
Coping with NP-hardness:

Approximating minimum bise
tion

and heuristi
s for maximum
lique

Thesis for the Ph.D. Degree

by

Robert Krauthgamer

Supervisor: Prof. Uriel Feige

Department of Computer S
ien
e and Applied Mathemati
s

The Weizmann Institute of S
ien
e

Submitted to: Feinberg Graduate S
hool

Weizmann Institute of S
ien
e

Rehovot 76100, Israel

April 16, 2001

(Revised De
ember 2001)

ii

Abstra
t

Many important optimization problems are known to be NP-hard. That is,

unless P = NP, there is no polynomial time algorithm that optimally solves these

problems on every input instan
e. We study algorithmi
 ways for \
oping" with

NP-hard optimization problems.

One possible approa
h for
oping with the NP-hardness is to relax the re-

quirement for exa
t solution, and devise approximation algorithms, i.e. eÆ
ient

algorithms that produ
e a solution that is guaranteed to be nearly optimal. In

the last de
ade, our understanding of many NP-hard optimization problems was

greatly improved, both from the dire
tion of approximation algorithms and from

the dire
tion of hardness of approximation. However, there is still a large gap in

our understanding of the approximability of several fundamental problems.

A notable example is the minimum bise
tion problem, that requires to �nd

in a graph a minimum-
ost
ut that partitions the verti
es into two equal-size

sets. This problem has appli
ations both in theory and in pra
ti
e. The seminal

work of Leighton and Rao (1988) was largely motivated by this problem, and

led to algorithms with approximation ratio O(logn) for several related problems.

However, prior to our work no sublinear (in n) approximation ratio was known

for this problem, and its approximability is a famous open problem.

We signi�
antly improve the known approximation ratio for minimum bise
-

tion. Our algorithms a
hieve an approximation ratio O(log

2

n), whi
h is \in the

same ballpark" as the
urrent approximation ratios for many related problems.

Another approa
h for
oping with the NP-hardness is to relax the requirement

for worst-
ase analysis, and
onsider instead heuristi
 algorithms that are su
-

essful on average-
ase input instan
es. One main diÆ
ulty in providing rigorous

analysis of heuristi
s lies in realisti
ally modeling average-
ase instan
es.

Consider for example the hidden
lique problem. In a random model for the

problem, a random graph on n verti
es is
hosen (i.e. G

n;1=2

) and then a
lique of

size k is randomly pla
ed in the graph, and the goal is to �nd the planted
lique

in the graph. A semi-random model may extend this random model by allowing

an adversary to remove any edge that is not inside the planted
lique.

We devise for the hidden
lique problem a heuristi
 that is based on the Lov�asz

theta fun
tion, a well-known semide�nite programming relaxation of maximum

lique. Our heuristi
 is su

essful in the semi-random model when k �
(

p

n).

In
ontrast, previous heuristi
s have similar su

ess in the random model but fail

in the semi-random model.

We also study relaxations that are stronger than the Lov�asz theta fun
tion,

namely those obtained by the \lift-and-proje
t" method of Lov�asz and S
hrijver

(1991). We show that on a random graph G

n;1=2

the value of these stronger

relaxations is
omparable to the theta fun
tion, and hen
e they do not extend

our heuristi
 mentioned above to a planted
lique of smaller size k = o(

p

n).

iii

This thesis is based on the following papers.

1. U. Feige and R. Krauthgamer. Finding and
ertifying a large hidden
lique

in a semirandom graph. Random Stru
tures Algorithms, 16(2):195{208,

2000.

2. U. Feige, R. Krauthgamer, and K. Nissim. Approximating the minimum

bise
tion size. In 32nd Annual ACM Symposium on Theory of Computing,

pages 530{536, May 2000.

3. U. Feige and R. Krauthgamer. A polylogarithmi
 approximation of the

minimum bise
tion. In 41st Annual IEEE Symposium on Foundations of

Computer S
ien
e, pages 105{115, November 2000.

4. U. Feige and R. Krauthgamer. The probable value of the Lov�asz-S
hrijver

relaxations for maximum independent set. Manus
ript, April 2001.

De
laration. I, Robert Krauthgamer, de
lare that this thesis summarizes my

independent work under the supervision of Professor Uriel Feige, with the ex
ep-

tion of Se
tion 2.6, whose results were obtained jointly with Kobbi Nissim.

iv

A
knowledgments

It is a great pleasure to a
knowledge the people who helped me along the

way. My �rst and foremost gratitude goes to my advisor, Uri Feige, who helped

me open the door into the world of s
ienti�
 resear
h. I am indebted to his

remarkable guidan
e, whi
h led me through many unknown paths during this

work. Working with him was a fas
inating experien
e from whi
h I (hope I have)

learned a lot.

