a cut may be smaller than 1, as demonstrated by a graph that consists
of two cliques of size n/2 connected by an edge. The cut that separates the two cliques can
be seen to have amortized cost O(1/n).

2.3 Finding an amortized cut

In this section we devise an algorithm for finding O(logn)-amortized cuts in general graphs,
and O(1)-amortized cuts in graphs excluding any fixed minor (e.g. planar graphs). The input
graph for this algorithm is denoted by G (though it may be just a part of the input graph
for bisection). We assume that G is connected, as otherwise we can separate a connected
component while cutting no edges at all.

Section 2.3.1 shows that every optimal min-ratio cut is an O(1)-amortized cut. It follows
that in every graph there exists an O(1)-amortized cut. An optimal min-ratio cut is NP-hard
to find in general graphs, and we thus consider approximate min-ratio cuts.

Section 2.3.2 demonstrates an approximate min-ratio cut which would be a poor divide
step for our accounting method. In particular, its amortized cost is high, showing that
the arguments of Section 2.3.1 do not immediately extend from optimal min-ratio cuts to
approximate ones.

Section 2.3.3 presents an algorithm that uses a 7-approximate min-ratio cut in order to
find an O(7)-amortized cut. Known algorithms for the min-ratio cut problem in general
graphs [LR99, AR98, LLR95| have approximation ratio 7 = O(logn), and we can thus
find an O(logn)-amortized cut. For certain graph families a better approximation ratio is
possible. For example, in graphs excluding any fixed minor, a ratio of 7 = O(1) is known
due to [KPR93|, and we can thus find an O(1)-amortized cut.

2.3.1 Min-ratio cuts are O(1)-amortized

We give an O(1) upper bound on the amortized cost of optimal min-ratio cuts. The proof
is based on the characterization given in Proposition 2.4 for an amortized cut. We remark
that our proof satisfies (2.7) with no restriction on |C].

Lemma 2.5. An optimal min-ratio cut in a graph is O(1)-amortized.

Proof. Let (V1,V3) be an optimal min-ratio cut in a graph G, and assume, without loss of
generality, that [V}| < |V;|. Let V.= C U F be an arbitrary partition of the graph vertices
to charged vertices C' and free vertices F', with 0 < |C| < |V, and denote C; = V; N C and
F,=V;NF fori=1,2 (see also Fig. 2.2). We show below that

min e(C1,C2) e(C1, ()
{G(Cl,Fl) 0] -T(C)} <2 (2.8)

22

and then by Proposition 2.4 we will have that (V7,V5) is O(1)-amortized, which proves the
lemma. Note that we can assume that |C}| > 0, as otherwise there is nothing to prove.

C F

Va

i

Figure 2.2: The amortized cost of an optimal min-ratio cut (V, V3)

% (i.e. the amortized cost for the edges p.) is at most 2,

One easy case is when
which clearly implies (2.8).

Another easy case is when (‘Cé ‘CZ) < 2r(Vy). Since (Vi, V) is an optimal min-ratio cut,
we also have that (V1) < r(C). We obtain that ‘CC‘I (CZ)) <2 ((Vl)) < 2, and therefore (2.8)
holds.

We next prove that one of the two easy cases above must hold, as otherwise we must have
that r(Fy) < r(V1), in contradiction with (Vl, V,) being an optimal min-ratio cut. Indeed,
assume that e(Cy, Cy)/e(Cy, F1) > 2 and %‘02) > 2r(Vy). Since r(V}) = (“/‘lf‘llz) is the
average degree from V) to V5, it can be represented as the following convex combination of
the average degree from C; to V5, and the average degree from F} to Vs, namely

[Fi| e(F1,Va) | [Ch] e(C, V2)
Vil | FY | Vil |C|

r(Vi) =

Since r(F)) = % (note that |Fy| < |[Vi| < 3[V]), we can represent r(V}) also as

|F]
wl

|Cl| . 6(01,‘/2) — e(Fl,C'l)
Vi |C]

r(v) = r(F1) +

By the above two assumptions (that exclude the easy cases) we have that

_ _ 1
6(01,‘/2) €(F1,Cl) Z 6(01,02) G(Fl,Cl) Z 26(01,02) T(Vi)
|C | |C | |C]
The last two inequalities imply that
| Rl |Cl|
r(Vi r(F: -r(Vh).

We obtained that some convex combination of r(F}) and (V) is smaller than r(V}), and
we can therefore conclude that r(F)) < r(V}). This contradicts the fact that (V7,V5) is an
optimal min-ratio cut, and completes the proof of Lemma 2.5. O

23

The converse of Lemma 2.5 is not true, and an O(1)-amortized cut can be an Q(n)-
approximate min-ratio cut, as follows from the next proposition with ¢ = O(1).

Proposition 2.6. Fiz a constant 1/2 < «a < 1 for the definition of an amortized cut.
Then for every t = o(n), there is an O(1/t)-amortized cut which is an Q(n/t)-approzimate
min-ratio cut.

Proof. Consider the a graph on n vertices, for a sufficiently large n, that consists of three
cliques as follows. V] is a clique on t vertices, V5 is a clique on an vertices, and V3 is a clique
on the remaining Q(n) vertices. In addition, the graph contains one edge connecting V; to
V5, and one edge connecting V5 to V.

The cut (V3, V> U V3) has amortized cost O(1/t). Indeed, let C'U F' be a partition of the
vertices with |C'| < an. We may assume that C' contains both endpoints of the edge between
Vi and V5, as otherwise the cut contains no charged-charged edges and its amortized cost
is 0. So we have that the cost of the charged-charged edges cut is 1, and that both V; and
V5 contain at least one charged vertex. If V) contains also at least one free vertex, then the
number of charged-free edges in V] is at least ¢ — 1 and hence p, = E((gigf)) < 1/(t = 1).
Otherwise, we have C'; = Vi; since there are at most an charged vertices, and at least one of
them is in V], we have that V5 contains also free vertices and thus e(C, F') > Q(n); it follows
that p, = <222 . SO < O(1/1).

The cut (V1,V2 U V3) is an (n/t)-approximate min-ratio cut. Indeed, the ratio of this
cut is 7(Vy) = 1/t, while the cut (V3,V; U V3) is an optimal min-ratio cut and has ratio

r(Vs) = O(1/n). O

The next corollary follows from Lemma 2.5.
Corollary 2.7. In every graph there exists an O(1)-amortized cut.

Corollary 2.7 is optimal up to constant factors, and there are graphs for which any cut
has amortized cost €2(1). For example, consider a clique on n vertices. Given a cut (Vi, V3)
with [V1| < |Vs], let a be the constant in the amortized cut definition, and take (o — 1/2)n
vertices of V5, and all of V| to be the charged vertices. It can be seen that p, = oo and
py = O(1), and so the amortized cost of the cut (Vi,V5) is (1), as claimed.

2.3.2 Approximate min-ratio cuts might be poor amortized cuts

We demonstrate that an approximate min-ratio cut of a graph might be a poor divide step,
and in particular a poor amortized cut. Consider, for example, the following graph G on
2n + 24/en vertices for a fixed 0 < € < 1 (see also Fig. 2.3). The vertex set of the graph is
Fy U F,UCy UC, where each of Fy, Fy are of size n, each of Cy, Cy are of size y/en, and each
of the four subsets forms a clique. These four cliques are connected as follows. Between Fj
and F, there are n edges that form a matching (i.e. have no common endpoint). Between
C; and C there are all possible en edges, thus C; U Cy forms a clique. There are also 2y/en
edges between F; and C; (for i = 1,2) so that their endpoints at F; are distinct and each
vertex of C; is an endpoint of exactly two of these edges.

24

Figure 2.3: A poor divide step by an approximate min-ratio cut

Let C' = C} U Cy be the charged vertices, and F' = F)} U F, the free vertices. Such a
partition to charged and free may reflect the “right” cut of 2y/en vertices from the graph G
(if, e.g., the input graph for bisection consists of this graph G' and a clique on 2n — 2y/en
vertices).

Consider a divide step based on the cut (F} UCy, F» UCy), whose ratio is nearly optimal.
Indeed, an optimal min-ratio cut in this graph is (F}, C;UF>,UCs) and its ratio is 1+24/€/y/n.
The cut (F; UCy, F» U Cy) has a slightly higher ratio of (1 +¢)(1 —o0(1)), and soitisa 1+e
approximate min-ratio cut.

Observe that the cut (Fy UCy, F, UCy) is a poor divide step. It cuts en charged-charged
edges while the total number of charged-free edges in G (and the bisection cost in the input
graph) is only 4y/en. According to the new accounting method, such a divide step does not
give an approximation ratio better than Q(y/en).

The observation that the cut (Fy U Cy, Fy, U Cy) is a poor divide step is supported by
its high amortized cost. The amortized cost for the edges is p. = en/2\/en = \/en/2.
The ratio of the cut (C, F) is r(C) = r'(C) = 2, so the amortized cost for the vertices is
pv = en/(y/enr'(C)) = y/en/2. We conclude that a 1+ 0(1) approximate min-ratio cut might
have amortized cost p > min{p., p,} = /en/2.

2.3.3 Finding O(7)-amortized cut

We present, an algorithm that finds an O(7)-amortized cut, given a subroutine for computing
a T-approximate min-ratio cut. The algorithm is motivated by the O(1) upper bound on the
amortized cost of a min-ratio cut shown in Section 2.3.1. In particular, we examine what
additional properties are required in order to extend the analysis of Lemma 2.5 from optimal
min-ratio cuts to approximate ones.

The proof of Lemma 2.5 uses twice the fact that (V;,V3) is an optimal min-ratio cut. In
the first usage we had that féilrfé)) < 2’;((‘2)) < 2, which extends to the case where (V1,V3)
is an approximate min-ratio cut with the approximation ratio carried over to the amortized
cost, i.e. if (V1,V3) is a T-approximate min-ratio cut then we have rélc‘lr((jé)) < 2;((‘8)) < 27.

The second time we used the fact that (V;,V2) is an optimal min-ratio cut was to say
that r(F}) < r(V1) cannot hold and gives a contradiction. In general, this usage does not

25

extend to an approximate min-ratio cut, as demonstrated by the example in Section 2.3.2.
However, the proof does extend to an approximate min-ratio cut if we have the additional
property that the ratio of V; is minimal over all its subsets Fy, i.e. r(V;) < r(F}) for all
Fy C Vi. We therefore obtain that the proof of Lemma 2.5 extends to approximate min-ratio
cuts as follows.

Lemma 2.8. Let (V1,V3) be a T-approzimate min-ratio cut in a graph, with |Vi| < |Va|. If
r(Vi) < r(Fy) for every Fy C Vi then (Vi,Vs) is an O(1)-amortized cut.

Note that the proof of Lemma 2.8 is not symmetric with respect to the two amortization
methods. It guarantees that either e(Cy, Cy)/e(Cy, F1) < 2 (i.e. the amortized cost for the

edges p. is at most 2), or réﬁlr((jé)) < 27 (i.e. the amortized cost for the vertices p, is O(7)).

In contrast, in the proof of Lemma 2.5 for optimal min-ratio both amortization costs are

0(1).

The amortized cut algorithm. We use Lemma 2.8 to devise an algorithm that finds
an O(7)-amortized cut based on a 7-approximate min-ratio cut. The algorithm, described
in Fig. 2.4, starts with a 7-approximate min-ratio cut (4, V3) and then “fixes” it so that it
would also be “minimal” with respect to containment, as required by Lemma 2.8. It then
follows that the output cut is O(7)-amortized.

In order to “fix” the cut (V1,V3), the algorithm uses minimum (s,¢)-cuts in a related
graph G’, which is defined in step 2. The related graph G’ contains edges of the input graph
G, as well as new edges. The edges from G have unit capacity, while the capacity of the
new edges is some parameter p > 0. Step 3 then finds the optimal value of p with respect
to the minimum (s, t)-cut. Before discussing implementation issues of step 3, let us analyze
the algorithm correctness.

Lemma 2.9. The cut (S,V \ S) output by algorithm FINDAMORTIZED is a T-approximate
min-ratio cut. In addition, every nonempty subset of Vi has ratio at least as large as S, i.e.

r(S) = min{r(S") : 0 £ 5" C 1}

Proof. Consider an arbitrary value p and an arbitrary (s, ¢)-cut in the related graph G’ with
the corresponding set S C Vi (see Fig. 2.5). The cut consists of (i) edges between s and
V1 \ S (each of capacity p) (ii) edges between S and V] \ S (these are edges from the input
graph @) and (iii) edges between S and ¢ (these are the edges between S and V5 in the input
graph G). The capacity of this (s,t)-cut is thus

cap(S) =p-|Vi\ S| +e(S,V\5S)

where, as usual, e(-, -) denotes the number of corresponding edges in the input graph G. In
the special case of the empty set S = (), the capacity of the (s,t)-cut is

cap(0) = p- V1

Fixing the value of p, let us compare the capacity of the cut defined by the empty set ()
with that of an arbitrary set S # 0, i.e. cap(f) vs. cap(S). The empty set () yields a smaller

26

Algorithm FINDAMORTIZED.

1. Find in the input graph G = (V, E') a 7 approximate min-
ratio cut (V7, Vo) with [Vi| < |Va.

2. Create a related graph G":

— Merge all vertices of V; into a single vertex ¢, remov-
ing self loops at ¢, and keeping all edges to Vi, including
parallel edges.

— Add a new vertex s which is connected to each vertex
of V1 by an edge whose capacity (weight) is a parameter
p > 0.

3. Let S denote the vertices of V; which are on the same side
with s in a minimum (s, ¢)-cut of G".

— Find (e.g. by binary search) the minimum p > 0 for
which S # (). (Possibly, S = V7).

4. Output the cut (S,V \ S) of the input graph.

Figure 2.4: Algorithm for amortized cuts

capacity whenever
p-IVil < p-[Vi\S[+e(S,V\S)

I
e(S,V\ S)
]

where (S) is the ratio of the cut (S,V'\ S) in the input graph G (note that |S| < |Vi| < 3|V/|
and that r(S) > 0 if G is connected).

We claim that the value of p found at step 3 is essentially p* = min{r(S): 0 # S C V1}.
Indeed, when p < p*, a minimum (s, t)-cut in G’ corresponds to S = (), and when p > p*, a
minimum (s, ¢)-cut yields a set S # (). When p = p*, a minimum (s, t)-cut can be obtained
either by S = (), or by (one or more) S # () with r(S) = p*.

When p = p* + € for a very small € > 0, only the sets S # () with »(S) = p* give smaller
capacity than the empty set, and thus a minimum (s, ¢)-cut is obtained by one of these sets
S. By the definition of p*, this set () # S C V; has minimal ratio r(S) over all nonempty
subsets of V1, i.e. (S) = min{r(S’) :) # S’ C Vi }, as claimed. Furthermore, since S = V] is
included in this range, we get that r(S) < r(V}) and hence (S,V'\ S) is a T-approximate min-
ratio cut, finishing the proof. We remark that a slightly modified algorithm can guarantee
in addition that r(S) < r(S’) for every S C S with S’ # (), S. Details omitted. 0O

p =7(5)

Theorem 2.4. Given a subroutine for computing a T-approrimate min-ratio cut, algorithm
FINDAMORTIZED finds an O(7)-amortized cut.

27

Figure 2.5: An (s,t)-cut in the related graph G’

Proof. Lemma 2.9 guarantees that the cut found by the algorithm satisfies the requirements
of Lemma 2.8, from which it follows that the cut is O(7)-amortized. O

We now address the issue of implementing step 3. Observe that p* is the maximum value p
for which the empty set () gives a minimum (s, t)-cut. Since, by definition, p* is the ratio r(S)
of a set S, it has only n? possible values, which can be exhaustively searched. Alternatively,
p* can be found in O(logn) iterations of binary search, since as an exact multiple of 1/|S|
it is bounded between 0 and n, and the difference between any two of its possible values is
more than 1/n?.

Once we find p*, we need to find a set S # () that gives a minimum (s, ¢)-cut for p*. We
can either guess a vertex of V] and merge it with s before computing the minimum (s, ¢)-cut
for p*, or alternatively compute a minimum (s, t)-cut for p = p* + ¢ with e.g. ¢ = 1/n?.

2.4 The bisection algorithm

In this section we describe our approximation algorithm for bisection and prove the following
theorem. (See Section 2.2 for the definition of an amortized cut.)

Theorem 2.5. Given a subroutine that finds a p-amortized cut, a bisection within ratio of
1+ O(plogn) of the minimum can be found in polynomial time.

2.4.1 Decomposition stage

The decomposition stage recursively divides the input graph G' = (V, E) into smaller and
smaller parts using a p-amortized cut subroutine (e.g. the one devised in Section 2.3). Each
part is further divided unless it consists of a single vertex.

The decomposition stage builds a rooted binary tree T', called the decomposition tree,
which corresponds to the recursive decomposition of the input graph G in a natural way, as
follows. (Throughout, we call the vertices of T' nodes, to avoid confusion with the vertices
of the input graph G.) Each tree node ¢ contains a part V; C V that was found during
the recursive decomposition. The root node of T" contains V', i.e. the whole input graph G.
Let us denote the two children of a nonleaf node ¢ by L(i) and R(i). Then their two parts

28

Vi), Vr@) are the result of dividing V;, i.e. the p-amortized cut found in Vj is (Viay, Vra). A
leaf of the tree T" contains a part that consists of a single vertex of GG. Therefore T' contains
exactly n leaves and n — 1 nonleaf nodes.

2.4.2 Labeling stage

Recall the following definitions from Section 2.2. A [abeling of the decomposition tree 7" labels
each nonleaf node of the tree as either white or black. Fixing a parameter 1/2 < a < 1,
we say that a labeling is a-consistent with respect to a white-black bisection (W, B) of G if
every tree node 7 satisfies that: If the label of node ¢ is white then |W N V;| < «|V;|, and
if the label of node i is black then |BNV;| < a|V;| (where V; is the part contained in node
i). A labeling is called opt-consistent if it is a-consistent with the fixed optimal bisection
(W=, B¥).

The labeling stage produces a family F of labelings. The cardinality of F is exponential
in n, so rather than listing its members explicitly, the labeling stage produces an implicit
representation of F. The actual work of the labeling stage is to mark certain nodes of T,
and these nodes implicitly define the family F, as described below.

The labeling stage marks some of the nodes of 7" in a process that goes from the root of
T towards its leaves, as follows. The root of 71" is always marked, and any other node 7 in
the tree is marked in this process if its closest marked ancestor j satisfies |V;] < 5-|Vj| (as
before, V; and Vj are the parts contained in the nodes ¢ and j, respectively). Note that the
constant « is chosen so that % < a < 1, implying % < i <1

A labeling of T" is said to be derived from the marked nodes, if the label of every unmarked
node is the same as the label of its closest marked ancestor (there is no restriction on the
labels of the marked nodes). Note that in this case the labels of the marked nodes uniquely
define the labels of all the internal tree nodes.

The family F produced by the labeling stage consists of all the labelings that can be de-
rived from the marked nodes. Since each of the 2(n) marked nodes can be labeled arbitrarily
by one of two colors, the resulting family of labelings has exponentially large cardinality, and
we cannot explicitly list all the family members. Instead, the algorithm implicitly represents
this family F by identifying which are the marked nodes.

Lemma 2.10. The family of labelings F contains at least one opt-consistent labeling.

Proof. Let the white-black cut (W, B) be the fixed optimal bisection. Consider the labeling
that is derived from the marked nodes, with the label of each marked node ¢ being the color
in minority among the vertices of V;.

This labeling is clearly in the family F, and we claim that it is also opt-consistent.
Indeed, the label of a marked node 7 is by definition the minority color in V;. The label
of an unmarked node ¢ is the same as the label of its closest marked ancestor j. Suppose,
without loss of generality, that this label (of i and j) is white. Then at most half the vertices
of V; are white, i.e. [WNV;| < i[Vj|. Observe that V; C V; and |Vi| > 5-|V;| and hence
(W NV;] <|WnNV;| <3|Vj| < a|Vi|. Hence, this labeling of F is opt-consistent. O

29

2.4.3 The charge of a bisection

We now formally define the charge of a bisection (W, B) with respect to the decomposition
tree 1" and a labeling of it. The reference to 1" will later be omitted, as we always refer to
the tree computed in the decomposition stage.

Definition (charge). Let (¥, B) be a bisection of the input graph, and assume we are given
a decomposition tree 7" and a labeling of it. For each (nonleaf) node i of T', if i is labeled white
then we let (see Fig. 2.6) C; = W NV, and F; = BNV;, and if i is labeled black then we let
C; = BNV, and F; = WNV;. We obtain a cut (C;, F;) of the part V;, and say that C; is charged
and F; is free. The charge of the divide step of a (nonleaf) node i is defined as

e(Ci N Vi), Vray) + e(Ci 0 Veay, Vi)
The charge of the bisection (W, B) is defined as the sum of all the divide steps charges, i.e.

> e(Ci N Vi, Vee) + €(Ci N Vi), Vi)

1€l

(These charges are defined with respect to 7" and a labeling of it.)

Divide
Step

Vi

Ci=WNV/F;=BnV;

VLG \
m
Step
VL(i) VR(:)

Friy=WnVvyg \\OL(Z-):BnVL(i) Cr(i)=WNVg i/)"FR(Z—):Br‘]VR(i)

Figure 2.6: The charge of a bisection (W, B) throughout the decomposition tree

30

Bisection charge vs. cost

In certain conditions, a bisection charge can approximate its cost. As shown below, the
charge of a bisection upper bounds its cost, and the gap between them is not too large if the
charge is taken with respect to an a-consistent labeling (as in the case of the fixed optimal
bisection and an opt-consistent labeling).

Lemma 2.11. The charge of a bisection (W, B) with respect to any labeling is at least as
large as its cost.

Proof. As we have seen in section 2.2, the true cost of the (W, B) edges cut in a divide step i
is e(C; N Vi), Fs N Vi) +e(CiN Virey, FiN Vi), and is therefore not larger than the charge
of this step. The proof follows by summing over all divide steps, since the decomposition
stage eventually divides the graph into individual vertices, and so every edge of the bisection
(W, B) is cut at some divide step. O

Lemma 2.12. The charge of a bisection (W, B) with respect to a labeling that is a-consistent
with it is at most e(W, B) - (1 + O(plogn)).

Proof. Consider a bisection (W, B) and a labeling of T" that is a-consistent with it. As we
have seen in Section 2.2 and in Lemma 2.11 the charge of a divide step is larger than the
true cost of the (W, B) edges cut in that step by the cost of the charged-charged edges cut in
that divide step. Summing over the divide steps we get that the charge of (W, B) the fixed
optimal bisection is larger than its cost by 2=, e(C; N Vi), Ci N Vi), where i ranges over
all (nonleaf) nodes ¢ in 7. We use the shorter notation CL = CiNVie) and Cr = C; N Vi),
where 7 is clear from the context.

To upper bound 2", e(Cy, Cr), observe that each part V; is divided using a p-amortized
cut, and that the a-consistent labeling guarantees that |C;| < «|V;| for all nodes 7, so we
can use the amortization scheme of Section 2.2. Namely, let us assume, without loss of
generality, that the decomposition stage places in the left child of a node ¢ the smaller of the
two subparts of V;, i.e. [Viu)| < [Vike)| for every nonleaf node i. Then by Proposition 2.3 we
can upper bound

¢(C1,Cr) < p-max{e(Cy, F1) , [- e(Ci,)},

and obtain

2Z€(CL,CR) S 2p : {Z (CL,FL + Z “CCL“ Cl,F)} . (29)

Therefore, to complete the proof of Lemma 2.12 it sufﬁces to upper bound the sums in the
curly brackets (i.e. the total cost amortized in each of the two methods) by e(W, B)-O(logn).

Consider first >; e(Cr, F). The edges that contribute to this sum are charged-free edges
and hence edges of the bisection (W, B). An edge in the cut (Cp, F},) must be inside Vi,
the smaller side of the cut of V;, and any single edge can be inside Vi in at most logn
divide steps ¢ throughout the tree 7. Hence, Y, e(Cy, F},) consists of at most logn times the
cost of every edge of the bisection (W, B), and therefore this sum is at most e(W, B) - logn.

Consider next Y, ||€,L|| ¢(C;, F;), and recall our convention that 2 is defined to be 0. The

edges of e(C}, F;) contribute to the sum their cost scaled by a factor of “gL“ Each edge of

31

e(C;, F;) is a charged-free edge and hence an edge of the bisection (W, B). However, an edge
of the bisection (W, B) belongs to e(C;, F;) if and only if this edge is inside V;. The nodes i
for which this edge is inside V; are all on a path from the root to a leaf of the decomposition
tree 1", and therefore the total contribution of this edge is at most its cost scaled by the sum
of Ll over that path in 7.

[ed
We claim that the sum of ||CL“ over any path from the root to a leaf is bounded by
O(logn). It follows from this claim that 3°; % -e(C;, F;) can be described as the cost of

every edge of the bisection (W, B) scaled by at most O(logn), and therefore this sum is at
most e(WW, B) - O(logn).

To prove the claim, consider an arbitrary path from the root to a leaf, and denote the
path nodes by 1,2,...,p+ 1. At each node i the charged side (i.e. C;) may be either W or
B, depending on the label of the node, so denoting w; = |WNV;| and b; = |[BNV}|, we have

that {2l is either L0 or L&) and clearly at most their sum. Hence,

A b;
p
20

Consider first >} wL(’ , and observe that w; is a nonincreasing sequence, since in the tree,
node ¢ is a parent of node i+ 1. If node i+ 1 is a left child (of its parent node), then
wr;y = w41 and hence & = w;:_l < 1. The number of such nodes 7 is at most logn,
since the path from the root to a leaf can contain at most logn left children ¢ (recall that
Vi@ < |Vr@)l). The contribution of all such nodes i to >} w;—i) is therefore at most log n.

If node i+ 1 is a right child (of its parent 7), then Wr(;) = Wi — W41, and the contribution
of all such nodes i is at most >} % Clearly, % < wi + ...+ wi+11+1 and hence
the contribution of all such nodes i to >} % is at most 3f o < ot Hl=
H(w;) < H(n) where H(k) = 51 ; is the k-th harmonic number.

We conclude that Y7 % < logn+H(n) < O(logn). Similarly, Y7 bLE” = O(logn), and

together we get that >°% % < O(logn), proving the claim and the lemma. O

ICL Wi i bz(z')
7

Wi i—1

'M@

z:l

Corollary 2.13. The charge of the fized optimal bisection (W*, B*) with respect to an opt-
consistent labeling is at most b(1 + O(plogn)).

Distributing charge to vertices

It will be convenient (algorithmically) to distribute the charge of a bisection (W, B) (with
respect to 7" and a labeling) to the vertices of the input graph, as follows. For each vertex
v € V; let the cross-degree of v at node i, denoted cross;(v), be the cost of the edges that
are incident at v and are cut in divide step i. We define the charge of a vertex v € V as
the sum of the cross-degree of v at all nodes ¢ for which v belongs to the charged side, i.e.
Y iwec; cross;(v). The next lemma proves that distributing the charge of a bisection to the
graph vertices is indeed correct.

Lemma 2.14. The charge of a bisection (W, B) is the sum of the charges of all vertices in
G.

32

Proof. The charge of a divide step of node 7 is equal to the sum of the cross-degrees at node
¢ of all vertices v € V}, i.e.

B(Cl N VL(i); VR(@)) + G(CZ N VR(i); VL(Z)) = Z CT‘OSSZ'(U) .

veC;

Summing over all nodes 7 in the tree 7', the lefthandside is, by definition, the bisection charge,
and the righthand side is the sum of the charges of all vertices in GG. The proof follows. [

Distributing the charge to the vertices of GG is important algorithmically. The charge
of a vertex depends on (and can be easily computed from) the side of this vertex in the
bisection (W, B), the decomposition tree T, and the labeling of 7', but it does not depend
on the side of the cut (W, B) that other vertices of the graph belong to. It follows that the
charge of a bisection (W, B) with respect to a given decomposition tree 7" and a labeling of
it, depends linearly on the placement of vertices into W and B. This formulation of charge
will be exploited by (the dynamic programming in) the combining stage.

2.4.4 Combining stage

The combining stage computes a bisection of the input graph G' and a labeling of the de-
composition tree 7', such that the bisection charge with respect to the labeling is at most
b-(1+O(plogn)). It then follows from Lemma 2.11 that the cost of the computed bisection
is at most b- (1 + O(plogn)), as desired.

Consider first the case where an opt-consistent labeling is known. Then it suffices to
compute a bisection of G whose charge with respect to this opt-consistent labeling is minimal,
because Corollary 2.13 guarantees that the charge of the computed bisection is at most
b- (14 O(plogn)). Below we describe a simple procedure for finding a bisection of G with
minimal charge with respect to a given labeling.

However, we do not know how to efficiently find an opt-consistent labeling, and therefore
we go over all the labelings in the family F. Specifically, using a more complicated procedure
described below the combining stage finds a bisection of G and a labeling from F, such that
the charge of the bisection with respect to the labeling is minimal over all such bisection-
labeling pairs. Lemma 2.10 guarantees that at least one of these labelings is opt-consistent,
in which case Corollary 2.13 applies. Hence, the bisection-labeling pair computed by this
procedure satisfies that the charge of the bisection with respect to the labeling is indeed at
most b - (1 + O(plogn)).

Minimizing charge over a given labeling

Finding a bisection of minimum charge with respect to a given labeling is relatively straight-
forward. By Lemma 2.14, the charge of a bisection (W, B) is the sum of the vertex charges.
Since the decomposition tree T and the labeling are fixed, the charge of a vertex depends
only on its side in the bisection (W, B). We can therefore compute for each vertex v what is
its charge when it belongs to W, called the white charge of v, and what is its charge when
it belongs to B, called the black charge of v. (Note that summing the white charge and the
black charge of a vertex gives the degree of that vertex in G.)

33

The charge of a bisection (W, B) is then the sum of the white charges of W and the
black charges of B. To find a bisection (W, B) with minimum charge with respect to the
given labeling, we can thus compute for each vertex its net-charge (white charge minus black
charge), and take W to be the n/2 vertices with smallest net-charge. (This algorithm for
the case where a labeling is given was used in the algorithm outline in Section 2.2, where we
assumed that the labeling stage produces an opt-consistent labeling.)

Minimizing charge over the family F

The combining stage uses dynamic programming to find a bisection and a labeling from the
family F, so that the charge of the bisection with respect to this labeling is minimum over
all such bisection-labeling pairs.

The dynamic programming table () has entries of the form Q(i, k, g), where ¢ is a node
of the decomposition tree T, k is an integer between 0 and |V;|, and ¢ is a guess list that
contains the labels of the marked ancestors of node ¢. Throughout, 7 is considered an ancestor
of itself.

An entry Q(i,k, g) in the table contains the optimal solution to the following problem:
Choose k vertices of V; and a labeling from F that agrees with g, so that when these k
vertices are placed in the side W and the remaining vertices of V; are placed in the side
B, the sum of the charges of all the vertices of V; with respect to the chosen labeling, is
minimal over all such choices. Note that when we only consider labelings from the family F
that agree with g, the labels of all the ancestors of 7 are uniquely defined from ¢, while the
marked descendants of ¢ can have arbitrary labels.

For a leaf node i, the table entry Q(i, k, g) can be computed directly, as follows. Since i is
a leaf node, the part V; consists of a single vertex, say v, and k can be either O or 1. If £ =0
then v is necessarily in B, and if £ = 1 then v is necessarily in W. The guess list g gives
the labels of all the nodes on the path from the leaf 7 to the root, and hence all the labels
that can possibly affect the charge of v. Since £ and ¢ uniquely define all the data that the
charge of v depends on, Q(i, k, g) is just the charge of v, and can be computed directly as
>_jcrossj(v) where j ranges over all ancestors of 7 whose label (according to g) agrees with
the side of v (as follows from k).

For a nonleaf node i, the table entry Q(i,k, g) can be efficiently computed from table
entries of its children nodes L(i), R(7). Indeed, choosing k vertices from V; is equivalent to
choosing j vertices from one child part Vi;) and k — j vertices from the other child part Vg,
so we need to add up two entries, each corresponding to one child node. The optimal value
of 7 is not known, but it can be exhaustively searched. The guess list g can be extended into
lists g1, gr for the children nodes, in possibly more than one way. Therefore,

Q. k,g) = win min {Q(L(), j, g1) + Q(R(), k — j, 9r)}
where g1, gr range over all possible extensions of g, as described below. If a child node L(i)
is a marked node, then there are two possible ways to extend the list ¢ into a list g, (by
adding a label for Vi(;)), and the optimum Q(¢, k, g) is achieved by taking the one which is
better. If a child node L(7) is not a marked node, then the only extension is g, = g, because
i and L(7) have the same marked ancestors. The possible extensions of the child node R(7)

34

are similar. It follows that each table entry of a nonleaf node ¢ can be computed from table
entries of its children L(), R(7) in time O(|V;|) = O(n).

To fill all the table entries, start from the entries that correspond to leaf nodes ¢ and
go upwards the decomposition tree 7. In particular, the entries Q(iyo0t, /2, ¢g) will be
computed for the root node 7,,,;. At the root node, the guess list g contains the label of the
root, and thus has only two possible values. (In fact, the two entries must be the same due
to symmetry.) The combining stage outputs ming Q (%o, /2, g), which by definition, is the
minimum charge of all bisections of the input graph with respect to any labelings from F,
as desired. A bisection that achieves this minimum charge can also be computed. Simply
go over the table entries in the reversed order of computation, and recover at each entry the
values of j, g1, gr that gave the optimum. Alternatively, associate with each entry Q(i, k, g)
a set of k vertices of V; which is optimal for it, and its corresponding labels.

Lemma 2.15. The combining stage finds in polynomial time a bisection of the input graph
G and a labeling from the family F, so that the charge of the bisection with respect to the
labeling is minimal over all such bisection-labeling pairs.

Proof. The above discussion shows that the algorithm correctly computes every entry Q(i, k, g),
and a bisection-labeling pair as desired.

The size of the table @ is polynomial in n. Indeed, there are only O(n) tree nodes i.
For each tree node i, the range of k contains O(|V;|) = O(n) possible values. In addition,
at each tree node i the guess list g contains labels of at most O(logn) ancestor nodes, and
thus ¢g assumes polynomially many values. The polynomial bound on the size of the table)
follows.

An entry for a leaf nodes 7 is computed efficiently. An entry for a nonleaf node is
efficiently computed from previously computed entries. By the upper bound on the table
size we conclude that all the table entries are computed in polynomial time, and in particular

Q(irootan/2ag)-]

Corollary 2.16. The combining stage finds bisection of the input graph (and a labeling of
T) such that bisection charge (with respect to the labeling) is at most b(1 + O(plogn)).

Proof. By Lemma 2.15 and Corollary 2.13 there exists a bisection of G and a labeling of F
such that the bisection charge with respect to the labeling is at most b(1 + O(plogn)). The
proof then follows by applying Lemma 2.10. U

This corollary completes the proof of Theorem 2.5, since by Lemma 2.11 the charge of a
bisection is an upper bound on its actual cost.

2.5 Extensions

Our results extend to several variants (and generalizations) of the minimum bisection prob-
lem, including the case of edges with arbitrary nonnegative costs (Section 2.5.1), the case of
vertices with polynomially bounded nonnegative integer weights (Section 2.5.2), the variant
that requires, in addition, to separate a given pair of vertices s and ¢ (Section 2.5.3), the
case of cutting away from the graph an arbitrary number of vertices (instead of n/2) that

35

is given as part of the input (Section 2.5.4), the case of cutting the input graph into a fixed
number of equal-size parts (Section 2.5.5), and the case of finding a 2/3-balanced cut whose
cost is small relative to the minimum bisection cost b (Section 2.5.6).

In what follows, the basic bisection problem refers to the minimum bisection problem
that was defined in Section 2.1. In contrast, the extended bisection problems refer to the
variants of the problem specified above. We discuss each extended problem separately, but
it is straightforward to combine together several extensions (e.g. to allow both edge costs
and vertex weights as described above, and require that the total weight of the vertices cut
away is a number k that is given in the input).

We consider two approaches for extending our approximation algorithm from the basic
bisection problem to an extended problem. One approach is to reduce the extended problem
to the basic one. Another approach is to modify the algorithm that we devised for the
basic bisection problem so that it handles also the extended variant. As we discuss below,
each approach has its own advantages and so it is valuable to show both approaches for each
extended problem. We indeed show that for almost all the extended problems specified above
both approaches can be applied, although for a few problems we provide only a modified
algorithm.

A major advantage of the reduction approach is that it is self contained and not restricted
to the particular algorithm that we devise, so future improvement in the approximation ratio
for the basic problem may lead to an immediate improvement also for the extended problem.
Most of our reductions transform an approximation ratio f(n) for the basic problem into an
approximation ratio f (no(l)) for the extended problem (because they increase the number
of vertices n by a polynomial), and so for the current approximation ratio f(n), which
is polylogarithmic, these reductions increase the approximation ratio by at most a constant
factor. The techniques used in our reductions are similar to those devised in [BJ92, BCLS87]
for the (different) purpose of proving NP-hardness results.

The advantages of the algorithm modification approach are that it preserves aspects that
are specific to our algorithm, such as an improved O(logn) approximation ratio for planar
graphs, and that it is usually more efficient (and therefore practical) than the reduction
approach. A drawback of the algorithm modification approach is that it requires to go
again through the algorithm’s analysis. In particular, we might be required to verify that
the approximate min-ratio cut algorithm (that we use as a black-box) can be extended
accordingly. However, the necessary changes in the algorithm and its proof are usually
straightforward.

2.5.1 Edge costs

Suppose that the edges of the input graph G have arbitrary nonnegative costs, and that the
cost of a bisection is the total cost (i.e. sum of the costs) of its edges, and we wish to find a
bisection of G of (approximately) minimum cost.

Reduction. We reduce the extended problem of bisection with edge costs (described
above) to the basic bisection problem, as follows. Given a graph G with edge costs as an
input, we first guess the most costly edge in a minimum cost bisection of GG, by exhaustively

36

trying all O(n?) edges in the input graph. By scaling all edge costs, we can assume, without
loss of generality, that the cost of the guessed edge is n?. It follows that the cost b of the
optimum bisection is at least n? but smaller than n*. We then round down all edge costs to
their closest integer, which can decrease the cost of any bisection by at most (g) < b/2 and

therefore by a factor of at most 2. We next change to n® every edge cost that is larger than
n°, which does not affect the cost of nearly optimal bisections (i.e. whose original cost was
within ratio of roughly n from the minimum). Finally, we replace each vertex of the graph
by a clique of size n®, and each edge (u,v) of cost ¢ by ¢ unit cost edges placed arbitrarily
between the clique of v and the clique of v (since ¢ < n'® we can do that with no parallel
edges).

The bisection of minimum cost b in G corresponds to a bisection of cost O(b) in the
resulting graph. Hence, applying our algorithm for the basic problem on the resulting graph
(which has nS vertices) yields a bisection whose cost is O(b(logn®)?) = O(blog®n). This
bisection cannot split any of the cliques that we created, as otherwise its cost will be at least
n® —1>> blog®n, and it therefore must correspond to a bisection of G, whose cost is roughly
the same, namely O(blog®n), as required.

Modified algorithm. We modify our algorithm for the basic bisection problem so that
it handles the extended problem with edge costs, as follows. Rather than considering the
number of edges we always consider their cost, e.g. e(V, V) denotes the sum of the costs
of the edges with one endpoint in V; and one endpoint in V5. The corresponding changes in
our algorithm and analysis are straightforward. Note that the amortized cut algorithm (see
Fig. 2.4) requires (in step 1) a subroutine that computes an approximate min-ratio cut with
respect to the edge costs, but known algorithms (e.g. due to [LR99]) provide this subroutine.
Note also this algorithm’s binary search (step 3) takes O(M logn) iterations, where M is
the number of bits used to represent an edge cost, and so the running time is polynomial in
the input size. The resulting approximation ratio is the same as for the basic problem, i.e.

O(log® n).

2.5.2 Polynomial vertex weights

Suppose that the vertices of the input graph G' have nonnegative integer weights that are
bounded by a polynomial n¢ (where n is the number of vertices in), and let a bisection be
a cut that separates half of the total weight (i.e. sum of the weights) of the vertices of V.
We wish to find a bisection of G of (approximately) minimum cost. Note that if the weights
are allowed to be exponential in n, finding any bisection of the graph is equivalent to the
partition (or subset-sum) problem, and therefore NP-hard.

Reduction. We reduce the extended problem of bisection with vertex weights (described
above) to the basic bisection problem, as follows. Given a graph G with vertex weights as
an input, we replace each vertex of cost w in G by a clique of max{1,w - n®} unit weight
vertices, and replace each edge (u,v) in G by one edge placed arbitrarily between the clique
of v and the clique of v. In addition, for each vertex of weight 0 in G’ we place in the graph
a new isolated vertex of unit weight.

37

A bisection of minimum cost b in G corresponds to a bisection of the same cost b in the
resulting graph. Hence, applying our algorithm for the basic problem on the resulting graph
(which has at most nt* vertices) yields a bisection whose cost is O(b(c + 4)?log*n). This
bisection cannot split any of the cliques that we created, as otherwise its cost will be at least
n®—1> b-(c+4)?log” n. Furthermore, the vertices of the created cliques of size at least n?
must be partitioned evenly by this bisection, as otherwise their partition deviates from an
even one by at least n® (these clique sizes are multiples of n) which is much more than the
total number of remaining vertices, 2n? (recall that we added isolated vertices for vertices
of weight 0 in G). The computed bisection of the resulting graph therefore corresponds to a
bisection of G, whose cost is the same, namely O(b(c + 3)?log®n), as required.

Modified algorithm. We modify our algorithm for the basic bisection problem so that it
handles the extended problem with vertex weights, as follows. Rather than considering the
number of vertices in a part we always consider their total weight, e.g. r(S) denotes the cost
of the cut (S, V'\S) divided by the minimum between the weight of S and the weight of V'\ S.
The corresponding changes in our algorithm and analysis are straightforward. Note that the
amortized cut algorithm (see Fig. 2.4) requires (in step 1) a subroutine that computes an
approximate min-ratio cut with respect to the vertex weights, but known algorithms (e.g.
due to [LR99]) provide this subroutine. Note also that in this algorithm’s related graph G’
(step 2) the capacity of an edge between a vertex v € Vi and the new vertex s is p times

the weight of v;. The resulting approximation ratio is the same as for the basic problem, i.e.
O(log* n).

2.5.3 Separating two vertices from each other (s —t cut)

Suppose that the input graph G contains two special vertices s and ¢, and we wish to find a
bisection that separates s from ¢ and has minimum cost. (Note that the converse restriction,
namely that s,¢ will not be separated, is equivalent to merging them into one vertex of
weight 2, and therefore follows from Section 2.5.2).

Reduction. We reduce the extended problem of a bisection that separates s from ¢ to the
extended problem of bisection with vertex weights (described in Section 2.5.2), as follows.
Given an input graph G with special vertices s, t as above, we let the vertices s, ¢t have weights
n and let all other vertices of G have weight 1. The total weight of s and ¢ together is 2n,
while the total weight of all other vertices is n — 2 (and thus smaller), so every bisection of
the resulting graph must separate s from ¢. It follows that every bisection of the resulting
graph corresponds to a bisection of GG that separates s from ¢ and has the same cost, and
vice versa. We can therefore find a bisection of G' that separates s from ¢ and its cost is
within O(log? n) from the minimum.

Modified algorithm. We modify our algorithm for the basic bisection problem so that it
handles the extended problem of a bisection that separates s from ¢, as follows. We change the
dynamic programming table () of the combining stage, so that every entry Q(i, k, g) contains
two solutions (if they exist); one solution with the & chosen vertices containing s but not ¢,

38

and the other solution with the k chosen vertices not containing any of s and ¢. Computing
the table entries is straightforward, and the output of the algorithm is ming Q(7,00t, 7/2, 9),
where the minimum is taken only over solutions that contain s and not . The necessary
changes in our analysis are straightforward. The resulting approximation ratio is the same
as for the basic problem, i.e. O(log®n).

2.5.4 Cutting an arbitrary given number of vertices

Suppose that the input consists of a graph G and a number £, and we wish to find a minimum
cost cut that separates exactly k vertices.

Reduction. We reduce the problem of cutting away a given number k of vertices to the
problem of bisection with vertex weights (described in Section 2.5.2), as follows. Given an
input graph G and a number k (assume, without loss of generality, that £ < n/2), we let
the vertices of G’ have weight 1, and add to the graph an isolated vertex of weight n — 2k. It
is clear that every bisection of the resulting graph corresponds to a cut of G' that separates
k vertices and has the same cost, and vice versa. We can therefore find a cut of G that
separates k vertices and its cost is within O(log®n) from the minimum.

Modified algorithm. We modify our algorithm for the basic bisection problem so that
it handles the extended problem of cutting a given number of vertices, as follows. The
only change in the algorithm is in the combining stage, that now outputs ming Q(%re0t, £, 9),
where @) is the dynamic programming table (see Section 2.4.4). The necessary changes in
our analysis are straightforward. The resulting approximation ratio is the same as for the
basic problem, i.e. O(log”n).

2.5.5 Cutting into a fixed number of parts

Suppose that we wish to find a cut that separates the input graph G into a fixed number p
of parts of equal size.

We do not know of a reduction from this extended problem to the basic bisection problem.
A recursive bisection approach has a poor performance in general, although it may be useful
in some special cases and if some requirements are relaxed, see [ST97] and the references
therein.

Modified algorithm. We modify our algorithm for the basic bisection problem so that it
handles the problem of cutting the graph into p parts of equal size, as follows. The cost of
a cut that partitions V into p parts V1, ..., V?is

doe(V,vh = %Ze(vf,v \ V).

Jj<li J

Therefore, by scaling the value of every possible solution by a factor of 2 (which clearly
does not affect any approximation ratio issues), we obtain that the objective function of

39

the extended problem has the convenient form Y, e(V7, V' \ V7). Observe that each cut
(V7,V \ V7) corresponds to separating V7 from the other parts, which are grouped into
one part V' \ V7. Thus, each summand e(V7,V \ V7) in the objective function is similar
to the basic bisection problem (with the minor exception that the two sides are not of the
equal sizes). Below we describe the modifications to the three stages of the algorithm, which
works simultaneously on all p cuts (V7,V \ V7). Its analysis is based on applying the new
accounting method of Section 2.2 separately to each of these p cuts.

The decomposition stage computes a decomposition tree 1" exactly as in the algorithm
for the basic problem (see Section 2.4.1). Observe that the amortized cut notion does not
depend on the cut that we seek, and so the obtained decomposition (and its tree T') can be
used for all cuts (V7, V' \ V7).

We extend the notion of a labeling of the decomposition tree, as follows. An extended
labeling of T" assigns to every tree node a vector of p “basic” labels, one label for each cut
(VI,V\ V7). An extended labeling corresponds to deciding at each tree node i and for each
4, which of V7 and V' \ V7 is considered charged (and which is considered free) in the part
V;. Note that an extended labeling can be viewed as a vector, whose coordinate j forms a
basic labelings for (V7 V' \ V7).

The labeling stage marks some nodes of the tree T exactly as in the algorithm for the
basic problem (see Section 2.4.2). This stage implicitly defines a family F that consists of all
extended labelings in which every unmarked node has the same label as its closest marked
ancestor (there is no restriction on the labels of the marked nodes). It is straightforward
that F contains at least one extended labeling, for which every coordinate j (forms a basic
labeling that) is a-consistent with the cut (VZ,V \ V7). We can restrict the number of
possible labels at the marked (and hence also unmarked) nodes from 27 to p + 1 values, as
follows. Similar to the proof of Lemma 2.10 it is sufficient for our purposes that F contains
the labeling where V7 is considered free at a marked node i if more than half the vertices of
the part V; are from V7. At any part Vj, the latter can happen for at most one value of j,
and so it suffices to consider only labelings where at most one V7 is free.

We extend the notion of a charge of a vertex, as follows. The extended charge of a vertex
v with respect to an extended labeling is the sum of the basic charges of v with respect to
each of the p coordinates of this extended labeling.

The combining stage uses dynamic programming on a table), whose entries are of the
form Q(i, k,g), as follows. i is a tree node. k = (ki,...,k,), where k; is the desired size
of the jth part and >°; k; = |Vi|. § = (g1,...,9p) Where g; is a guess list that contains the
jth label of every marked ancestor of i. An entry (i, k,q) contains the optimal solution
to the following problem: Choose a partition of V; into subsets with sizes according to #,
and choose a labeling from F that agrees with g, so that the sum of the extended charges
of all the vertices of V; with respect to the chosen labeling, is minimal over all such choices.
Note that this problem requires some correlation between p cuts, and therefore Q(i, k,7) is
generally not equal to 3-; Q(i, kj, g;) (where @ is the basic table).

The rules for computing the entries of the table @) are a straightforward extension of
those for the table @ (see Section 2.4.4). The algorithm computes all the table entries and
then outputs ming Q (4,0, k, g) Where k = (n/p,...,n/p).

The running time of this modified algorithm is polynomial in n (for fixed p). Indeed,

40

the decomposition stage and the labeling stage are exactly as in the algorithm for the basic
bisection problem, so let us consider the dynamic programming table @) of the combining
stage. The number of tree nodes i is O(n), and the range of k contains at most n? possible
values. The vector g contains one of p + 1 possible values for each of the O(logn) marked
ancestors (of the relevant tree node i), so g assumes one of n®1°8?) values. It follows that
the size of the table Q is n?*°1°8P) Each table entry is computed efficiently from previously
computed entries, and hence the combining stage takes polynomial time.

To analyze the approximation ratio, let V1, ..., V? be the optimal partition of the input
graph into p parts of equal size. Recall that the extended charge of a vertex is the sum of its
basic charges with respect to each cut (V7,V'\ V7), and we can therefore apply the analysis
of the basic algorithm for each cut (V7 V \ V7) separately. It follows that the output value
is guaranteed to be at most O(log”n) - 3, e(V7,V '\ V7). Furthermore, one can obtain from
the table @ a cut (into p parts of equal size) whose cost is at most (half) this value, i.e.
within a ratio of O(log”n) from the minimum.

2.5.6 Bicriteria approximation and balanced cuts

Suppose that we wish to find a 2/3-balanced cut (recall that a cut is called S-balanced if
it partitions the graph into two parts, each of size at most n) whose cost is guaranteed
to be small relative to the minimum cost b of a bisection (i.e. a 1/2-balanced cut). Here,
the minimum bisection problem is relaxed in two respects, as the solution cut is allowed
to have cost larger than b and also to deviate from the cardinality constraints (for its two
sides). Algorithms for such problems are sometimes referred to as bicriteria approximation
and sometimes as pseudo-approximation.

Known bicriteria approximation algorithms find a 2/3-balanced cut whose cost is at most
O(blogn). Leighton and Rao [LR88, LR99] show how an algorithm that finds a 7 approxi-
mate min-ratio cut can be used to find a 2/3-balanced cut of cost O(br); the approximation
ratio 7 = O(logn) that they achieve is the best currently known, see also [Shm97]. Even,
Naor, Rao and Schieber [ENRS97] devise a different algorithm that also finds a 2/3-balanced
cut of cost O(blogn).

We show below that amortized cuts can be used to obtain also bicriteria approximation
algorithms (in addition to approximation algorithms) for minimum bisection. In fact, our
algorithm is similar to the one of [LR88, LR99], except that we use amortized cuts instead
of approximate min-ratio cuts.

Lemma 2.17. An algorithm that finds a p-amortized cut can be used to find a 2/3-balanced
cut of cost b(1 + O(p)).

Proof. Given an input graph G(V, E') on n vertices, use the algorithm that finds a p-amortized
cut, as follows. Repeatedly find (in the graph) a p-amortized cut and remove (from the graph)
the smaller of its two sides, until the graph contains no more than 2n/3 vertices. Denoting
by S the set of vertices that remain in the graph after the last iteration, output the cut
(S, V\S9).

It is straightforward to see that n/3 < |S| < 2n/3, and hence the output cut (S,V \ 5)
is a 2/3-balanced cut. We prove below that the total cost of all edges cut by the amortized

41

cuts (throughout the iterations) is at most b(1 + O(p)). It would then follow immediately
that e(S,V \ S) < b(1+ O(p)), as required.

We now upper bound the total cost of all edges cut in the amortized cuts. Let (W, B)
be a fixed optimal bisection of cost b, and call the vertices of W white, and the vertices of
B black. The total cost of white-black edges cut is clearly at most b. We show below that
the total cost of all white-white edges cut is O(bp). By the symmetry between W and B,
we will then have a similar upper bound on the total cost of the black-black edges cut, and
obtain the desired upper bound of b(1 4+ O(p)) on the total cost of all edges cut.

To show that the total cost of white-white edges cut in the amortized cuts is O(bp), we
consider the white vertices W as charged in all the amortized cuts, and then white-white
edges are charged-charged edges. The algorithm applies a p-amortized cut in parts of G that
contain at least 2n/3 vertices. At least n/2 —n/3 = n/6 of the vertices in such a part are
black, while at most n/2 of them are white, and hence at most 3/4 of the vertices in this
part are considered charged. Taking a constant « > 3/4 in the definition of an amortized
cut, we have that the cost of the charged-charged edges cut can be amortized in one of two
amortization methods (see Section 2.2).

In one amortization method the cost of the charged-charged edges cut is amortized against
charged-free edges in the smaller side of the cut, with amortized cost at most p. Observe
that an edge can be in the smaller side of the amortized cut (the side that is removed) in at
most one iteration, so the total cost amortized in this method (in all the iterations) against
one charged-free edge is at most p. Hence, the total cost amortized in this method (in all
the iterations) is at most bp.

In the other amortization method the cost of the charged-charged edges cut is amortized
against charged-free edges in the part being divided, with amortized cost at most p|C|/|C]|,
where C' denotes the charged vertices in the part being divided and C; denotes the charged
vertices in the smaller side of the cut. The total cost amortized in this method (in all
the iterations) against one charged-free edge is then upper bounded by p times the sum of
|C1|/|C| over all iterations. Recall that the charged vertices are the white vertices, and so
|C'| > n/6 in all amortized cuts (i.e. iterations). Furthermore, each vertex is in the smaller
side of the cut (the side that is removed) in at most one iteration, and so the sum of |C|]
over all iterations is at most n/2. It follows that the total cost amortized in this method
(in all the iterations) against one charged-free edge is at most 3p, and hence the total cost
amortized in this method is at most b - 3p.

We conclude that the total cost of all charged-charged (i.e. white-white) edges cut in all
the iterations is at most b-4p. As described above, this proves that the total cost of all edges
cut in all the iterations is at most b(1 + 8p) = b(1 + O(p)), and the lemma follows. O

We remark that a 2/3-balanced cut of cost b(1 + O(p)) can be found also by modifying
the algorithm we devised for the basic bisection problem so that its combining stage outputs
ming ,/3<k<n/2 @ (iroot> k, g) (and its corresponding cut). Indeed, the proof of Lemma 2.17
shows a 2/3-balanced cut whose charge (with respect to a certain labeling in F) is at most

b(1+ O(p)). Details omitted.

42

2.6 Cutting a few vertices from a graph

In this section we present a randomized algorithm for approximating the minimum (k, n — k)
cut problem when £ is relatively small. In particular, we prove Theorem 2.3 by showing that
for an arbitrary fixed € > 0, the algorithm finds, with high probability, a (k,n — k) cut whose
cost is at most (1 + ek/Inn)b,. The algorithm appears in Section 2.6.1. Some extensions of
this algorithm are described in Section 2.6.2.

Techniques. Our algorithm utilizes random edge contraction and dynamic programming.
Random edge contraction was introduced by Karger and Stein [KKS96] to devise efficient
algorithms for the minimum cut problem. Each iteration of their algorithm selects an edge
at random and merges its endpoints, so as to form clusters of vertices. If no edge of a fixed
minimum cut (S, V '\ S) is ever contracted, then every cluster is contained entirely either in
S orin V' \ S. When only two clusters remain, they correspond to the fixed minimum cut.
It can be shown that there is a noticeable probability that no edge of the fixed minimum cut
is ever contracted, and then the algorithm succeeds.

Our algorithm also applies random edge contractions iteratively, but instead of requiring
that only two clusters remain, we stop at an earlier point, in which we are guaranteed that
dynamic programming will find a nearly minimum (k,n — k) cut. The algorithm actually
does not know the “right” stopping point, and therefore tries all possible stopping points
(taking the best solution).

2.6.1 A randomized algorithm

Our algorithm for finding a (k,n — k) cut (of nearly minimum cost) uses the random edge
contraction technique of Karger and Stein [KS96]. It consists of repeating the following
algorithm CONTRACT sufficiently many times in order to amplify its success probability.

Algorithm CONTRACT works in iterations, where each iteration consists of (i) a random
edge contraction stage followed by (ii) a combining stage that computes a cut of the graph
that corresponds to a (k,n — k) cut of the input graph. (Both stages are described below).
The algorithm proceeds with the iterations until there are no edges in the graph (to contract)
and then it outputs a cut of minimum cost among all (k,n — k) cuts found throughout the
iterations (if any).

Let us now describe in more detail the two stages that form an iteration of algorithm
CoONTRACT. A schematic description of the algorithm appears in Figure 2.7.

In the contraction stage we choose an edge uniformly at random and contract it by
merging its two endpoints. If as a result there are several edges between some pairs of
(newly formed) vertices (i.e. parallel edges), we retain them all. Edges between vertices that
were merged are removed, so that there are never any self-loops.

We refer to the vertices of the formed graph as clusters. Each cluster is a set of vertices
(of the input graph) merged together. Note that the edges inside a cluster are removed from
the graph. The size of a cluster is the number of vertices in it, and its degree is the number
of edges leaving the cluster.

43

In the combining stage we find in the graph (of the current iteration) a set of clusters
whose total size is exactly &, and for which the sum of cluster degrees is minimal. Note that
any set of clusters, and in particular the one that we find, corresponds to a (k,n — k) cut (of
the input graph) whose cost is no more than the sum of degrees of these cluster.

It is straightforward to see that the combining stage can be implemented in polynomial
time using dynamic programming, see e.g. [CLR90, Chapter 16].

Algorithm CONTRACT.
Input: Graph on n vertices and a number k.
Output: (k,n — k) cut in the graph.

1. While the graph contains edges, do

1.1. edge contraction stage;

1.2. combining stage to find a (k,n—k) cut.

2. Output the cut of minimum cost among the
cuts found in step 1.2 (if any).

Figure 2.7: Algorithm for finding a (k,n — k) cut

Lemma 2.18. The running time of algorithm CONTRACT s polynomial in n.

Proof. Each edge contraction decreases the number of vertices by 1, and thus the number of
iterations is bounded by n. Each iteration takes a polynomial time and the proof follows. [

We analyze the success probability of the algorithm based on the following desired sce-
nario. Suppose that the edges chosen to be contracted do not belong to a fixed optimum cut
(S,V'\S), i.e. these edges are either inside S or inside V' \ S, until at some point the edges
inside S (that remain in the graph) have a small cost relative to the cost of the optimum
cut. At this point, it can be seen that the combining stage must find a (k,n — k) cut (of the
input graph) whose cost is nearly optimal.

Lemma 2.19. For every (not necessarily fived) p > 0, algorithm CONTRACT outputs a
(k,n — k) cut whose cost is at most (1 + pk)by, with probability at least e~/

Proof. For the analysis, fix one cut (S,V '\ S) with |S| = k whose cost by is minimum. Note
that algorithm CONTRACT is not aware of this cut.

Consider a run of the algorithm, and let A; (for 0 < ¢ < n) be the event that the graph
G resulting from the first ¢ contractions satisfies the following two conditions:

(a) The total cost of edges of G; with both endpoints in S is at most pkby/2.
(b) No cluster of G; contains vertices both from S and from V'\ S.

Equivalently,

44

(b’) None of the first ¢ contracted edges belongs to the optimum cut (S,V \ 5).

We claim that if the event A = U;A; happens then the algorithm succeeds, i.e. finds a
(k,n — k) cut of cost at most (1 + pk)bg. Indeed, assume that the event A; happens and
consider the combining stage of iteration ¢, which is performed on G;. (From (b) we have
that every cluster in G is either a subset of S or a subset of V'\ S. Therefore, the clusters
contained in S have together all the vertices of S, and thus their total weight is k. ;From (a) it
follows that the sum of degrees of these clusters (in Gy) is at most by +2 (kb /2) = b (14 pk).
The combining stage of iteration ¢ will therefore find a set of clusters of total weight k& and
whose sum of cluster degrees is no larger, which gives a (k,n — k) cut (of the input graph),
with cost at most by (1 + uk).

We next lower bound the probability of the event A. Let us say that an iteration is
successful if the edge chosen to be contracted is inside S, a ruin if it is from the optimum
cut (S,V '\ S), and wvoid if it is inside V' \ S. By (a) and (b’), the event A is equivalent to
saying that the cost of edges inside S reduces to pkbg/2 or less before any ruin iteration
occurs. In this sense, the event A is affected by the successful and ruin iterations, but not by
the void iterations. In other words, we need to compute the probability that an iterations is
successful conditioned on the iteration not being void. As long as the cost of edges inside S,
denoted |Eg|, is more than kb /2, the conditioned probability for a successful iteration is

B (o) > ()
BT) s (e —) .
| Es| + bk |Es|) 11k /2

For the event A to happen we need that the first £ — 1 or less iterations that are not void
will all be successful, and thus

P> (14 L) et s o
[pk .
r[A] > |1+)2 >e >e

The probability that the algorithm outputs a (k,n — k) cut of cost at most by (1 + pk) is
at least Pr[A] > e ?/#, as claimed. O

For example, taking ;1 = €¢/Inn for a fixed € > 0 we obtain the following.

Corollary 2.20. For every fized € > 0, with probability at least n=%/¢, algorithm CONTRACT
outputs a (k,n — k) cut whose cost is at most (1 + ek /Inn)by.

We can amplify the above success probability by repeating algorithm CONTRACT poly-
nomially many (roughly n%€) times and taking from all the repetitions the cut of minimum
cost. We then obtain Theorem 2.3.

2.6.2 Extensions

Edge costs. Suppose that the edges of the input graph have arbitrary nonnegative costs,
and let the cost of a cut be the total cost (i.e. sum of the costs) of its edges.

Our results for approximating the minimum (k,n — k) cut extend to this case of edge
costs. The algorithm should be modified so that that the probability of choosing an edge
(for contraction) is proportional to its cost, and that the degree of a cluster is the cost of
the edges leaving the cluster. The proof follows.

45

s—t cuts. Suppose that the graph contains two special vertices s, ¢ that must be separated,
i.e. we wish to find a minimum cost cut (S,V '\ S) with |S| =k, s€ Sandt € V' \ S.

Unlike the minimum cut algorithm of Karger and Stein [KS96] that does not extend to
s —t cuts (see e.g. [MR95, Problem 1.8]), our approximation ratio does extend to this s — ¢
cut variant of the problem. The proof follows by modifying the combining stage to consider
only clusters that do not contain ¢ and such that at least one of them contains s.

Vertex weights. Suppose that the vertices of G have nonnegative integer weights. A
w-cut cuts away vertices of total weight w, i.e. it is a cut (S,V \ S) for which the sum of
weights of S is w. Let b, be the minimum cost of a w-cut.

We consider the problem of finding a nearly optimal w-cut, i.e. whose cost approximates
b,. We assume that the vertex weights are bounded by a polynomial in n, since for expo-
nential vertex weights it is NP-hard to decide whether G' contains a w-cut (as this is simply
the subset-sum problem).

Let by, be the minimum cost of a cut that cuts away k € {1,...,n — 1} vertices of total
weight w (and oo if no such cut exists). Modifying the combining stage to find a w-cut
(using dynamic programming), it is straightforward to extend the proof of Lemma 2.19 and
show that if b, is finite then with probability at least e 2/* algorithm CONTRACT finds a
cut of cost at most (1 + pk)b, k. By taking sufficiently many repetitions with u = €/logn
for a fixed € > 0, we conclude that one can find in polynomial time a w-cut whose cost is at
most ming{(1 + ek/logn)b, } with high probability. Note that the minimum in the latter
bound is not necessarily obtained at a value of k for which by, ; = b,,.

2.7 Concluding remarks.

Designing an algorithm that finds a cut of amortized cost better than O(logn) remains
an important open question. An efficient algorithm that accomplishes that will not only
improve the approximation ratio for minimum bisection (by Theorem 2.5), but also the
bicriteria approximation ratio for minimum bisection (by Lemma 2.17), which will lead, in
turn, to improved approximation ratios for many other problems, see [LR99, Section 3].

Finding a cut whose amortized cost is better than O(logn) is, in a sense, no harder (and
possibly easier) than approximating min-ratio cuts within a ratio better than O(logn), as the
former problem is reducible (by Theorem 2.4) to the latter. Furthermore, an O(1)-amortized
cut always exists (by Corollary 2.7), and we know of no hardness result for the problem of
finding such a cut.

46

Chapter 3

Heuristics for maximum clique®

3.1 Introduction

Let G(V, E) be a graph on n vertices. A clique in G is a subset of the vertices every two of
which are connected by an edge. The mazimum clique problem requires to find a clique of
maximum size in an input graph G. The clique number of G denoted w(G), is the maximum
size of a clique in G.

An independent set (a.k.a. stable set) in G is a subset of the vertices no two of which are
connected by an edge. The mazrimum independent set problem requires to find an indepen-
dent set of maximum size in an input graph G. The independence number (a.k.a. stability
number) of G denoted «(G), is the maximum size of an independent set in G. It is straight-
forward that a clique in G forms an independent set in the edge complement graph G, so
w(G@) = a(G). Tt follows that the maximum clique problem and the maximum independent
set, problem are equivalent in many respects, including in our context. For consistency with
the related literature, we refer to one problem in some parts and to the other problem in
others.

The maximum clique problem is fundamental in the area of combinatorial optimization,
and is closely related, in addition to the maximum independent set problem, also to the
vertex cover problem (the vertex complement of an independent set) and the chromatic
number problem (minimum cover by independent sets). The maximum clique problem (or
even finding w(G)) is one of the first problems shown to be NP-hard [Kar72].

A common way to cope with NP-hardness of a problem is to devise algorithms that give
approximate solutions. An efficient (i.e. polynomial time) algorithm is said to have an
approximation ratio v > 1 for the maximum clique problem if for every input graph, the
ratio between w(G) and the size of the clique returned by the algorithm is at most r = r(n).
It is known through work culminating in [Has99] that for any fixed € > 0 it is impossible
to approximate the clique number w(G) within a ratio of n'~¢, unless NP has randomized
polynomial time algorithms (NP=ZPP). The best approximation algorithm that is known
for w(@), due to [BH92], has approximation ratio O(n/log®n).

The intractability of the maximum independent set problem in the worst case suggests

*This chapter is based on [FK00a] and on [FKO01b].

47

studying the performance of algorithms on average instances. A possible rigorous description
of average instances is by probabilistic models, see e.g. the survey [FM97] on average-case
analysis of several graph algorithms on random graphs.

The problem of finding a maximum clique on a random graph appears to be difficult.
Let G172 denote the random graph of n labeled vertices obtained by choosing, randomly
and independently, each pair of vertices to be an edge with probability 1/2. It is known
that the clique number of G,, 1/, is roughly 2log, n, almost surely, i.e. with probability that
approaches 1 as n tends to infinity. Several simple and natural algorithms (e.g. the greedy
one) find a clique of size roughly log, n, almost surely. However, no algorithm is known to
find efficiently an independent set of size significantly larger than log, n, see [Kar76]. Finding
cliques of size % log, n in random graphs was even suggested as a hard computational problem
on which to base cryptographic applications, see [JP00].

The hidden clique problem. Jerrum [Jer92] and Kucera [Kuc95] suggested indepen-
dently the following hidden clique problem. A random graph G, /2 is chosen and then a
clique of size k is randomly placed in the graph and we wish to find in this graph, denoted
Gn1/2,k, @ maximum clique. Jerrum showed that the Metropolis process will not find the
clique when £ = o(y/n). Kucera observed that when k > ¢y/nlogn for an appropriate con-
stant ¢, the vertices of the planted clique would almost surely be the ones with the largest
degrees in GG, and hence it is easy to recognize them efficiently. Alon, Krivelevich and Su-
dakov [AKS98] showed an algorithm that almost surely finds the planted clique whenever
k > Q(y/n). Their algorithm is based on spectral properties of the graph, namely, it uses
the eigenvector that corresponds to the second largest eigenvalue of the adjacency matrix of
the graph.

Performance guarantees for heuristics. A major motivation for studying various prob-
abilistic input models in general is to evaluate algorithms performance in real-life applica-
tions. It would be encouraging if we could rigorously show that really difficult instances are
very rare, and we are more likely to encounter in practice a “solvable” instance. However, it
is difficult to establish a connection between probabilistic input models and instances that
occur in practice. For example, random graph models are usually highly regular (all vertices
are of roughly the same degree). While most graphs indeed have this property, real-life
instances not necessarily do. It is therefore desirable to have an algorithm which is effective
on a wider range of instances.

One approach to enrich the class of solvable instances is to consider a semi-random model,
in which the input is generated by a mixture of random and adversarial choices. Blum
and Spencer [BS95] introduced two variants of the semi-random model. In one variant, an
adversary makes its choices for the graph edges, but each of these choices is flipped with
some small probability (“noise”). In the other variant, a random graph is chosen first, and
then an adversary can modify this graph subject to some restrictions. This last variant of
the semi-random model was formalized by Feige and Kilian [FKO0la] as a sandwich model.
First, two instances G, and Gay, both containing the same planted clique of size k, are
generated using random decisions. Then, an adversary is allowed to choose any graph G*
which is sandwiched in between, i.e. Gin € G* C Ghax, where inclusion is with respect to

48

edges.

The algorithm of Feige and Kilian [FKO0la| finds a clique of linear size (k = (n)), in
the following sandwich setting. G, is the empty graph except a clique of size k. Gax
is the complete graph except for roughly nlogn random missing edges chosen from those
edges connecting the (same) clique and the rest of the graph. An adversary then chooses
Guin € G* C Gax, and thus has complete control over the edges which are not adjacent to
the clique vertices, and large control over the edges connecting the clique to the rest of the
graph. The algorithm of [FKOla] uses semidefinite programming and matchings techniques
and finds, almost surely, a clique of £ vertices in the graph.

Since average-case algorithms do not have an a priori guarantee on their performance,
it is important to certify that the algorithm is indeed successful on the particular instance
at hand. Boppana [Bop87] shows an algorithm with such a certification property for the
minimum bisection problem (see also [FK0la]). The algorithm outputs a bisection together
with a lower bound on the size of the optimal bisection. The analysis shows that the output
bisection and lower bound are equal, almost surely, in which case the algorithm proves the
optimality of its output bisection.

We present an algorithm for finding a clique of size k& > Q(y/n) planted in a random
graph G, ;2. Our algorithm improves over the algorithm of [AKS98] in two respects:

1. Extends to a semi-random model, where an adversary may remove edges from Gy 1/2x
(the graph of [AKS98]), except for the edges forming the planted clique of size k. In
the sandwich model terminology, let G = Gy 12, be the graph of [AKS98], and let
G min be the empty graph except the same clique of size k. Then our algorithm finds a
clique of size k in an arbitrary graph G* sandwiched in between G;;, and G .y, almost
surely over the distribution of G, and Ghax. Observe that in this sandwich model,
the vertices of the clique will not necessarily have higher degree, even if k£ > /nlogn,
so also the algorithm of Kucera would not work in this model.

2. Certifies optimality of its solution. Using a semidefinite programming relaxation of the
clique problem, the algorithm provides an upper bound on the size of the maximum
clique in the graph. The upper bound matches, almost surely, the solution of the
algorithm, proving that the clique output by the algorithm is the optimal one.

3.1.1 Semi-random model for the hidden clique problem

We study heuristics for the following sandwich model of the hidden clique problem. The
semi-random graph G* on n labeled vertices is constructed by a combination of random and
adversarial decisions, as follows.

1. Random graph: for any pair of vertices 4, j the edge (7,) is placed in the graph with
probability 1/2. This gives the random graph G, /2.

2. Planted clique: a subset () of k£ vertices is chosen at random. Let G, be the empty
graph except a clique on the vertices of Q). Let G . be the random graph G, 1/, with a
planted clique on the vertices of @) (i.e. an edge is forced between every pair of vertices
in Q). Gmax is the G, 172 graph of [AKS98].

49

3. Adversarial component: having complete knowledge of G ,,.x, an adversary may remove
from the graph arbitrary edges except those which form the clique on @ (i.e. it is not
allowed to remove edges both of whose endpoints are in ()). This gives the input graph
G* which is sandwiched in between G, and Gpax.

Both graphs G, Guax contain the same clique (), and thus any sandwiched graph G*
must also have a clique on (). An adversary can remove any of the edges of G, outside
the clique @, so it has control over roughly half of all possible edges in the graph.

Observe that the algorithm is essentially required to output G,;,. The adversary is given
G max and may only remove edges, as long as G* still contains G,;,. Thus, it may appear as
if the adversarial moves only make the problem easier. Nevertheless, many algorithms that
would recover a large clique in G, would fail on G*. A major motivation for the sandwich
graph model is to identify those algorithms which are robust enough to withstand such an
adversarial “help”.

3.1.2 Relaxations of the problem

Lovasz theta function. A well known relaxation of the independent set problem is the
theta function of a graph ¥(G), introduced by Lovasz [Lov79] (see also [GLS93, Chapter
9] or Knuth’s survey [Knu94]). The formulation of the theta function as a semidefinite
program implies that, up to arbitrary precision, it can be computed in polynomial time,
see e.g. [GLS93|. Note that the equivalence between the independent set problem and the
clique problem through the edge complement graph G, implies that J(G) is an efficiently
computable relaxation of the clique number w(G).

In terms of approximation ratio, the theta function appears to have little to offer. The
ratio between (@) and the clique w(G) can be as large as n'~°1). as shown in [Fei97].
Indeed, Hastad [Has99] shows that no polynomial time computable function approximates
w(G) within a ratio of n'~¢, unless NP has random polynomial time algorithms.

Also on the average there is a gap between the Lovész theta function ¥(G) and the clique
w(G). While the clique number of a random graph G, 1/2 is almost surely roughly 2log, n,
see e.g. [AS92], it is shown by Juhdsz [Juh82] that the value of the theta function is almost
surely ©(y/n).

Our approach is motivated by Juhdsz’ result [Juh82] that the theta function of a random
graph Gy, 1/ is ©(y/n), almost surely. When a clique of size k > ¢/n, for a sufficiently large
constant ¢ > 0, is planted in a random graph, the theta function (being a relaxation) must
increase to at least k. Furthermore, it is plausible that such a noticeable increase in the theta
function will allow to find the planted clique. Indeed, we show that on this graph, which is
the hidden clique graph G, 1/, the value of the theta function is almost surely exactly &,
and then we can find (with some extra work) the planted clique.

In contrast, when a clique of size kK = o(y/n) is planted in a random graph, the mono-
tonicity properties of the theta function, see e.g. [Knu94, Sections 18-19]), guarantee that
its value can only increase, but not by more than k. It follows that on the hidden clique
graph G, 1/2,, the value of the theta function is also almost surely ©(y/n), and it is therefore
possible that the planted clique has no noticeable effect on the theta function.

20

A possible direction for extending the above approach to a planted clique of smaller
size k = o(y/n), is to use a relaxation that is stronger than the Lovéasz theta function. In
particular, it is desirable to obtain a relaxation whose value on a random graph G, /s is
almost surely o(y/n).

The general Lovasz-Schrijver technique. Lovdsz and Schrijver [LS91] propose a gen-
eral technique for obtaining stronger and stronger relaxations of 0-1 integer programming
problems. They devise several procedures, called matriz-cut operators, that produce from
a convex (e.g. linear programming) relaxation P C [0,1]" of the problem, a convex set
that is an improved relaxation for the 0-1 vectors in P. That is, the resulting convex set
is contained in P and contains all the 0-1 vectors in P. The matrix-cut operators follow a
lift-and-project approach; they lift the convex relaxation P into a higher (quadratic) dimen-
sion by introducing new variables and new constraints, and project it back into the original
space.

The two main matrix-cut operators of Lovdsz and Schrijver [LS91] are denoted by N
and N,. The difference between the two operators is that the lifting of the latter involves,
in addition, a positive semidefinite constraint. That is, if P is a linear programming re-
laxation, then N(P) is also a linear programming relaxation, while N, (P) is a semidefinite
programming relaxation.

The matrix-cut operators can be applied iteratively, say » > 0 times, and the iterated
operators are denoted N" and N. The N-rank of a convex relazation P is defined as the
number of iterations of the N operator, that are needed to obtain the convex hull of the 0-1
vectors of P (i.e. a perfectly tight relaxation). The N, -rank is defined similarly. Lovasz
and Schrijver [LS91] show that the N-rank of a relaxation is always at most the dimension
(i.e. number of variables) d. The N, operator is a strengthening of the N operator, and
hence also the Ni-rank is always at most d. Goemans and Tuncel [GT00] and Cook and
Dash [CD00] show that there exist relaxations whose N -rank meets the upper bound d.

Furthermore, Lovdsz and Schrijver [LS91] show that the N and N, operators have the
following important algorithmic property. If one can efficiently optimize (linear objective
functions) over a relaxation P, then it is possible to efficiently optimize over the relaxation
produced from P by the operator. It follows that for every fized r > 0, the iterated operators
N"™ and N also satisfy this property.

Strong relaxations for maximum independent set. To obtain relaxations of the max-
imum independent set problem, Lovasz and Schrijver [LS91] apply their general technique
of matrix-cut operators on a classical linear programming relaxation FRAC of the prob-
lem. The relaxation FRAC is a linear program of polynomial size, and hence for every fixed
r > 0, one can efficiently optimize over N (FRAC). In contrast, the dimension (i.e. number
of variables) d of FRAC is the number of vertices n in the graph, and hence optimizing over
N™"(FRAC) is NP-hard.

Lovész and Schrijver [LS91] show that the semidefinite programming relaxation N, (FRAC)
is at least as strong as the Lovasz theta function. It follows, for example, that for any graph
on which the theta function is not tight, the relaxation N} (FRAC) for r > 2 is stronger
than the theta function.

ol

The N-rank of a graph is defined as the N-rank of the relaxation FRAC. The N, -rank is
defined similarly. It follows that for graphs with bounded N,-rank, the stable set problem
can be solved in polynomial time. This includes, in particular, perfect graphs, since their
N,-rank is at most 1 by the above connection to the theta function.

Stephen and Tuncel [ST99] study the case where the graph G on n vertices is the line
graph of an h-vertex graph H. They show that the N -rank of G is at most |h/2], and
that this bound is met if H is a complete graph on an odd number of vertices, in which case
n= (g) and the N -rank of G is (y/n). Note that stable sets in G correspond to matchings
in H, and that a maximum weight matching can be found efficiently; it follows that there
are graphs with unbounded (and rather large) N -rank in which the (weighted) stable set
problem can be solved in polynomial time.

3.1.3 Our results

We present an algorithm for the semi-random model of the hidden clique problem of Sec-
tion 3.1.1. Our algorithm is based on the Lovasz theta function, and its performance is
summarized in the next theorem. Throughout, we say that an event occurs almost surely
if its probability, over the distribution of G .y, tends to 1 when n — oo. The adversarial
component is, of course, always assumed to have the worst possible effect.

Theorem 3.1. For any k = Q(\/n), there is a polynomial time algorithm that, given a
semi-random graph G*, outputs, almost surely, a clique of size k together with a tight upper
bound of k on the size of the largest clique in G*.

The key to the proof of Theorem 3.1 is the following lemma, that characterizes the value
of the theta function on a random graph with a planted clique of a sufficiently large size k.
Note that this graph is exactly the graph G,.x of our semi-random model. Throughout, the
term with extremely high probability will be used to denote a probability 1 — e ™" for some
constant r > 0.

Lemma 3.1. Let G = G, 1/21 = Gmax, where k > c'\/n for a large enough constant c'. Then

with extremely high probability 9(G) = k.

We also examine the asymptotic behavior on a random graph G, 1/, of relaxations of
Lovasz and Schrijver [LS91]] that are stronger than the theta function. In particular, we
show that the typical value of the semidefinite programming relaxation N (FRAC) on a

random graph is, loosely speaking, “roughly” \/n/2" for r = o(logn). We note that this

characterization answers (up to a constant factor) a question of Knuth [Knu94, Section
37,Problem P6].

Theorem 3.2. For every fized d > 0 andr = o(logn), the value of the relazation N (FRAC)
on a random graph G, /s is at least \/n/(2+6)""! and at most 4\/n/(2 — &)L, almost

surely.

Recall that the strongest relaxations of Lovdsz and Schrijver [LS91] whose value is known
to be efficiently computable are N} (FRAC) for »r = O(1). Theorem 3.2 shows that on

o2

a random graph, the typical value of these relaxations is smaller than that of the theta
function by no more than a constant factor. In the hidden clique problem, the planted clique
size k that a heuristic can handle can be improved by an arbitrarily large constant factor
using a method of [AKS98], and therefore it appears that the improvement offered by these
stronger relaxations can be achieved by other methods.

We use Theorem 3.2 to characterize, up to a constant factor, the typical N, -rank of a
random graph G, ;2.

Theorem 3.3. The Ni-rank of a random graph Gy /2 is almost surely ©(logn).

Our results for the N, operator extend to a somewhat stronger variant of the matrix-
cut operators of Lovdsz and Schrijver [LS91]. This operator, that we denote by Npg., is
specialized for the maximum independent set problem and retains the important algorithmic
property of N, that an efficient optimization over P implies an efficient optimization over

NFR+ (P)

Organization. Section 3.2 proves Lemma 3.1, by using a known formulation of the theta
function as an eigenvalue minimization problem. This formulation can be interpreted as
duality of semidefinite programming, see e.g. [Ali95].

Section 3.3 gives a proof of Theorem 3.1, based on Lemma 3.1. In Section 3.4.2 we address
the case where the size of the planted clique is k£ > ¢/\/n (where ¢ is as in Lemma 3.1), and
show that a direct application of Lemma 3.1 gives an algorithm that recognizes, almost surely,
the vertices of the planted clique in Gyax. In Section 3.3.2 we use an idea from [AKS98]
to extend this algorithm to the case £ > ¢y/n for ¢ < ¢. It will follow quite easily in
Section 3.3.3 that our algorithm has two additional performance guarantees, which are the
robustness against the sandwich model adversary and a certificate (almost surely) for the
optimality of its solution. In Section 3.3.4 we discuss the extension of the algorithm to a
random graph with edge probability different than 1/2.

Section 3.4 gives a technical description of the matrix-cut operators of Lovasz and Schri-
jver [LS91] (including our variant Npgy), and is intended mainly to readers who are unfa-
miliar with these operators. We present the formal definitions in Section 3.4.1, collect some
basic properties in Section 3.4.2, and review known bounds on the N-rank and N, -rank in
Section 3.4.3.

Section 3.5 describes our results on matrix-cuts in a random graph. The lower bound
on the value of the relaxation N} (FRAC) is shown in Section 3.5.1, and the upper bound is
shown in Section 3.5.2.

Preliminaries. Throughout, we omit the graph G(V, E) if it is clear from the context. We
let n denote the number of vertices in the graph G, and assume, without loss of generality,
that V' ={1,...,n}. For a vertex i in the graph, let I'(¢) denote the set of the vertices that
are adjacent to 7 in the graph, i.e. I'(i) : {j : ij € E'}, and let ['(S) denote the set of vertices
that are adjacent to at least one vertex of S, i.e. I'(S) 1= U;jesI'(7).

An n x n (real) matrix Y is positive semidefinite if Y is symmetric and 7Yz > 0 for all
x € IR". Tt is well-known that a symmetric matrix Y is positive semidefinite if and only if
all the eigenvalues of Y are nonnegative.

93

A Gram matrixz representation of an n X n matrix Y is a set of real-valued vectors
{v1 ..., v,} such that Y;; = v]'v; for all i,j. It is well-known that a matrix Y is positive
semidefinite if and only if it has a Gram matrix representation.

3.2 The theta function in a hidden clique graph

In this section we prove Lemma 3.1. Throughout this section, let us denote by G the
graph G .x, which can be equivalently described as a random graph G, 2 with a planted
independent set on k randomly chosen vertices. Since G has a (planted) independent set of
size k and the theta function is a relaxation of the independent set problem, J(G) > «(G) >
k.

The main part is to show the other direction, i.e. that with extremely high probability
U(G) < k. The theta function has several equivalent formulations (cf. [Lov79, GLS93,
Knu94]. We will use the formulation as an eigenvalue minimization problem:

0(G) = min{\ (M)}

where M is an n x n real symmetric matrix with M;; = 1 whenever vertices ¢, 7 are non-
adjacent in G, and \;(M) denotes the i-th largest eigenvalue of the matrix M. We derive an
upper bound on ¥(G) by “guessing” a particular matrix M, and clearly

95(G) < A (M) (3.1)

So it suffices to show that with extremely high probability, our choice of M is such that
A (M) < k.

Assume, without loss of generality, that the vertices of the planted independent set are
the first £ coordinates. Then our chosen M looks like

R/ 1/ —1+z;
t

Je| B 1 /-1
M = = 1

_ 1/ -1) 1

where .J;, is the all ones matrix of order k, B! is the transpose of B, and B, C are as follows.
Roughly half of the entries of B and C have to be +1 because they correspond to pairs of
non-adjacent vertices in the graph G. We set all other entries of C' to be -1. The remaining
entries of B are chosen so that the sum of each row of B is 0. At each row, we choose
all entries to be equal. Formally, we define the entries of C' to be ¢;; = 1 if (¢,j) ¢ E and
c;; = —1 otherwise (for all k < i,7 < n). Bisdefined by b;; = 1if (¢,j) ¢ E and bj; = —1+ua;
otherwise (for all ¢ > k and j < k), where z; = (2deg(x;, Q) — k) /deg(z;, Q), and deg(x;, Q)
denotes the number of vertices in () which are adjacent to xz; in the graph.

It is easy to see that k is an eigenvalue of M. By our choice of B the vector with 1 in
its first k£ entries and 0 otherwise is an eigenvector whose eigenvalue is k. In order to prove

o4

that this vector corresponds to the largest eigenvalue, i.e. A\ (M) = k, it suffices to show
that Ao(M) < k.

Let us describe M as the sum of three matrices M = U +V + W. the three matrices are
random but correlated, as follows.

U is a random 1/-1 symmetric matrix, with 1 on the diagonal.

V' is a random 0/2 symmetric matrix in the upper left £ x & block (with 0 in the diagonal),
and 0 otherwise. The matrix V' is correlated with U by v;; = 1 —wuij forall 1 <7,5 <k.

W is the correction matrix for having the row sums of B equal to 0.

1 1/-1 0/2] 0 0 | 0/

U= . V=101 o W= o/ 0

-1 1
From [FK81] we know that with probability 1 — e ™" for some constant r > 0:
Vi> 1, MO <evn V=2 1NV < eV
By the Weyl theorem (cf. [HJ85, page 181]),

Ao (M) < M(U) + Xa(V) + (W) < erv/n + sV + M (W) (3.2)
To bound A, (W), it suffices to bound Tr(W?) because

Tr(W?) =3 X(W?) =3 (L(V)* = (M(W))* (3:3)

)

Since W is symmetric Tr(W?) = 3X,(W,W}) = ¥, ; W = 23,; W7 Look at the i-th row
of B and the corresponding row of W. Let us denote by S; (for £ < i < n) the number of
non-zero (i.e. ;) entries in this row of W, i.e. S; = deg(i, Q). Then T'r(W?) =237, Siz?.
Recall x; was chosen so that the corresponding row sum in B would be zero, so

Since S; = deg(i,) is binomially distributed S; ~ B(k,1/2), then k = 2ES; and we get

TrV?) =2 Y Si(25 - k)/S)2 =8 3" (S — ESy)/S, (3.4)

i=k+1 i=k+1
The following Lemma allows us to bound these quantities.

Lemma 3.2. With extremely high probability (at least 1 — e™ for some constant r > 0)
1Y 0 (Si — ES;)? < Kk*/96.
2.5, > k/3.

95

Proof. 1. We shall bound Y =31, ., (S; — ES;)? by Azuma’s inequality, cf. [AS92]. Let
us first compute its expectation:

EY = (n— k)k/4 < nk/4

Let Yp,Y1,Ys,..., Yiu—k) = Y be a Doob martingale of Y defined by exposing one
by one each of the k(n — k) Bernoulli trials (recall S; ~ B(k,1/2)). Let us now
bound the Martingale difference. To see how an exposure of a single Bernoulli trial
can affect the final result Y, assume that all other Bernoulli trials have been fixed.
The sum Y = ¥,(S; — ES;)? is then fixed except for the contribution of a single S;
(which includes the yet unexposed Bernoulli trial). When that trial is exposed, the
contribution of the corresponding S; will be either (v—ES;)? or (v+1—ES;)?, for some
value 0 < v < k/2—1. The difference between the two values is maximized when v = 0
or v = k/2—1. The Martingale difference is thus bounded by A = (£)?—(4—-1)? = k—1.
By Azuma’s inequality, for any A > 0

Pr [|Yk(n—k) — EYjy(n-y| > AMA\E(n — k)] < 2 N2

Take A = n'/* to get

Pr “Y — EY| > nY*k\/k(n — k)} < eVt

Since EY < nk/4 and k > ¢/ /n for a sufficiently large constant ¢/ > 0 we conclude
that with extremely high probability, Y < EY +n3/4k3/2 < k3 /4c? + k3 /32 < k*/96,
as claimed.

2. Follows immediately from Chernoff bound:

Using (3.3),(3.4) and Lemma 3.2 we get that with extremely high probability
(M(W))2 < Tr(W?) < 8-k%/96 - (3/k) = k2/4
and using (3.1),(3.2) we arrive at
Xo(M) < M(U) 4+ X (V) + M (W) < epv/n+ eV + k/2 < k
as claimed.

o6

3.3 Algorithm for the hidden clique problem

In this section we prove Theorem 3.1 and describe its algorithm, extensively relying on the
result of Lemma 3.1. We shall start with the strictly random model, in which the input graph
is Gmax and there is no adversary. First (Section 3.4.2) we address the basic case of k& > ¢/\/n
for a large enough constant ¢/, where we can easily use Lemma 3.1. Then (Section 3.3.2) we
improve the result to any k = (y/n). We use the approach of [AKS98] of guessing a fixed
number of vertices from the planted clique, in order to reduce the problem to the basic case.
Finally (Section 3.3.3), we show how our analysis easily extends to the semi-random model
with the exact same algorithm.

The monotonicity properties of the theta function, cf. [Knu94, Sections 18-19], are used
throughout this section. Specifically, addition (or removal) of an edge (or a vertex) from a
graph has a monotone effect on the theta function, similarly to the independence number
a(G). For example, adding (resp. removing) an edge may only decrease (resp. increase) the
theta function.

Observe that in all cases () is almost surely the unique maximum clique. Indeed, any
clique containing a vertex from V' \ @, almost surely contains at most (1 + o(1))k/2 vertices
from @, and at most 2logn vertices from V' \ @), which is altogether much smaller that |Q)|.

3.3.1 The basic case

In the basic case we assume that the input graph is Gax = Gn1/24 (so there is no adversary),
and assume also that £ > ¢’y/n for a large enough constant ¢

Finding the clique vertices can then be performed by testing separately each vertex v to
see whether it belongs to the planted clique or not. To test if v belongs to the planted clique,
remove v from the graph G,y to get the graph Gy, \ v, and check how this removal affects
the theta function. We can analyze Gpax \ v by using the principle of deferred decisions. If
the vertex v belongs to the planted clique, then Gy \ v has a clique of size £ — 1 in an
otherwise random graph. If v does not belong to the planted clique, then Gy \ v has a
clique of size k in an otherwise random graph.

Applying Lemma 3.1 on G and on G,y \ v for all vertices v, and using the union
bound we get the following observation.
Observation. With extremely high probability, J(Ga.x) = k and

—~— _ [k—1 if v belongs to the planted clique;
W Gmax \) = { k otherwise;

This suggests the following simple algorithm for the basic case:

Algorithm BasicFind.
Input: Graph G = Gpax where k > ¢//n for a large enough constant ¢'.

1. P+ {v:9(G\v) <9(G) —1/2}

2. Output P and 9(G).
The discussion above shows that with extremely high probability, the output P of algorithm

BasicFind is the planted clique @ of size k, and ¥(G) = |P|, proving its optimality.

57

Improved Algorithm

The same observation leads to a more efficient algorithm, which uses only one computation
of the theta function. The theta function has several equivalent formulations, cf. [Lov79,
GLS93, Knu94|, but we will use a particular geometric maximization form, described as 9,
in [GLS93, Chapter 9.3], as follows. An orthonormal representation of G is a sequence of
unit length vectors {u; € R" : i € V'}, such that u; - u; = 0 whenever i, j are non-adjacent
vertices. Then

Y4(G) = max Z(d “uy)?

diul} ey

where d € IR" ranges over all vectors of unit length, and {u; € IR" : ¢ € V'} is an orthonormal
representation of G.

Using semidefinite programming, it is possible to solve ¥4(G) within arbitrary small
additive error, and arrive at a corresponding vector d and an orthonormal representation
{u;}. (More precisely, formulation J3(G) describes a semidefinite program, whose solution
can be efficiently transformed to an equivalent orthonormal representation for J4(G). See
the above references for details).

Suppose now that we solve 94(G) for our input graph G = Gax, and we get a solution
d,{u;}. We claim that the k vertices whose contribution (d-u;)? is the largest, are the vertices
of the clique, with extremely high probability. This, of course, will enable us to recognize
the vertices of the planted clique with only one such computation of the theta function.

To prove the claim, assume that the result of the above observation regarding (G payx) and
(Gmax \ v) indeed holds (which happens with extremely high probability). Then 9(Gpax) =
k, and thus the solution d, {u;} we get from the semidefinite programming has a value of
at least k£ — e (for arbitrary small fixed € > 0). In this solution, the contribution of every
vertex of the planted clique, ¢ € @), is at least 1 — ¢, or otherwise, the same orthonormal
representation would give that ¥4(Gumax \ q) = 2;,(d- u;)*> > k — 1, contradicting the above
observation. However, the contribution of any vertex j € V \ @ is bounded, because j is
(with extremely high probability) a neighbor of some ¢ € @, so u; - u, = 0 and therefore
(d-u;)?+ (d-ug)* <1, and (d - u;)? < e. This shows that the contribution of every vertex
q € Q is larger than that of vertex j € V' \ @, as claimed.

As an estimate for k = |Q)| we can take the value we get from the semidefinite program-
ming for ¥4 (Gmax), rounded to the nearest integer. This gives the following algorithm, which
outputs P = () and 9 = k with extremely high probability.

Algorithm ImprovedBasicFind.
Input: Graph G = Gax where k > ¢//n for a large enough constant ¢'.

1. Compute 9 < 9,(G) within small additive error € = 1/3, together with
a corresponding orthonormal representation {u;} and its handle d.

2. P« {i:(d-u))*>1/2}.

3. Output P and 9.

o8

3.3.2 Smaller values of k&

Following [AKS98], the main idea in improving the algorithm for G, to any & = Q(y/n)
is to guess a constant number of vertices from the planted clique. We can then work on the
subgraph induced on those vertices which are common neighbors to all of our guess set. The
induced subgraph is much smaller the G,.«, and is random except for the planted clique of
size k. Thus we improve the ratio between the size of the clique and the size of the graph
by a constant factor, and can use the algorithm of the basic case (either BasicFind or
ImprovedBasicFind of Section 3.3.1).

Guessing a constant number of vertices from the graph can be replaced by an exhaus-
tive search on a polynomial number of possibilities. Let N (S) denote the set of vertices
neighboring to all of S. The algorithm for k > ¢y/n with arbitrary fixed ¢ > 0 is as follows.

Algorithm FindClique.
Input: Graph G = Gax Where k > ¢y/n.

1. s+ 2[logy(c'/c)] + 3
2. For all subsets S of s vertices, do

2.1. V; « N(S).
2.2. (Ps,Ys) «+ BasicFind(the subgraph induced on V;)
2.3. End-for.

3. Output the set S U Ps which is a clique in G and has maximum size
over all choices of S.

4. Output ¥ = s + maxg Vg.

We claim that for any fixed ¢, algorithm FindClique almost surely outputs the planted
clique @ and a tight upper bound ¥ = k. First observe that for any fixed subset S of size
s, the cardinality of N(S) in the random graph G, ;/; is a binomially distributed random
variable with parameters n — s and 1/2°. Thus, almost surely, |N(S)| = (14 o(1))n/2° for

~

all subsets of vertices of size s in G,1/2. Planting a clique of size k can increase |N(S)| by
at most k. Therefore, for all S, |[N(S)| = (14 o(1))n/2* almost surely also in G yay.

Since algorithm FindClique checks all possible subsets S of size s, in some step it will
reach some S which is a subset of the planted clique). At this iteration we almost surely
find the planted clique Q = S U Ps. Indeed, by the principle of deferred decisions, the
subgraph induced on N(S) is a random graph G|, /o With a planted clique of size k — s.

By our choice of s, the planted clique size satisfies k — s > ¢y/n/2 > ¢\/2n/25 > ¢\/|N(9)].
Thus, algorithm BasicFind will almost surely find the planted clique @ \ S in N(S), and
as a result we will find the planted clique of size £ in Gpax.

With extremely high probability, for all subsets S of size s checked by the algorithm
FindClique, the theta function of the subgraph induced on N(S) is at most k£ — s, i.e.
Vg < k—s for all S. Indeed, for each subset S, either S C @) or S contains a vertex not from

29

@. In the first case the subgraph induced on N(S) is a random graph with a planted clique
of size at most k£ —s. In the second case, with extremely high probability N (S) contains only
(14+0(1))k/2 < k — s vertices of the planted clique (). In either case, using the monotonicity
properties, we may assume N (S) contains exactly k — s vertices of the planted clique @, and
by Lemma 3.1, with extremely high probability the theta function of the induced subgraph
is at most £ — s. Using the union bound on polynomially many choices of S, the event that
all these theta functions will be at most k — s takes place with extremely high probability.

3.3.3 A sandwiched graph G*

To show that algorithm FindClique is robust enough to withstand a monotone adversary
of the sandwich model, we argue that an adversary cannot prevent the algorithm from
succeeding. Thus, the proof for the strictly random model G, extends to the semi-random
model G*.

For simplicity, consider first the basic case where k& > ¢/y/n for a large enough constant ¢'.
Let G* be an arbitrary sandwiched graph, i.e. G, C G* C Gax. Then by the monotonicity
properties of the theta function,

k S "-9(Gmin) S 19(@) S "-9(Gma,x) S k

where the last inequality holds, almost surely, by our previous analysis. A similar phe-
nomenon happens when we remove one vertex, i.e. also in 9(Gax \ v), as in the observation
of Section 3.3.1. This shows that an adversary cannot prevent the algorithm from finding
the planted clique nor from certifying the optimality of its solution.

In the general case where k > €Q(y/n), we consider the possible effect of an adversary in
any of the applications of the theta function in algorithm FindClique. These applications
are equivalent to the removals of one vertex in the observation of Section 3.3.1 (which are
used in the proof of algorithm ImprovedFindClique).

The algorithm FindClique only applies the theta function on induced subgraphs of the
input graph G*. Let H be any such induced subgraph of the corresponding G,.x. It follows
from the principle of deferred decisions, that the induced subgraph H is a random graph
(with edge probability 1/2) with a randomly planted clique of size k' < k. Consider the
effect of an adversary on this application of the theta function, i.e. on ¥(H). Recall that
an adversary is only allowed to remove edges. Thus, its effect is limited to either removing
some vertices from H (by reducing N(S)), or removing some edges from H (by removing
the same edges from Gpay).

On the one hand, these operations may only decrease the theta function, ¥(H), by the
aforementioned monotonicity properties. On the other hand, whenever the theta function is
tight on H due to its planted clique, (i.e. 9(H) = k'), an adversary cannot affect the theta
function because it cannot remove any of the edges forming the planted clique, and H must
still contain a clique of size k’. Note that these are exactly the properties used in the analysis
of algorithm FindClique.

Hence, an adversary cannot prevent the algorithm from finding the planted clique of size
k, and cannot increase the upper bound ¢, which thus must remain k. Overall, whenever

60

algorithm FindClique succeeds on G .y, it also succeeds on an arbitrary sandwiched G,
regardless of the adversary operations, as claimed.

3.3.4 Extension to other edge probabilities

The approach that we present can be generalized to find a hidden clique in a random graph
Gnp where the edge probability p is different than 1/2.

For every fixed p, and thus fixed ¢ = 1 — p, the main result holds, except, maybe, for a
change in the (polynomial) running time of the algorithm. That is, a hidden clique of size
cy/n can be found, for every fixed ¢ > 0. Indeed, it is known from [Juh82] that with extremely

high probability J(G,,) = ¥(Gnq) = O(y/np/q). To find in a G, graph a hidden clique

of size k > /y/np/q, for a sufficiently large constant ¢/ > 0 (and thus extend Lemma 3.1),
one can take the matrix M of our proof in the spirit of [Juh82]. To finish the argument,
observe that the idea from [AKS98| of guessing a constant number of vertices allows handling
a hidden clique of size c¢y/n for arbitrary fixed ¢ > 0, and that the sandwich properties of
the theta function give robustness against a monotone adversary.

When p = o(1) finding hidden cliques becomes easier. For example, if p = 1/n’ for a
fixed § > 0, it is possible to find a hidden clique of size O(1/6) << n(!=9/2 ~ \/np/q by
exhaustively trying all subsets of this size in the graph. Indeed, with high probability the
maximum clique in the random graph is of size O(1/4), and can thus be found in polynomial
time by exhaustive search. If a clique of size ¢//§ is planted in the graph, for a sufficiently
large constant ¢’ > 0, then with high probability it will be the unique maximum clique in
the graph, and can similarly be found in polynomial time.

When ¢ = o(1) finding a hidden clique becomes more difficult. For example, the idea
of [AKS98]| of guessing a constant number of vertices in the hidden clique has only a negligible
effect in reducing the size of the graph. Nevertheless, we believe that our analysis of the
algorithm based on the theta function can be extended to work for a large range of values

of ¢ = o(1), finding cliques of size ¢’\/n/q for sufficiently large ¢’. We remark that the case

of extremely small ¢, namely g = Clo% for a sufficiently large ¢ > 0, was handled in [FKO01a]
(in a model that is more adversarial than the one studied here), where it was shown how to
find hidden cliques of linear size k£ = 2(n). Note that this value of ¢ is larger by a factor of

logn then the one which a general bound of ¢ \/m would have required for a linear sized
clique. It appears to us that the loss of the logn factor is unavoidable for the semi-random
graph model when ¢ is so small (for reasons that are explained in [FKO01la]), but can perhaps
be avoided in a random graph model that involves no adversary.

3.4 The matrix-cut operators of Lovasz and Schrijver

In this section we describe several lift-and-project operators proposed by Lovasz and Schri-
jver [LS91]. They called them matrix-cut operators. When given a convex set (e.g. a
polytope) P, these operators consider it as a relaxation of the convex hull of its 0-1 vectors,
and produce another relaxation that is tighter. In other words, these operators produce a

61

convex set that is sandwiched (in terms of containment) between P and (the convex hull of)
its 0-1 vectors. Furthermore, the produced relaxation is strictly tighter than P, (unless P is
already tight).

For completeness, we review in this section the definitions of these operators, many of
their properties (that we need) and relevant known results. We may repeat some known
proofs and examples, partly in order to extend them to a more general setting that includes
the Npr, operator, and partly to aid readers who are unfamiliar with these operators.
We mention properties that hold for general 0-1 optimization, and focus on the stable set
problem. In Section 3.4.1 we describe the required framework and present the definitions of
the matrix-cut operators. In Section 3.4.2 we collect some basic properties of these operators.
In Section 3.4.3 we describe known techniques to evaluate the effectiveness of these operators,
and known results. Lovasz gives an alternative formulation of the matrix-cut operators
in [Lov94].

Our notation mostly follows that of Lovdsz and Schrijver [LS91]. Throughout, let e; be
the jth unit vector, let 0 be the vector of all zeros, and let 1 = 3=, e; be the vector of all
ones. The sizes (dimensions) of 0,1 and e; will be clear from the context.

Recall that a set is called a cone if it is closed under multiplication by a nonnegative
number. A convez cone is thus a set that is closed under a nonnegative linear (a.k.a. conic)
combination. (Throughout, we will consider convex cones rather than polytopes.) A poly-
hedral cone is a cone that is also a polyhedron; equivalently, a polyhedral cone is a set that
can be defined by {z : Az > 0} for some matrix A.

3.4.1 Definitions

Homogenization. [t will be convenient to deal with homogenous systems of inequali-
ties. We therefore embed the n-dimensional space IR in IR™' as the hyperplane zy, = 1
(throughout, the Oth variable plays a special role), and work with convex cones in IR"*, as
follows.

Since we deal with 0-1 programming on n variables, our basic example is a polytope P
that is contained in [0,1]" (the convex hull of the n-dimensional hypercube {0,1}"). To
homogenize P using the new variable z, first embed P in the hyperplane zy = 1 of R"™,
and then generate from it a convex cone. That is, if

P={reR": Az <b, 0 <z <1}, (3.5)

then the convex cone obtained by homogenization is
K::{(?) e R"™ : Az < b, 0§x§x01}. (3.6)

Note that such K can be described as the intersection of finitely many linear constraints
utz > 0 (here x € IR™™), and hence it is a polyhedral cone.

We denote by @ C IR™"* the convex cone that is obtained from the polytope [0, 1]" via
the homogenization procedure (3.5)-(3.6). Namely,

Q= {(xo,xl,...,xn)Tzogxi <xpforalll <i< n} (3.7)

62

Note that @ is a polyhedral cone that can be described by 2n linear inequalities.

Throughout, let K C @ be a (closed) convex cone. We denote by K the convex cone
that is generated by all 0-1 vectors in K. Observe that within the hyperplane zy = 1, Ky is
exactly the integral hull (i.e. convex hull of the integral vectors) of K. For example, Q; = Q.

The polar cone of K, denoted K™, is the convex cone defined by

K*:={ueR"™":2"u>0foralz e K}

Observe that a vector u € K* corresponds to a linear constraint u”z > 0 that is valid for K
(i.e. satisfied by all vectors # € K). The polar cone K* is thus the collection of valid linear
constraints for K. For example, @) is defined in (3.7) by 2n linear constraints, and hence Q*
is spanned by the vectors e; and f; = ey —¢;, fori=1,...,n.

Fractional stable sets. We will be mostly intereted in the stable set problem. Let G(V, E)
be a graph with no isolated vertices and |V| = n. Then the stable sets of G correspond to
the 0-1 solutions of the system of linear inequalities

r; >0 forallieV (nonnegativity constraints) (3.8)

and
ri+x; <1 forallijeFE (edge constraints) (3.9)

Let STAB(G) C IR"™ denote the convex hull of the 0-1 solutions of the system (3.8)-(3.9).
Let FRAC(G) € IR" (for “fractional stable sets”) denote the solution set of the system
(3.8)-(3.9) (i.e. without integrality restriction). Clearly, STAB(G) C FRAC(G).

Let FR(G) C IR™*! be the polyhedral cone that is obtained from the polytope FRAC(G)
via the homogenization procedure (3.5)-(3.6). That is, FR(G) is the solution set of the
following homogenous system of linear inequalities for the stable set problem:

z; >0 foreachieV (3.10)

xg—x; —x; >0 foreachij € B (3.11)

Let ST(G) be the polyhedral cone that is obtained from the polytope STAB(G) via the
homogenization procedure (3.5)-(3.6). It is straightforward that (FR(G)); = ST(G).

Throughout, we omit the graph G when it is clear from the context, denoting STAB(G)
by STAB etc. It can be seen that its polar cone FR® is spanned by the vectors e; for
i =1,...,n and the vectors f;; = eg — e; — ¢; for iy € E. Note that FR C @ and hence
FR* D Q*.

Matrix-cut operators. Let K;, K, C @ be closed convex cones in IR™'! (eg. Ky =
FR(G) and K, = Q). Consider the cone K; N K. For each u € K} the constraint u’x > 0
is valid for K, and for each v € KJ the constraint vl > 0 is valid for K,. It follows that
the quadratic inequality (u?z)(2Tv) > 0 is valid for K; N K,. Furthermore,

KNk, = {x culzaTv > 0 for all u € Ki,ve Kj,xy > O} (3.12)

63

because any original inequality, say u’z > 0 for K, can be recovered by adding the two
quadratic inequalities obtained by e;, f; € Q* C K3, giving u'z -z = vz (e; + f;) > 0.

Furthermore, all 0-1 vectors in K} N K, satisfy 22 = x;. Therefore, if is a 0-1 vector in
KN Ky and with zy = 1, then setting Y = x2” we have that

(a) Y is symmetric.

(b) Yey =diag(Y), ie. Y;; =Yy forall 1 <i<n.
(¢) u"Yv >0 forallu € Ki and v € Kj.

(d) Y is positive semidefinite.

Note that (c) can be written as

(¢’) YK} C K,

Lovész and Schrijver [LS91] proposed the following lift-and project procedure. Given
Ky, Ky, consider the derived cones:

M (K, Ks) == {Y € RO -y gatisifies (a)-(c)}
M, (K, Ky) :={Y € RMDX0HD -y gatisifies (a)-(d)}
and define the projections of these liftings on IR"':
N(Kl,KQ) = {Yeo (Y € M(Kl, Kg)}
N (K1, K2) = {Yey : Y € My(Ky, Ky)}.
It follows from the above discussion that

(K1 NK,); € Ny (Ky, Ky) € N(Ky, Ky) € Ky N Ky (3.13)

Relevant variants of the operators. We use shorter notation to easily handle two special
cases. When Ky = () we omit Ky, i.e. N(K) := N(K,Q) and Ny (K) := N (K,Q). In this
case, we have that (c’) is equivalent to:

(c”) Every column of Y is in Kj; the difference of the first column and any other column
of Y is in Kj.

Note that we have from (3.13) that
K, C N.(K)C N(K)CK (3.14)

For the stable set problem, we may take Ky = FR, which we denote in the subscript,
i.e. Npr(K) := N(K,FR) and Npg4+(K) := Ny (K, FR). In this case, we have that (c¢’) is
equivalent to:

(c”’) Ye; € Ky foralli > 1, and Y f;; € K, for all ij € E.

64

We assume throughout that K C FR, and then we have from (3.13) that
K| C Npry(K) C Npr(K) C K (3.15)

It follows from the definition that using Ky = FR is at least as strong as using Ky = () in
the same operator, i.e. Npgr(K) C N(K) and Npr, (K) € N1 (K). We therefore have that

K; C Nygpy(K) € Npp(K) CN(K) C K (3.16)
Ky C Nypy (K) SN (K) S N(K)CK (3.17)

The power of these operators is discussed in Section 3.4.3. As for the relation between
Npr(K) and N (K), it can be seen that Npg(K) € N, (K) (e.g. by a clique on 5 vertices
and K = FR, see Section 3.4.3), but it is not clear (to us) whether N, (K) C Npp(K).

Iterated operators. Define the iterated operator N"(K) recursively by N°(K) = K and
N"(K) = N(N™'(K)) for » > 1. For other operators, the iterated operator is defined
similarly.

The following Theorem of Lovdsz and Schrijver [LS91] proves that even without the
positive semidefiniteness constraint (d), it suffices to apply n iterations in order to get from
a convex cone K C (@ the cone Kj. It follows that applying the N operator on K # K
produces a relaxation of K; that is strictly tighter than K.

Theorem 3.4 (Lovasz and Schrijver [LS91]). Let K C Q be a convexr cone in IR,
Then N™(K) = K.

It is often easier to work in the original n-dimensional space (without homogenization),
so in the case that K is the cone obtained from a polytope (or a convex set) P in [0, 1]" via
the homogenization procedure (3.5)-(3.6), define

N(P) = {x ER": (i) c N(K)}

and similarly for the other operators (including the iterated ones).

For the stable set problem, K will be one of the cones obtained from FR(G) by an
iterated operator, e.g. N"(FR(G)). Going back to the original n-dimensional space we shall
abbreviate N"(G) := N"(FRAC(G)) and similarly for the other operators. We then have
from Theorem 3.4 that N*(G) = STAB(G).

Ranks. The N-rank of an inequality u’'z > 0 that is valid for K, is the smallest nonneg-
ative integer r such that uTx > 0 is valid for N"(K). (Note that the rank is relative to K).
For Ni,Ngr and Npgr, the rank is defined similarly. Theorem 3.4 states that these ranks
are at most n (the dimension) for any valid inequality.

The N-rank of a cone K is the smallest nonnegative integer r such that N"(K) = K,
and similarly for the other operators. By Theorem 3.4, the N-rank of K is at most n (the
dimension).

The N-rank of a graph G, is the N-rank of FR(G), and similarly for the other operators.
For example, for a bipartite graph STAB = FRAC and hence the N-rank of a bipartite
graph is 0. We will elaborate on bounds on the rank in Section 3.4.3.

65

Algorithmic aspects. Lovdasz and Schrijver [LS91] give sufficient conditions for efficient
weak (i.e. up to arbitrary precision) optimization (of linear objective functions) over N(K),
N, (K), Npr(K) and Npgr4(K). Technically, the matrix-cut operators have the following
algorithmic property.

Theorem 3.5 (Lovasz and Schrijver [LS91]). A polynomial time weak separation ora-
cle for K gives a polynomial time weak separation oracle for N"(K), N7 (K), Nig(K) and
Nigy (K) for any fized constant r.

By the equivalence between weak (i.e. up to arbitrary precision) optimization and weak
separation (see [GLS93]), Theorem 3.5 implies a weak optimization of any linear objective
function over these relaxations of Kj.

Lovasz and Schrijver [LS91] suspect that Theorem 3.5 does not extend to N(K, K).
They remark, however, that it if K is given by an explicit system of polynomially many
linear inequalities, then Theorem 3.5 does extend to N(K, K).

For the stable set problem, the cone K = FR is given by an explicit linear program of
polynomial size, so one can solve the separation problem for it in polynomial time. We thus
obtain the following theorem.

Theorem 3.6. For every fized r > 0, the weak optimization problem for N"(G) can be solved
in polynomial time, and similarly for N, Nig, Npg_ .

3.4.2 Basic properties
We collect some properties of the matrix-cut operators defined in Section 3.4.1. In particular,

Corollary 3.7 and Lemma 3.16 will be used in Section 3.5.1.

Monotonicity. It is straightforward that the matrix-cut operators are monotone with
respect to containment of K| and K, as follows.

Lemma 3.3. Let K| C K, and Ky C K}. Then N(Kj, K}) C N(K,, Ks) and similarly for
N,.

It follows that the matrix-cut operators are monotone with respect to adding/removing
edges.

Corollary 3.4. Let G’ be a graph that is obtained from another graph G by adding edges.
Then N"(G'") C N"(G), and similarly for NI ,Ngg,Nig, -

Proof. Observe that FR(G’) C FR(G). The proof follows from Lemma 3.3. O

Down-monotonicity. Throughout, we use x > y, where x,y are two vectors, to denote
x; > 1y; for every coordinate 7.

A non-empty convex set P C [0,1]" is called down-monotone (in [0,1]") if for every
x € P, every y € [0,1]" with y < z is also in P (see e.g. [GLS93, page 11]). Similarly, a

66

convex cone {0} # K C @ is called down-monotone if for every z € K, every y €) with
y < x and yy = x¢ is also in K.

The next lemma shows that the matrix-cut operators preserve down-monotonicity. It
extends a similar result for N(-) and N, (-), that is given by Goemans and Tuncel [GT00,
Theorem 5.1] (where a down-monotone polytope is called lower-comprehensive) and by Cook
and Dash [CD00, Lemma 2.6] (where the polytope is said to be of an anti-blocking type).

Lemma 3.5. Let K|, Ky C Q be down-monotone convex cones. Then N(Ky, Ks) is down-
monotone, and similarly for N.

Proof. Let x € N(K;,Ks) and 0 < 2’ < x with a, = xp. It suffices to prove that 2’ €
N(K,, Ky) when x,2" differ only in a single coordinate, say i = 1, since we can repeat the
same argument for each coordinate. Furthermore, for a single coordinate ¢ = 1 it suffices to
prove the case x| = 0, since N (K7, K3) is convex, and so convex combinations of 2’ and z
give any desired value for coordinate + = 1.

Since x € N(K, K3), there exists a matrix Y € M (K, K;) with x = Ye. Define the
matrix Y’ by

Y'-:{O ifi=1lorj=1;
v Y;: otherwise.

We claim that Y' € M (K, K3). Indeed, Y clearly satisfies (a) and (b). To prove (c), let
u € K{,v € K;, and from Lemma 3.6 below we have that v —u,2, € K and v —vy27 € K
and hence
w'Y'v = (u — uzy) 'Y (v —vizy) >0

Observe that 2’ = Y'ey, and therefore ' € N(K;, K5), as required.

For the proof of N, we need to show that (d) also holds, and indeed from the Gram
matrix representation of Y we can obtain a Gram matrix representation of Y’ by replacing
the vector that corresponds to coordinate i = 1 with the all zeros vector 0. O

Lemma 3.6. Let K C @ be down-monotone and let v € K*. Then v — v;e; € K* for all
1> 1.

Proof. By the down-monotonicity of K, for every x € K we have that v — x;e; € K, and
hence (v —vie;) ' w = X, v;0; = v' (x — wie;) > 0. O

Observe that () is down-monotone by its definition in (3.7), and that FRAC is down-
monotone by its definition in (3.10)-(3.11). By Lemma 3.5 the matrix-cut operators preserve
down-monotonicity and we obtain the following corollary for the iterated operators.

Corollary 3.7. N'(G) is down-monotone, and similarly for NI Ny, Nig. .

Flipping and renaming coordinates. The operators N, N,, Nygr, Npry are invariant
under various operations, including renaming indices (i.e. permuting the order of coordi-
nates), and flipping coordinates x; — (xy — x;) for any subset of the indices {1,2,...,n}.
More formally,

67

Lemma 3.8 (Lovasz and Schrijver [LS91]). Let A be a linear transformation mapping
Q onto itself. Then N(AK,, AKy) = AN(Ki, K,) and similarly for Ny. Hence N(AK) =
AN(K) and similarly for N,.

By flipping coordinates, one can extend Lemma 3.5. For example, it follows that the
N and N, operators preserve up-monotonicity (shown by Cook and Dash [CD00, Section
2] as the blocking property), and a “convex corner” property (shown by Goemans and
Tungel [GT00, Section 5]).

Intersection with faces. A face of () is the intersection of () with hyperplanes of the
form {z : ; = 0} or {z : x; = xp}. The intersection of K with a face of @) consists of all
x € K with one or more of their coordinates fized to 0 or zy (recall that x, corresponds to
1 in the non-homogenous case).

The following lemma proves equivalence between fixing some coordinates before applying
a matrix-cut operator (e.g. in K) and afterwards (e.g. in N(K)). It extends a similar result
that is given by Goemans and Tungel [GT00] for N(-) and N(-).

Lemma 3.9. If F is a face of Q, then N(K, N F,K,) = N(Ky, Ky) N F and similarly for
N,.

Proof. The direction “C” follows from Lemma 3.3, since N(K; N F, Ky) C N(K;, K3) and
N(K;NF,Ky) C N(F,K,) C F, and similarly for N,.

For the converse direction “O” with the N operator, let € N(K;, K3) N F. Then there
exists a matrix Y € M (K, Ky) with Yey = 2. Let H be any one of the hyperplanes of the
form {z : v; = 0} or {w : ; = x} that define F'. Sincee;, f; € Q* C K for all j, we have that
Ye; € K1 CQand Y f; € Ky C Q, while their sum satisfies Ye; +Y f; =Yey =2 € F'C H.
Since H defines a face of () then by definition of a face we have that Ye; (and also Y f;) must
belong to H. ! But every v € IR"" is a linear combination of {ey, ey,...,¢,} and Ye; € H
for all 7 > 0, and so Yv € H for every v, including all v € K3.

For every v € K we have that Yv belongs to K; C @), by the definition of Y. We saw
above that Ywv also belongs to all hyperplanes H that define F', and we conclude that Yv
belongs also to F'. Hence, Yv € K; N F for all v € K3, implying that Y € M(K; N F, K5)
and z € N(K; N F, Ky). The proof for N, is similar, since Y is also known to be positive
semidefinite. O

We remark that the above proof of Lemma 3.9 extends to the case where F' is a face of
K, as shown by Cook and Dash [CD00, Lemma 2.2| for N(-) and N, (-). For the special
cases Ky = @ and Ky = FR we obtain the following.

Corollary 3.10. If F' is a face of Q (or a face of K), then N(K N F) = N(K)N F and
stmilarly for No,Ngr, Npr. -

'In other words, suppose that the hyperplane H is defined by the equality u’z = 0 (i.e. u = e; or u = f;)
and that the inequality u”z > 0 is valid for (i.e. @ is entirely contained in one side of H). We then have
that u' (Ye;),u” (Y f;) > 0 while their sum is v’z = 0, implying that u” (Ye;) = uT (Y f;) = 0.

68

Deleting fixed coordinates. Suppose that K is contained in a face of (). Then some
of the coordinates are fixed (i.e. x; = 0 or x; = xy), and it may be desirable to delete
these coordinates and reduce the dimension. Formally, a deletion operation of indices subset
I C{1,...,n} is the function f: R"*!' — R™" !l where f(z) is the vector = restricted to
the coordinates not in I, i.e. f(z) = (2;)ig.

In the following we show that deleting fixed coordinates of K before applying a matrix-
cut operator (e.g. in K) is equivalent to deleting them afterwards (e.g. in N(K)). The
following handles the basic case of one coordinate that is fixed to 0.

Lemma 3.11. Let F' = QN {x : x, = 0} and let f be the deletion operation of coor-
dinate i = n. If Ky, Ky are conver cones that are contained in F then f(N(Ki, K3)) =
N(f(Ky), f(K2)), % and similarly for Ny.

Proof. The deletion operation f is a linear transformation from IR"** to IR™, and thus can
be described as an n x (n+ 1) matrix A. Note that columns 0 to n —1 of A form an identity
matrix and column n of A is all zeros. We first claim that AK* = (AK)* for K = K; and

for K = K. Tndeed, by definition, u € AK* if there exists r € IR with (:f) € K*. Note

that <:f> € K* holds either for all values of r or for no value of r, since K C {x : z,, = 0}.

Therefore,
u

AK* = {u: 3r € R with (:f) € K} = {u: <0> € K°).
We also have that

(AK)* ={u:ul(Az) >0 Vo € K} = {u: ATu € K*}.

Since ATu = <g>, we obtain AK* = (AK)*.

Let us now prove that M(AK,, AK,) = AM(K,, K;)A". For the direction “C”, let
Y € M(AK,, AK5). Then by (c), for every u € Kj,v € K; we have that u” ATY Av > 0.
We therefore have that
Y O
(o7 o
Multiplying by A from the left and by A” from the right, we obtain (since AAT is the identity
matrix) that Y € AM (K, K,)A”.
For the converse direction “2”, let Y € AM (K, K3)AT. Since K| C {x : 2, = 0}, every
matrix in M (K, K5) has only zeros in row n, and by the symmetry (a) it has only zeros
also in column n. Hence,

) =AY A e M(Ky, K»).

Y 0

T _
A YA_<0T 0

) € M(Ky,).

By (c), for every u € K}, v € Kj it holds that ul ATY Av > 0, and hence Y € M(AK,, AK>).

ZNote that the application of N in the righthand side is in a smaller dimension than in the lefthand side.

69

Now since A'ey is just e (in a larger dimension), we conclude that
N(AK,, AK,) = AM(K,, Ky)ATey = AM(K,, Ky)ey = AN (K, K3).

The proof for the N, operator is similar since Y is positive semidefinite if and only if
ATY A is (observe that Y has a Gram matrix representation if and only if ATY A has such
a representation). O

We can extend Lemma 3.11 to an arbitrary face F' and to an arbitrary K5, as follows.

Lemma 3.12. Let F =QN{x:z; =0Vi € Iy} N{x: 2, =z Vi € I} and let f be the
deletion operation of the coordinates Iy U I;. If Ky is a convexr cone contained in F' and K,
is a convex cone contained in Q, then f(N (K, Ky)) = N(f(Ky), f(K2NF)), and similarly
for Ny.

Proof. Ki and K, N F are both contained in F', so we can repeatedly apply Lemma 3.11 on
them, and delete the coordinates of I U I;. (Note that by using Lemma 3.8 we can extend
Lemma 3.11 also to deleting coordinates that are fixed to zy.) It follows that f(NV (K, KoN
F)) = N(f(Ky), f(Ky 1\ F)).

By Lemma 3.9 we have that N(K;, Ko N F) = N(K;, K) N F, and since N(K;, Ks) C
K, C F, we have that N(K, K, N F) = N(K;, K3). The proof follows. O

For the stable set problem, it is straightforward to see that fixing and deleting a coordinate
of FR(G) has the following effect.

Lemma 3.13. Let F = Q N{z : z; = 0}, and let [be the deletion operation of coordinate
i. Then f(FR(G)NF) =FR(G —1).

Lemma 3.14. Let F = QN {x : z; = xo}, and let f be the deletion operation of coordinate
i. Then f(FR(G)NF)=FR(G—i)N{zx:x; =0 for j € ['(i)}.

For the special cases Ky = @) and K, = FR we obtain the following from Lemma 3.12.

Corollary 3.15. Let F = QnN{z:z; =0VYi € [y} N{z:x; =xy Vi € I} and let f be
the deletion operation of the coordinate Iy U I,. If K is a convexr cone contained in F then
f(N(K)) = N(f(K)), ® and similarly for Ny, Npr and Npg, .

Proof. For the N operator we have from Lemma 3.12 that

FIN(K)) = N(f(K), f(QN F))

and f(Q N F) is just @ in the smaller dimension, so f(N(K)) = N(f(K)). The proof for
the N, operator is similar.
For the Npgr operator we have from Lemma 3.12 that

f(Ner(K)) = N(f(K), f(FR(G) N F)),

3Note that the application of N in the righthand side is in a smaller dimension than in the lefthand side.

70

and it follows from Lemmas 3.13 and 3.14 that f(FR(G)NF) = FR(G — I, —I;) N H, where
H={z:2;,=0Viel'(;)— Iy — I,}. We therefore have that

f(Ner(K)) = N(f(K),FR(G — Iy — I,) N H).

Note that f(K) C H since K C FNFR(G) C H, and so by Lemma 3.9 we have that
f(Npr(K)) = Nrr(f(K)), as required. The proof for Npr (K) is similar. O

Corollary 3.15 extends a similar result that is given by Cook and Dash [CDO00] for N(-)
and N, (). Technically, they define an embedding operation as one that introduces new
coordinates that are fixed (to either 0 or zp), and state that for every convex cone K’ and
an embedding operation g, g(N(K')) = N(g(K')), and similarly for N, (see also [ST99]).
The deletion operation is the inverse of embedding, so for N(-) and N, (-) Corollary 3.15 is
equivalent to the result of Cook and Dash [CDO00].

Removing vertices from the graph. For the stable set problem, the properties collected
so far, and in particular Corollary 3.15, give a useful characterization to whether x € N"(G)
in the case that has a fixed coordinate (i.e. z; = 0 or x; = xy).

Recall that V' = {1,...,n}. For a vector € IR" and a subset W C V', we denote by xyy
the restriction of x to the coordinates of W.

Lemma 3.16. Let v € IR", and assume that for some i we have that x; =1 and that x; =0
for all j € T'(i). Then for all v > 0, x € N"(G) if and only if vv_ru—i € N'(G —I'(i) — i),
and similarly for NI ,Niy and Nig, .

Proof. 1t is clear that x belongs to the face F' of @) that is defined by the hyperplanes
{z 2 =20} and {x : x; =0} forall j € I'(i). Then x € N"(G) if and only if x € N"(G)NF,
which is equivalent, by Corollary 3.10, to x € N"(FR(G)NF). Let f be the deletion operation
of the coordinates I'(¢) U {i}, and then we have equivalently that f(z) € f(N"(FR(G)NF)).
By Corollary 3.15, the latter is equivalent to f(z) € N"(f(FR(G) N F)). By Lemmas 3.13
and 3.14, we have that f(FR(G)NF) = FR(G —I'(i) — i), and the proof follows. The proof
for NI ,Ngy and Npg, is similar. O

Lemma 3.17. Let x € R" be a vector and assume that x; = 0 for some i. Then x € N"(QG)
if and only if xy_; € N'(G — 1), and similarly for N7 ,Nig and Nig, .

Proof. 1t is clear that x belongs to the face F' of () that is defined by the hyperplane x; = 0.
Then x € N"(G) if and only if + € N"(G) N F, which is equivalent, by Corollary 3.10, to
z € N'(FR(G) N F). Let f be the deletion operation of the coordinate i, and then we have
equivalently that f(z) € f(N"(FR(G) N F)). By Corollary 3.15, the latter is equivalent to
f(z) € N"(f(FR(G) N F)). By Lemma 3.13 we have that f(FR(G) N F) =FR(G — i), and
the proof follows. The proof for N ,Nir and Nfg, is similar. O

3.4.3 Bounds on the rank

We describe general methods to obtain upper and lower bounds on the N-rank and N,-
rank of valid inequalities, and extend them to Npr-rank.We also illustrate the use of these
methods on a few valid constraints for the stable set problem (see Table 3.4.3 on page 78).

71

Vertex deletion and contraction. Let a’x < b be an inequality valid for STAB(G).
For a subset W C V, we denote by ay the restriction of a to the coordinates of W. For
every i € V, if a’xz < b is valid for STAB(G), then al, .z < b is valid for STAB(G — i) and
a‘T,_F(v)_i:r < b — a; is valid for STAB(G — I'(i) — 7). Following the terminology of Lovész
and Schrijver [LS91], we say that these inequalities arise from a’z < b by the deletion and
contraction of vertex i, respectively. Note that if e’z < b is an inequality such that for some
i, both the deletion and the contraction of ¢ yield inequalities valid for the corresponding
graphs, then a’z < b is valid for G.

The N-rank of an inequality valid for STAB(G) depends only on the subgraph induced
by those vertices with a nonzero coefficient, and similarly for N, ,Npr and Npg,. Indeed,
if a vertex ¢ has a zero coefficient, then the inequality being valid for N"(G) is equivalent,
by Corollary 3.7, to the inequality being valid for N"(G) N {z : z; = 0}, which in turn is
equivalent, by Lemma 3.17, to the inequality being valid for N" (G — i).

Upper bounds on the N-rank. Lovdsz and Schrijver [LS91] give an upper bound on
N(K), which allows to upper bound the N-rank of an inequality, as follows.

The sum of two sets K', K" C IR™"! is defined as K' + K" := {2/ + 2" : v € K',2" €
K"}. Note that if K', K" are convex cones in () then K’ + K" is also a convex cone in
(). Furthermore, if K', K" are obtained via the homogenization procedure (3.5)-(3.6) from
polytopes P', P" C IR", respectively, then K’ + K" corresponds to all convex combinations
of a point from P’ and a point from P” (recall that coordinate 0 needs to be scaled to 1).

Lemma 3.18 (Lovasz and Schrijver [LS91]). For all1 <i <mn,
N(K) C (Kn{z: 2 =0})+ (Kn{z:z =x}).

Proof. If & € N(K) then there exists Y € M(K) withz = Yey = Ye,+Y f; forany i <i < n.
Clearly, Ye; € KN{z:x; =20} and Y f; € KN {x:x; =0}, and the proof follows. O

Corollary 3.19. If an inequality is valid for both K N{x : z; =0} and K N{z : x; = xy},
then it is valid for N(K).

Goemans and Tungel [GT00] note that repeatedly using Lemma 3.18 and Corollary 3.10,
gives that for all I C {1,...,n} with |I| =1,

N'(K)C Y (Kﬂ{:r::ri:()‘v’iefg}ﬁ{:r:xi::ro‘v’iEI\Io}).

IoCI

In particular, this shows that the N-rank of any cone K is at most n, proving Theorem 3.4.

For the stable set problem, Corollary 3.19 can be rephrased as follows (using Lemmas 3.16
and 3.17).

Lemma 3.20 (Lovasz and Schrijver [LS91]). Let P be a convex set with STAB C P C
FRAC. Ifa’z < b is an inequality such that for somei € V, both the deletion and contraction
of 1 give an inequality valid for P, then a’x < b is valid for N(P).

72

For example, if C' induces a chordless odd cycle in G, the odd hole constraint

Yoa; < |C|2_ ! (3.18)

1eC

has N-rank at most (and actually exactly) 1, because both the contraction and the deletion of
any vertex result in an inequality that is valid for FRAC. (In fact, Lovasz and Schrijver [LS91]
prove that N(FRAC) is exactly the relaxation that is obtained by adding to FRAC all the
odd hole constraints.)

Lovéasz and Schrijver [LS91] also give the following upper bound on the N-rank of a graph.
The proof follows by applying Lemma 3.20 repeatedly for n — «(G) — 1 vertices outside a
maximum stable set in the graph, since the graph induced on the other vertices must be
bipartite.

Corollary 3.21 (Lovéasz and Schrijver [LS91]). The N-rank of a graph G of stability
number a(G) is at most n — a(G) — 1.

It follows that the N-rank of any graph G is at most n — 2. Note that the N-rank of FR
is at most n — 2, while the N-rank of a general cone K is at most (and can actually be) n.

We next analyze the N-rank of a few more examples, due to Lovasz and Schrijver [LS91].
By Corollary 3.21, if B is a clique in G, the clique constraint

oz <1 (3.19)

1€B

has N-rank at most (and actually exactly) |B|—2. Note that the class of all clique constraints
strengthens the class of all edge constraints (3.9).
If D induces a chordless odd cycle in G (the edge complement of G), the odd antihole
constraint
Yo <2 (3.20)
i€D
has N-rank at most (and actually exactly) (|D| — 3)/2, because the contraction of a vertex
results in an inequality trivially valid for FRAC, and the deletion of a vertex results in an
inequality that is the sum of two clique constraints, each of size (|]D| — 1)/2 and hence of
N-rank (|D| —5)/2.
If W induces an odd wheel in G with center ig € W, the odd wheel constraint

S g W22

ieW\{io}

W|—2
iy < | |2 (3.21)

has N-rank at most (and actually exactly) 2, since the contraction of the center vertex
results in a trivial inequality, and the deletion of the center vertex results with the odd hole
constraint.

73

Upper bounds on the Npg-rank. The methods for obtaining upper bounds on the N-
rank can be extended (with modifications) to upper bounds on the Npg-rank, as follows.

Lemma 3.22. For allij € E,
N(K) C (Kﬂ{x:xi:xj:0})+(Kﬁ{x:xj:xo})+(Kﬂ{x:xi:x0}).

Proof. If © € Nygr(K) then there exists Y € M(K) with x = Yey = Ye; +Ye; + Y fj;
for any ij € E. Clearly, Ye; € KN{x : 2; = 2} and Ye; € KN {z : z; = zp} and
Yfij € KN{z:z; =x; =0}, and the proof follows. O

Corollary 3.23. If an inequality is valid for K N {z : x; = o}, for KN {x:z; = x0}, and
for KN {x:z; =x; =0}, then it is valid for Npg(K).

Corollary 3.23 can be rephrased as follows (using Lemmas 3.16 and 3.17).

Lemma 3.24. Let P be a convex set with STAB C P C FRAC. If a’z < b is an inequality
such that for some ij € E, the contraction of i, the contraction of j and the deletion of {i,j}
give an inequality valid for P, then a”x < b is valid for N(P).

The following upper bound on the Npg-rank of a graph follows by applying Lemma 3.24
repeatedly on edges, so that the removal of their endpoints results in a bipartite graph (e.g.
a matching that is maximal with respect to containment).

Corollary 3.25. Suppose that a graph G contains a set of 3 edges, whose endpoints removal
results in a bipartite graph. Then the Ngg-rank of G is at most 3.

It follows that the Npg-rank of a graph G is at most (n —2)/2 if n is even and (n—1)/2
if n is odd; in general it is at most |[(n — 1)/2]. In particular, the Npg-rank of the clique
constraint (3.19) is at most | (|B| —1)/2].

We can apply these bounds on the other examples. The Ngg-rank of the odd hole
constraint constraint (3.18) is at most (and thus exactly) 1, since the Npg operator is at least
as strong as N. The Npg-rank of the odd antihole constraint (3.20) is at most |(|D]+1)/4],
because the contraction of a vertex results in an inequality trivially valid for FRAC, and the
deletion of two vertices results in an inequality that is the sum of two clique constraints, each
of size at most (|D| — 1)/2 and hence of Ngg-rank [(|D]| —3)/4]. (In fact, it can be shown
by direct calculations that the Npgr-rank of the odd antihole constraint (3.20) with |D| =7
is at most 1.) The Npg-rank of the wheel constraint (3.21) is at most (and thus exactly) 1,
since the contraction of the center vertex results in a trivial inequality, the contraction of a
non-center vertex results in an inequality is valid for FRAC, and the deletion of these two
vertices also results in an inequality is valid for FRAC.

Lower bounds on the N-rank. Lovdsz and Schrijver [LS91] show that certain uniform
fractional stable sets belong to N"(G), regardless of the graph G. For example, for r = 0
it is straightforward that (1/2)1 € FRAC(G). The following lemma gives an extension to
larger r, with the uniform solution being smaller, depending on r.

74

Lemma 3.26 (Lovédsz and Schrijver [LS91]). Assume that P is down-monotone and
contains STAB(G). If (1/r)1 € P forr >0 then 1/(r+1)1 € N(P).

Proof. Let K be the convex cone obtained from P via the homogenization procedure (3.5)-
(3.6). Define the matrix Y € R®*TD*0 D) py

1 ifi=j=0:;

Yij:{l/(rnLl) if (1=0,7>0)or (i>0,7=0)or (i=7>0);
0 otherwise.

To see that Y € M (K, Q) observe that (a),(b) clearly hold, and let us now show that (c¢”)

holds.

1
Ye, = i ST(G) C K
e t+1(60+€)€ (G) C
and
Yf—Te—i-Zle—T e—l-zle
i 0 j = 0 —€; | -
r+1 #Oyir+1 r+1 iz "
By the induction hypothesis we have that
1 1

Z —€; < Z—ej EP,

i7" iz "
and the down-monotonicity of P implies that Y f; € K, and thus (¢”) holds. We conclude
that Yey € N(K), i.e. 1/(r+ 1)1 € N(P). O

Corollary 3.27 (Lovasz and Schrijver [LS91]). 1/(r+2)1 € N"(G) for all r > 0.

Proof. Proceed by induction on r. We mentioned above that the case r = 0 is trivial. The
inductive step follows from Lemma 3.26, since N"(FRAC(G)) clearly contains STAB(G) and
is down-monotone by Corollary 3.7. O

Corollary 3.28 (Lovéasz and Schrijver [LS91]). The Npg-rank of a graph G of stability
number o(G) is at least n/a(G) — 2.

Proof. Let r be the N-rank of GG, and hence N"(G) = STAB(G). By Corollary 3.27 we have
that 1/(r +2)1 € N"(G). The inequality 17z < « is valid for STAB(G) = N"(G), and in
particular for 1/(r + 2)1, implying that n/(r + 2) < «(G), and the proof follows. O

For example, the stability number of a clique B is 1, so the N-rank of B is at least,
and hence exactly, |B| — 2. In fact, the above proof shows that the N-rank of the clique
constraint (3.19) is at least, and hence exactly, |B| — 2. The stability number of an an odd
antihole D is 2, so the N-rank of D is at least |D|/2 — 2, and since | D] is odd, it must be at
least (|D| — 3)/2. In fact, this shows that the N-rank of the odd antihole constraint (3.20)
is at least, and hence exactly, (|D| — 3)/2. Corollary 3.27 also yields a lower bound on the
N-rank of the wheel constraint (3.21). Indeed, let r be the N-rank of this constraint. Then
we have that this constraint is valid for N"(G) and, in particular, for 1/(r +2)1 € N"(G).
Thus,

1 W] —2 W] —2
Wl—-1 <
r+2 <| | + 2) - 2
which gives that AW 4 < r+2 and thus r > 1+ —2—. Since the N-rank of the wheel

[W-2 wi—2-
constraint is an integer, it must be at least, and hence exactly, 2.

)

Lower bounds on the Npg-rank. The methods for obtaining lower bounds on the N-
rank can be extended (with modifications) to lower bounds on the Npg-rank, as follows.

Lemma 3.29. Assume that P be down-monotone and contains STAB(G). If (1/r)1 € P
for >0 then 1/(r + 2)1 € Npg(P).

Proof. Define the matrix Y e RMDx(+D) py

1 ifi=j=0;
Yij=41/(r+2) if(i=0,7>0)or(i>0,j=0)or (i=7>0);
0 otherwise.

To see that Y € M (K, FR) observe that (a),(b) clearly hold, and let us now show that (c”)

holds. 1
€; . 9 (60 + 61) €S ()

and for ij € E

r 1 r 1
Y fii = — -
Ji 1ot Z.r+2el r+2(e°+Z el)

1#£0,0,] 1#£0,j
By the induction hypothesis we have that
1

S la<Y ek

1£0,.5 | 10

and the down-monotonicity of P implies that Y f;; € K, and thus (¢”) holds. We conclude
that Y@O c NFR(K), i.e. 1/(7’ + 2)1 S NFR(P)]

Corollary 3.30. 1/(2r +2)1 € Njx(G) for all r > 0.

Proof. Proceed by induction on r. We mentioned above that the case r = 0 is trivial. The
inductive step follows from Lemma 3.29, since N, (FRAC(G)) clearly contains STAB(G)
and is down-monotone by Corollary 3.7. O

Corollary 3.31. T Ngg-rank of a graph G of stability number o(G) is at least n/(2a(G))—1.

Proof. Let r be the N-rank of GG, and hence N"(G) = STAB(G). By Corollary 3.30 we have
that 1/(r +2)1 € N"(G). The inequality 17z < «(G) is valid for STAB(G) = N"(G), and
in particular for 1/(r + 2)1, implying that n/(2r +2) < a(G), and the proof follows. O

For example, the Npg-rank of a clique B is at least |B|/2 — 1 (since the stability number
of B is 1), and it must be an integer, so we have that it is at least |(|B| — 1)/2]. In fact, the
above proof shows that the Npg-rank of the clique constraint (3.19) is at least, and hence
exactly, |(|B] —1)/2|. The Npg-rank of an odd antihole D is at least |D|/4 — 1 (since the
stability number of D is 2), and it must be an integer (while |D| is odd), so we have that it
is at least ||D|/4]. In fact, this shows that the N-rank of the odd antihole constraint (3.20)
is at least ||D|/4]. Corollary 3.27 also yields a lower bound on the N-rank of the wheel

76

constraint (3.21). Indeed, let r be the N-rank of this constraint. Then we have that this
constraint is valid for N"(G) and, in particular, for 1/(r 4+ 2)1 € N"(G). Thus,

1
r 42

-2 -2
(w11 1=2) < 0

2 - 2
which gives that % +1<r+2andthusr>1+ ﬁ Since the N-rank of the wheel
constraint is an integer, it must be at least, and hence exactly, 2.

Upper bounds on the N,-rank. Lovdsz and Schrijver [LS91] give also a sufficient con-
dition for an inequality to be valid for N, (K'). The following lemma considers an inequality
ufx > 0 with ug > 0 and u; < 0 for 7 > 1. It can be extended to an arbitrary inequality
u?z > 0 by flipping the relevant coordinates according to Lemma 3.8.

Lemma 3.32 (Lovasz and Schrijver [LS91]). If for all i with u; < 0, uTz > 0 is valid
for KN {z:x; =z}, then u’'xz > 0 is valid for N, (K).

For the stable set problem, Lemma 3.32 implies the following lemma, which is described
in the original n-dimensional space, i.e. by inequalities ¢’z < b (with a € IR") that are valid
for STAB(G). Observe that the only non-trivial case is b > 0 and a > 0, and then we can
use Lemma 3.32.

Lemma 3.33 (Lovdsz and Schrijver [LS91]). If o’z < b is an inequality valid for
STAB(G) such that for all i € V with a; > 0 the contraction of i gives an inequality with
N, -rank at most r, then a’x < b has Ny -rank at most r + 1.

For example, the clique, odd hole, odd wheel, and odd antihole constraints all have N, -
rank at most (and thus exactly) 1. Lovédsz and Schrijver [LS91] show also that the so-called
orthogonality constraints (see [Lov79, GLS93] for definition) are valid for N, (FRAC) by
definition, and hence their N, -rank is also 1.

One simple way to derive facet-defining valid inequalities from other facet-defining in-
equalities is cloning a clique at a vertex 7. That is, replacing the vertex ¢ by a clique and
replacing every edge incident to ¢ by corresponding edges that are incident to all the clique
vertices, and substituting the variable of ¢ in the inequality with the sum of the variables of
the clique vertices. In general, it is not clear how cloning influences the N -rank of an in-
equality. However, Goemans and Tuncel [GT00] note that Lemma 3.33 implies that cloning
at the center vertex of an odd wheel inequality still has N -rank 1, and that cloning at one
or several vertices of an odd wheel, odd hole, or odd antihole inequality, the N -rank is
at most 2. Indeed, fixing any variable (of the corresponding subgraph) to 1, the resulting
inequality can be seen to be a linear combination of clique inequalities and hence valid for
N, (FRACQ).

Corollary 3.34 (Lovasz and Schrijver [LS91]). If G —I'(i) — ¢ has Ny-rank at most r
for every i € V, then the Ny -rank of G is at most r + 1.

It follows for example, that the N -rank of a clique, an odd antihole or an odd wheel, is
at most (and hence exactly) 1.

77

Constraint\Rank N Nrr N, | Nrry
odd hole (3.18) 1 1 1 1
clique (3.19) |B| — 2 [(|1B] —1)/2] 1 1
antihole (3.20) (|D]—3)/2 | ||D|/4] <rank < [(|D|+1)/4] | 1 1
wheel (3.21) 2 1 1] 1

Table 3.1: The ranks of some example constraints

Corollary 3.35 (Lovasz and Schrijver [LS91]). The N -rank of a graph G is at most
its stability number a(G).

Note that Corollary 3.35 is tight for a clique.

Lower bounds on the N,-rank. Lovasz and Schrijver [LS91] give no general method
to lower bound the N, -rank. The approach taken by Stephen and Tuncel [ST99], Goemans
and Tungel [GT00], and Cook and Dash [CDO00] is to obtain an analog of Corollary 3.27 that
holds for a specific cone K. That is, they show that N (K) contains a “uniform” solution
that does not belong to K;, and thus obtain that the N -rank of K must be larger than r.
Our analysis in Section 3.5 also follows this approach.

We note that Goemans and Tuncel [GTO00] give a sufficient condition for N, (K) = N(K)
to hold, but this condition appears to be not applicable to the stable set problem.

The ranks of the example constraints are listed in Table 3.4.3.

3.5 The Lovasz-Schrijver relaxations in a random graph

In this section we show that the N, -rank of a random graph G, 1/, is ©(logn), almost surely.
In particular, we analyze the asymptotic behavior of max{1¥z : z € N.(G)} for r = o(logn).
Loosely speaking, we show that the value of this relaxation is “roughly” /n/2", almost surely.

Below are the precise formulations of our lower bound and upper bound on max{1%z :
r € N7(G)}. Our proofs extend the proof of Juhdsz [Juh82] which shows that the theta
function of a random graph is almost surely ©(y/n).

Theorem 3.7. For any fized ¢ > \/2 there exists a fized € > 0, such that if 0 < r < €' logn,
then almost surely max{17z : x € N (G 1/2)} > /n/c .

The proof of Theorem 3.7 appears in Section 3.5.1. Technically, we show that N% (G1/2)
contains, almost surely, the “uniform” solution (1/¢"*'y/n)1, and hence obtain a lower bound
on the value of the relaxation.

To show that the above lower bound is nearly tight, we give in the next thereom an upper
bound on the value of the relaxation. Its proof appears in Section 3.5.2.

Theorem 3.8. For any fized d < \/2 there exists a fized ¢ > 0, such that if 1 < r < €' logn,
then almost surely max{17z : @ € N (G, 1/2)} < 4y/n/d"

It is straightforward that Theorem 3.2 follows from Theorems 3.7 and 3.8 by taking

c=+vV2+06andd=+2-9.

78

The N,-rank of a random graph G, ;.. We can now use Theorem 3.7 and Corol-
lary 3.35 to show that the N, -rank of a random graph is almost surely logarithmic in n,
proving Theorem 3.3. In comparison, the N-rank of a random graph is almost surely at least
Q(n/logn) by Corollary 3.28, and at most n — O(logn) by Corollary 3.21.

Proof of Theorem 3.3. Let G be a random graph from the distribution Gy, 1/2, and let us
first show a lower bound on the N -rank. It is well known that, almost surely, the maximum
size of a stable set in G is roughly 2log, n, i.e.

max{17z : z € STAB} < O(logn)
We have from Theorem 3.7 with r = € logn that, almost surely,
max{17z : z € N7 (FRAC)} > n®®)

It follows that N} (FRAC) # STAB, and hence the N, -rank of FRAC (and therefore of &),
is larger than r = ¢ logn = Q(logn).

The upper bound on N,-rank of G follows from Corollary 3.35. Indeed, the stability
number of a random graph G, ;/; is, almost surely, roughly 2log, n, and hence the IV, -rank
of G is, almost surely, O(logn), as claimed. O

3.5.1 Lower bound on the value of N} (G, /)

We prove Theorem 3.7 by showing that N (G, 1/2) contains, almost surely, the “uniform”
solution (1/¢"*1y/n)1. First we exhibit in Lemma 3.36 certain conditions that are sufficient
for such a uniform solution to be feasible in N7 (G},1/2). We then show in Lemma 3.37 that
these conditions are almost surely satisfied by a random graph G, 1 ».

Notation. We will say that two vertices are non-adjacent if they are not adjacent and they
are not equal (i.e. they are adjacent in the complement graph). We make no attempt to
optimize constants.

Lemma 3.36. Let G be a graph on n vertices, let ¢ = /2(1 4+ €)' for 0 < € < 1/5 and let
r > 0. Assume that for every S C V with |S| < r, the graph G' = G — S — ['(S) satisfies
(let n' denote the number of vertices in G'):

(i) All eigenvalues of the adjacency matriz of G' are at least —(1 + €)v/n'.

(ii) The degree of every vertex in G' is between 1%6%' and (1+¢)%.

If & < ey/n then (1/c"t/n)1 € N (G).
Proof. Proceed by induction on r. For the base case r = 0, observe that (1/¢"*!\/n)1 satisfies
the nonnegativity and edge constraints and therefore is in FR(G) by definition.

For the inductive step, assume it holds for » > 0, and let us show that it holds for r + 1.
Let G be a graph with (i),(ii) holding for any |S| <7+ 1, and ¢ < ey/n. We can choose,

79

in particular, |S| = 0 and have that (i),(ii) hold for the graph G itself. To ease notation,
define
pi= (L4’ /V2)vn (3.22)

Let A be the n x n adjacency matrix of G, i.e. A;; =0 whenever (i,7) € E or i = j and
A;; = 1 otherwise. We know from (i) that all eigenvalues of A are at least —(1+¢)y/n > —p.
Hence, the matrix B = A + ul is positive semidefinite, and there exist vectors zi,..., 2,
such that B;; = z]z;. Therefore

21> = Ba = p, Vi>1. (3.23)
Let zp = 1" 1 ;. Then

lzol> = Q_z)" (D z) = > Bij.=>_> Bj

i>0 §>0 i,j>0 i>0 j>0

To estimate >-;- Bij = > ;5 Aij + p for i > 0, observe that we have from (ii) that

g <Y B <(1+ 6)2; (3.24)

and we conclude that

(3.25)

For every ¢ > 0 let v; be the unit length vectors in the direction of the vector z;, i.e.
v; = z;/||zi]], and let ; = (v} v)?. Observe that xy = (vj vy)? = 1.

We claim that @ = (z1,...,2,)" is in N7 (G). Let us first show how the proof of
Lemma 3.36 follows from this claim. Indeed, from (ii) we have that

(Zi \T Zj>0zj _ Zj>0Bij
24l |20l Vil zoll

Together with (3.24) and (3.25) we can estimate z; = (vvy)? by

T, _

1 1 1
AT =" =0+, (5.29)

and from (3.22) we have that

1 V2 1

> : >
i 21+ e)* (L+e)ctly/n = t2/n

80

and thus (1/¢"7%\/n)1 < x € N7 (G). By the monotonicity guaranteed in Corollary 3.7 we
have (1/¢"?y/n)1 € NI(G), which indeed proves the inductive step.

We now prove the claim z € Nt (G), by presenting a matrix Y € M, (N’ (G)) whose
Oth column corresponds to z. Indeed, let Y be the (n + 1) x (n + 1) matrix defined by
Yi; = (v/v;)/Tiz; for all 4,5 > 0. By definition, Yjo = (v/vo)\/Z:i = x; for i > 0, and in
particular Yyp = xp = 1. We will show that Y satisfies (a),(b),(¢”) and (d). Three of them
are straightforward:

(a) Y is symmetric by definition.
(b) Y = ||vi||*z; = z; and hence Hence Y; = z; = Yj.

(d) Y is positive semidefinite because it can be represented by the vectors {,/z;v;}, i.e.
Y;j = (\/.’L_‘ﬂ)i)T(‘ /:rjvj) for all Z,] Z 0.

Before proving (¢”), observe that for i, j > 0 we have

)

21

i

Y :(=
! 12

Waix; = (1/p)Bij\/ix;
and By; is either u, 0 or 1. So for ¢, 7 > 0 we have

2 if i =
Y, =40 ifi+£jandijcE
(1/p)y/Tiw; ifi#jandij g E

and the estimate of (3.26) gives that x; ~ 1/2p and /T;x; ~ 1/2u. Hence,

1 1
1 x]_ ... le,]_ 2” 2”
XTi;X 5
noa 0T % % Oz
Y: . ~
VTiT; 1 1 1
z, 0 . Ty o 0 52 o

Consider Ye;, the ith column of Y, for ¢ > 0, and scale it by a factor of 1/z; so that
its Oth entry will be 1. We get a fractional solution where vertex ¢ has value 1, its adjacent
vertices have value 0, and its non-adjacent vertices j have value (1/p)y/x;/2; ~ 1/p. Let G
be the subgraph of G induced on the latter vertices (i.e. those non-adjacent to 7), and let
n' denote the number of vertices in G'. Then by Lemma 3.16, we have that the fractional
solution Ye; is in N (G) if and only if its restriction to G" is in N (G’). Each coordinate in
the fractional solution restricted to G’ is bounded by

Lt g Y2 1
w\ x; o cr+l n(1+e) Cr+1\/ﬁ

where the first inequality is due to (3.26), the second is due to (3.22), and the third follows
from n' < (1 4 ¢)§ which we have from (ii). The fractional solution restricted to G’ is

81

thus dominated by the uniform solution (1/¢"*!'v/n’)1, which belongs to N, (G’) by applying
the induction hypothesis to G'. (Note that G’ satisfies (i),(ii) for any 0 < |S| < r by
definition, and that we have ¢t < ey/n/c < ey/n’.) From the monotonicity guaranteed by
Corollary 3.7, we conclude that also the fractional solution restricted to G” is in N (G'), and
therefore Ye; € NI (G).

Consider Y f;, the difference between column 0 and column ¢ of Y, for ¢ > 0. Its Oth
entry is 1 — x; ~ 1 — 1/2pu, its ith entry is 0, and any other jth entry is at most roughly
1/241. Observe that
i+’ _ 1 . 1

20 T N2 T V2
where the first inequality is due to (3.26), the second is due to (3.22) and the third is due
to /n > b5ey/n > 5"t > 10. Scaling the vector Y f; by a factor 1/(1 — z;) so that its Oth
entry is 1, we obtain a fractional solution in which the value of the jth entry is at most

T (T+e°/2n 1

l—z = 12 athyn’

The fractional solution is thus dominated by (1/¢"*1/n)1, which by the induction hypothesis
belongs to N (G). (Note that G satisfies the requirements for 7). From the monotonicity
guaranteed by Corollary 3.7, (as all entries of Y f; are nonnegative) we conclude that Y f; €
NI (G).

We therefore have that (¢”) holds, which completes the proof of the inductive step and
of Lemma 3.36.

O

The proof of Lemma 3.36 extends also to Npgp, (G). Indeed, we need to consider also
Y fij for ij € E. The 0th entry of this vector is 1 —a; —x; ~ 1—2/2p, the ith and jth entries
are 0, and any other kth entry is either roughly 1/2u if k is adjacent to both 4, j, or roughly
1/2u — 2/2p% ~ 1/2p if k is non-adjacent to both 4, j, or roughly 1/2pu — 1/2u% ~ 1/2u if k
is adjacent to exactly one of 7, j. Similar to (3.27) we have that
+x; <2 L <1 !
:E. :E - . —_— —_ .
T VT V2
Scaling this vector (by a small factor) so that the Oth entry is 1, we obtain a fractional
solution in which the value of the kth entry is at most

T < (1+e€)°/2n 1
l—z—x; — 1/V/2 dthnd
The fractional solutions is thus dominated by (1/¢"*!y/n)1, which by the induction hypoth-

esis belongs to N (G). From the monotonicity guaranteed by Corollary 3.7, (as all entries
of Y fi; are nonnegative) we conclude that Y f;; € N7 (G).

Lemma 3.37. Let € > 0 be fized. Then there ezists a fived € > 0 that depends on €, such
that for any r < €'logn, a random graph G, 1/ almost surely satisfies the requirements of
Lemma 3.36.

82

Proof. Observe that a sufficiently small ¢ > 0 that depends on € guarantees that ¢t < ey/n
(we can assume, without loss of generality, that € < 1/5).

Consider a particular choice of S of size s < r, and its corresponding graph G'(V', E")
(the subgraph of G induced on the vertices that are non-adjacent to all the vertices of).
The number of vertices in G’, which we denote by n' = |V’|, has binomial distribution
B(n —s,1/2%). Since s < logn < n/4, we have by Chernoff bound that

Pr[n' < n/2tt] <270/ (3.28)

for some fixed §; > 0.

G’ is a random graph (with edge probability 1/2) on n' vertices. Therefore, the adjacency
matrix of G’ is a random symmetric matrix and we can use results on the concentration of
its eigenvalues. In particular, we have from Krivelevich and Vu [KV00] (which improve the
concentration shown by Fiiredi and Kémlos [FK81], see also [AKVO01]) that

Pr |G’ does not satisfy (i)] < 27" (3.29)

for some 0, > 0 that depends on €.

Since G’ is a random graph, the degree of a particular vertex in G’ has binomial distri-
bution B(n' —1,1/2). By Chernoff bound and the union bound on the n' vertices we have
that

Pr[G" does not satisfy (ii)] < n'27%" (3.30)

for some fixed 03 > 0 that depends on e.

Using the union bound on the events of (3.29) and (3.30) we can bound the probability
that G' does not satisfy (i) or (ii). In order to obtain a bound in terms of n (rather than
n'), we add to the union bound also the event of (3.28) and have that for some fixed 6 > 0
that depends on e,

Pr [G' does not satisfy (i) or (ii)] < n2 /%

Taking the union bound on all possible sets S of size at most r, the probability that the
requirements of Lemma 3.36 do not hold is at most

r
Z (Z) n2 oM < pprtlgson/2 < ri29-on/2
s=0

when r < € logn for a sufficiently small fixed ¢ > 0 that depends on €, and hence these
requirements hold almost surely. O

The proof of Theorem 3.7 follows from Lemma 3.36 and Lemma 3.37.

3.5.2 Upper bound on the value of N (G, /)

To prove Theorem 3.8 we first exhibit in Lemma 3.38 certain conditions that are sufficient
for the inequality 17z < 4y/n/d"** to be valid for N7 (G). We then show in Lemma 3.39
that these conditions are almost surely satisfied by a random graph G/, /2.

83

The Lovész theta function of a graph is defined as 9(G) = max{17z : z € TH(G)},
where TH(G) is the solution set of the nonnegativity constraints (3.8) and the so-called or-
thogonality constraints (see [Lov79, GLS93] for definition). Lovész and Schrijver [LS91] show
that the orthogonality constraints have N -rank at most 1, and hence N, (G) C TH(G).

Lemma 3.38. Let G be a graph on n vertices, let d = \/5(1 —¢) for0<e<1andletr>1.
Assume that for every S C V with |S| < r, the graph G' = G — S — ['(S) satisfies (let n’
denote the number of vertices in G'):

(i) 9(G") < 2(1 + e)V/n.

(ii) The degree of every vertex in G' is between 1%5%, and (1 + €)%

If "t < €?\/n then max{1'z : v € NI(G)} < 4y/n/d"tt.

Proof. Proceed by induction on r. For the base case r = 1, we can choose |S| = 0 and then
(i) and (ii) hold for the graph G itself. In particular, we have that

max{17z :z € N, (G)} < I(G) < 2(1 4+ €)v/n < 4/n/d*

For the inductive step, assume it holds for » > 1 and let us show that it holds for r+1. In
other words, given a graph G with (i),(ii) holding for any |S| < r+ 1, we will prove that the
inequality 17z < 4y/n/d"*? is valid for N7*'(G). By Lemma 3.33 we know that it suffices
to prove that for every vertex v, the inequality that arises from the contraction of v, i.e.
172 < 4y/n/d*+? — 1, is valid for N7 (G —I'(v) — v).

By the induction hypothesis for G = G—T'(v)—v we have that max{17z : z € N7 (G')} <
4/ [d" L e, the inequality 17z < 4v/n//d™! is valid for N7 (G"). Since (ii) holds also for
G itself, we have that n' < (1 + €)%, and hence

4W<4‘/ﬁ‘/1—+€—4‘/ﬁ\/1—+e

4y/n(1 — €?) < 4v/n
dr+l = artl 2 T 2 N

dr+2 — dr+2 1

(I-¢<

where the last inequality follows from d"*? < 4¢*\/n. Therefore we have that for N’ (G')
the inequality 17z < 4v/n’/d"™+' < 4y/n/d"*? — 1 holds, which completes the proof of the
inductive step. O

Lemma 3.39. Let € > 0 be fized. Then there ezists a fived € > 0 that depends on €, such
that for any r < €'logn, a random graph G, 1/ almost surely satisfies the requirements of
Lemma 3.38.

Proof. The proof is similar to the proof of Lemma 3.37, but with the different requirement (i).
Juhdsz [Juh82] shows that ¥(G’) is at most (2 + o(1))v/n’, almost surely, by using the result
of Fiiredi and Kémlos [FK81] on the concentration of eigenvalues of random symmetric
matrices. By using the stronger concentration result of Krivelevich and Vu [KV00] (see
also [AKV01]), we have that (3.29) holds also here, and the proof follows. O

The proof of Theorem 3.8 follows from Lemma 3.38 and Lemma 3.39.

84

Bibliography

[ABSS97]

[AKK99)

[AKS98]

[AKVO01]

[Ali95]

[ALM*98)]

[AR98]

[Aro98]

[AS92]

[AS98]

[BCLSS87]

[BH92]

S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate
optima in lattices, codes, and systems of linear equations. J. Comput. System
Sci., 54(2, part 2):317-331, 1997.

S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes
for dense instances of NP-hard problems. J. Comput. System Sci., 58(1):193-210,
1999.

N. Alon, M. Krivelevich, and B. Sudakov. Finding a large hidden clique in a
random graph. Random Structures Algorithms, 13(3-4):457-466, 1998.

N. Alon, M. Krivelevich, and V. H. Vu. On the concentration of eigenvalues of
random symmetric matrices. Manuscript, January 2001.

Farid Alizadeh. Interior point methods in semidefinite programming with appli-
cations to combinatorial optimization. SIAM J. Optim., 5(1):13-51, 1995.

S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification
and the hardness of approximation problems. J. ACM, 45(3):501-555, 1998.

Y. Aumann and Y. Rabani. An O(log k) approximate min-cut max-flow theorem
and approximation algorithm. SIAM J. Comput., 27(1):291-301, 1998.

S. Arora. Polynomial time approximation schemes for Euclidean traveling sales-
man and other geometric problems. J. ACM, 45(5):753-782, 1998.

N. Alon and J. H. Spencer. The probabilistic method. John Wiley & Sons, Inc.,
New York, 1992.

S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization
of NP. J. ACM, 45(1):70-122, 1998.

T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser. Graph bisection algo-
rithms with good average case behavior. Combinatorica, 7(2):171-191, 1987.

R. Boppana and M. M. Halldérsson. Approximating maximum independent sets
by excluding subgraphs. BIT, 32:180-196, 1992.

85

[BJ92

[Bop87]

[BS95]

[CDO0]

[CK95]

[CK99]

[CLRYO]

[DF89)

[DF99)]

[DKRS99)

[DS99]

[ENRS97]

[ENRS99)]

[EPOO]

T. N. Bui and C. Jones. Finding good approximate vertex and edge partitions is
NP-hard. Inform. Process. Lett., 42(3):153-159, 1992.

R. B. Boppana. Eigenvalues and graph bisection: An average-case analysis. In
28th Annual Symposium on Foundations of Computer Science, pages 280-285,
October 1987.

A. Blum and J. Spencer. Coloring random and semi-random k-colorable graphs.
J. Algorithms, 19(2):204-234, September 1995.

W. Cook and S. Dash. On the matrix-cut rank of polyhedra. Manuscript, August
2000.

P. Crescenzi and V. Kann. A compendium of NP optimization problems. Techni-
cal Report SI/RR-95/02, Dipartimento di Scienze dell’Informazione, Universita
di Roma La Sapienza, 1995. This list is updated continuously and can be found
at http://www.nada.kth.se/"viggo/problemlist.

A. Condon and R. M. Karp. Algorithms for graph partitioning on the planted
partition model. In Randomization, approzimation, and combinatorial optimiza-
tion, pages 221-232. Springer, Berlin, 1999.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press/McGraw-Hill, Cambridge, Massachusetts, 1990.

M. E. Dyer and A. M. Frieze. The solution of some random NP-hard problems
in polynomial expected time. J. Algorithms, 10(4):451-489, 1989.

R. G. Downey and M. R. Fellows. Parameterized complexity. Springer-Verlag,
New York, 1999.

[. Dinur, G. Kindler, R. Raz, and S. Safra. An improved lower bound for approx-
imating CVP. Manuscript, 1999.

[. Dinur and S. Safra. On the hardness of approximating label cover. Technical
Report TR99-015, ECCC, 1999.

G. Even, J. Naor, S. Rao, and B. Schieber. Fast approximate graph partitioning
algorithms. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 639-648. ACM, New York, 1997.

G. Even, J. Naor, S. Rao, and B. Schieber. Fast approximate graph partitioning
algorithms. SIAM J. Comput., 28(6):2187-2214, 1999.

M. Elkin and D. Peleg. Strong inapproximability of the basic k-spanner problem.
In 27th International Colloguium on Automata, Languages and Programming,
pages 636-647. Springer, 2000.

86

[FAIVL81] W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within

[Fei97]

[Fei9g)

[Fei00]

[FGL*96]

[FK81]

[FK98]

[FK00a)]

[FKOOD]

[FKO01a]

[FKO1b)

[FKNOO]

[FMO7]

[GJT79]

[GJST6]

1 + ¢ in linear time. Combinatorica, 1(4):349-355, 1981.

U. Feige. Randomized graph products, chromatic numbers, and the Lovasz v-
function. Combinatorica, 17(1):79-90, 1997.

U. Feige. A threshold of Inn for approximating set cover. J. ACM, 45(4):634-652,
1998.

U. Feige. Approximating the bandwidth via volume respecting embeddings. J.
Comput. System Sci., 60(3):510-539, 2000.

U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Interactive proofs
and the hardness of approximating cliques. J. ACM, 43(2):268-292, March 1996.

Z. Firedi and J. Komlds. The eigenvalues of random symmetric matrices. Com-
binatorica, 1(3):233-241, 1981.

U. Feige and J. Kilian. Zero knowledge and the chromatic number. J. Comput.
System Sci., 57(2):187-199, 1998.

U. Feige and R. Krauthgamer. Finding and certifying a large hidden clique in a
semirandom graph. Random Structures Algorithms, 16(2):195-208, 2000.

U. Feige and R. Krauthgamer. A polylogarithmic approximation of the minimum
bisection. In 41st Annual IEEE Symposium on Foundations of Computer Science,
pages 105-115, November 2000.

U. Feige and J. Kilian. Heuristics for semirandom graph problems. A preliminary
version appeared in FOCS’98, pp. 674-683. To appear in J. Comput. System Sci.,
2001.

U. Feige and R. Krauthgamer. The probable value of the Lovasz-Schrijver relax-
ations for maximum independent set. Manuscript, April 2001.

U. Feige, R. Krauthgamer, and K. Nissim. Approximating the minimum bisection
size. In 32nd Annual ACM Symposium on Theory of Computing, pages 530-536,
May 2000.

A. Frieze and C. McDiarmid. Algorithmic theory of random graphs. Random
Structures Algorithms, 10(1-2):5-42, 1997.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. W.H. Freeman and Company, 1979.

M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete
graph problems. Theoret. Comput. Sci., 1(3):237-267, 1976.

87

[GKR'99] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yannakakis.

[GLS93]

[GSV99]

[GT00]

[Hal93]

[Has97]

[Has99]

[HJ85]

[Hoc97]

[IK75]

[Jer92]

[JohT74]

[JPO0]

7598]

[JT96]

Near-optimal hardness results and approximation algorithms for edge-disjoint
paths and related problems. In 31st Annual ACM Symposium on Theory of
Computing, pages 19-28. ACM, 1999.

M. Grotschel, L. Lovasz, and A. Schrijver. Geometric algorithms and combina-
torial optimization. Springer-Verlag, Berlin, second edition, 1993.

N. Garg, H. Saran, and V. V. Vazirani. Finding separator cuts in planar graphs
within twice the optimal. SIAM J. Comput., 29(1):159-179, 1999.

M. X. Goemans and L. Tuncel. When does the positive semidefiniteness con-
straint help in lifting procedures. Manuscript, January 2000.

M. M. Halldérsson. A still better performance guarantee for approximate graph
coloring. Inform. Process. Lett., 45(1):19-23, 1993.

J. Hastad. Some optimal inapproximability results. In 29th Annual ACM Sym-
posium on Theory of Computing, pages 1-10, El Paso, Texas, 4-6 May 1997.

J. Hastad. Clique is hard to approximate within n'=¢. Acta Math., 182(1):105-
142, 1999.

R. A. Horn and C. R. Johnson. Matriz analysis. Cambridge University Press,
Cambridge-New York, 1985.

D. Hochbaum, editor. Approzimation Algorithms for NP-Hard Problems. PWS
Publishing Company, 1997.

O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack
and sum of subset problems. Journal of the ACM, 22(4):463-468, 1975.

M. Jerrum. Large cliques elude the Metropolis process. Random Structures
Algorithms, 3(4):347-359, 1992.

D.S. Johnson. Approximation algorithms for combinatorial problems. J. Comput.
System Sci., 9:256-278, 1974.

A. Juels and M. Peinado. Hiding cliques for cryptographic security. Des. Codes
Cryptogr., 20(3):269-280, 2000.

M. Jerrum and G. B. Sorkin. The Metropolis algorithm for graph bisection.
Discrete Appl. Math., 82(1-3):155-175, 1998.

D. S. Johnson and M. A. Trick, editors. Cliques, Coloring, and Satisfiability:
Second DIMACS Implementation Challenge, 1993, volume 26 of DIMACS Series
wn Discrete Mathematics and Theoretical Computer Science. American Mathe-
matical Society, 1996.

88

[Juh82]

[Kar72]

[Kar76]

[KMRO7]

[Knu94|

[KPRO3]

[KS96]

[Kué95)

[KV00]

[Lev6]

[LLKSS5]

[LLRO5]

[Lov79]

[Lov94]
[LRSS]

F. Juhédsz. The asymptotic behaviour of Lovasz’ # function for random graphs.
Combinatorica, 2(2):153-155, 1982.

R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and
J. W. Thatcher, editors, Complexity of Computer Computations (Proc. Sympos.),
pages 85—103. Plenum Press, 1972.

R. M. Karp. The probabilistic analysis of some combinatorial search algorithms.
In Algorithms and complezity (Proc. Sympos.), pages 1-19. Academic Press, 1976.

D. Karger, R. Motwani, and G. D. S. Ramkumar. On approximating the longest
path in a graph. Algorithmica, 18(1):82-98, 1997.

D. E. Knuth. The sandwich theorem. FElectron. J. Combin., 1:Article 1, approx.
48 pp. (electronic), 1994.

P. Klein, S. A. Plotkin, and S. Rao. Excluded minors, network decomposition, and
multicommodity flow. In 25th Annual ACM Symposium on Theory of Computing,
pages 682-690, May 1993.

D. R. Karger and C. Stein. A new approach to the minimum cut problem. J.
ACM, 43(4):601-640, 1996.

L. Kucera. Expected complexity of graph partitioning problems. Discrete Appl.
Math., 57(2-3):193-212, 1995.

M. Krivelevich and V. H. Vu. Approximating the independence number and the
chromatic number in expected polynomial time. In 27th International Colloguium
on Automata, Languages and Programming, pages 13—-24. Springer, 2000.

L. A. Levin. Average case complete problems. SIAM J. Comput., 15(1):285-286,
1986.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D . B. Shmoys, editors.
The Traveling Salesman Problem. Wiley-Interscience series in discrete mathe-
matics, 1985.

N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of
its algorithmic applications. Combinatorica, 15(2):215-245, 1995.

L. Lovéasz. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory,
25(1):1-7, 1979.

L. Lovész. Stable sets and polynomials. Discrete Math., 124(1-3):137-153, 1994.

F. T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uni-
form multicommodity flow problems with applications to approximation algo-
rithms. In 29th Annual Symposium on Foundations of Computer Science, pages
422-431, October 1988.

89

[LR99)

[LS91]

[MRO5]

[PY91]

[Rei94]

[SEVMO8]

[Shm97]

[ST97]

[ST99]

[Sub99]

[SV95)

[Vaz01]

T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms. J. ACM, 46(6):787-832, 1999.

L. Lovéasz and A. Schrijver. Cones of matrices and set-functions and 0-1 opti-
mization. STAM J. Optim., 1(2):166-190, 1991.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and
complexity classes. J. Comput. System Sci., 43(3):425-440, December 1991.

G. Reinelt. The Traveling Salesman, volume 840 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 1994.

C. R. Subramanian, M. Fiirer, and C. E. Veni Madhavan. Algorithms for coloring
semi-random graphs. Random Structures Algorithms, 13(2):125-158, 1998.

D.B. Shmoys. Cut problems and their applications to divide-and-conquer. In
D. Hochbaum, editor, Approzimation Algorithms for NP-Hard Problems. PWS
Publishing Company, 1997.

H. D. Simon and S. Teng. How good is recursive bisection? SIAM J. Sci.
Comput., 18(5):1436-1445, 1997.

T. Stephen and L. Tungel. On a representation of the matching polytope via
semidefinite liftings. Math. Oper. Res., 24(1):1-7, 1999.

C. R. Subramanian. Minimum coloring k-colorable graphs in polynomial average
time. J. Algorithms, 33(1):112-123, 1999.

H. Saran and V. V. Vazirani. Finding £ cuts within twice the optimal. SIAM J.
Comput., 24(1):101-108, 1995.

V. Vazirani. Approzimation algorithms. Springer Verlag, 2001. To appear.

90