The Weizmann Institute was a wonderful environment to be a student in.

I thank the entire sta� for a
tively
reating this environment, and parti
ularly

Oded Goldrei
h, Sha� Goldwasser, David Harel, Moni Naor, David Peleg, Ran

Raz, and Adi Shamir for valuable intera
tions and feedba
k, and for many
ourses

and seminars.

I am grateful to
olleagues with whom I had the pleasure to do resear
h (that

did not get into this thesis). I thank Nati Linial, Ori Sasson, Mi
hael Mitzen-

ma
her, Andrei Broder, Guy Kortsarz, T.S. Jayram, Tra
y Kimbrel, Baru
h

S
hieber, Maxim Sviridenko, Kobbi Nissim, Shai Halevi and Eyal Kushilevitz for

ollaborating with me.

Many thanks go to my fellow students at Weizmann for an abundan
e of in-

formal sessions and dis
ussions, and for their ex
iting
ompany. A short (but

de�nitely in
omplete) list in
ludes Kobbi Nissim, Yehuda Hassin, Mi
hael Lang-

berg, Benny Pinkas, Omer Reingold, Sitvanit Ruah, Elad Sha
har, Alon Rosen,

Yehuda Lindell, Mi
hael Elkin and Hillel Kugler.

My deepest gratitude goes to my entire family, for their love and for their

belief in me. In parti
ular, my parents, Arnon and Rita, deserve all the
redit for

motivating me sin
e my
hildhood and for supporting me on this long journey.

Finally, I am most grateful to my wife, who a

ompanied me in these do
toral

studies with great patien
e and �delity. Gali, your endless love and en
ourage-

ment gives me
on�den
e in my way.

v

vi

Contents

1 Introdu
tion 1

1.1 Basi
 terminology . 2

1.2 Approximation algorithms . 3

1.3 Analysis of heuristi
s . 4

1.4 Overview of our results . 7

1.5 Perspe
tives . 10

2 Approximating minimum bise
tion 11

2.1 Introdu
tion . 11

2.1.1 Previous work . 12

2.1.2 Our results . 12

2.1.3 Conventions and notation . 14

2.2 Overview and te
hniques . 14

2.3 Finding an amortized
ut . 22

2.3.1 Min-ratio
uts are O(1)-amortized . 22

2.3.2 Approximate min-ratio
uts might be poor amortized
uts 24

2.3.3 Finding O(�)-amortized
ut . 25

2.4 The bise
tion algorithm . 28

2.4.1 De
omposition stage . 28

2.4.2 Labeling stage . 29

2.4.3 The
harge of a bise
tion . 30

2.4.4 Combining stage . 33

2.5 Extensions . 35

2.5.1 Edge
osts . 36

2.5.2 Polynomial vertex weights . 37

2.5.3 Separating two verti
es from ea
h other (s� t
ut) 38

2.5.4 Cutting an arbitrary given number of verti
es 39

2.5.5 Cutting into a �xed number of parts 39

2.5.6 Bi
riteria approximation and balan
ed
uts 41

2.6 Cutting a few verti
es from a graph . 43

2.6.1 A randomized algorithm . 43

2.6.2 Extensions . 45

2.7 Con
luding remarks. 46

vii

3 Heuristi
s for maximum
lique 47

3.1 Introdu
tion . 47

3.1.1 Semi-random model for the hidden
lique problem 49

3.1.2 Relaxations of the problem . 50

3.1.3 Our results . 52

3.2 The theta fun
tion in a hidden
lique graph 54

3.3 Algorithm for the hidden
lique problem . 57

3.3.1 The basi

ase . 57

3.3.2 Smaller values of k . 59

3.3.3 A sandwi
hed graph G

�

. 60

3.3.4 Extension to other edge probabilities 61

3.4 The matrix-
ut operators of Lov�asz and S
hrijver 61

3.4.1 De�nitions . 62

3.4.2 Basi
 properties . 66

3.4.3 Bounds on the rank . 71

3.5 The Lov�asz-S
hrijver relaxations in a random graph 78

3.5.1 Lower bound on the value of N

r

+

(G

n;1=2

) 79

3.5.2 Upper bound on the value of N

r

+

(G

n;1=2

) 83

Bibliography 85

viii

Chapter 1

Introdu
tion

Optimization problems arise naturally in a variety of pra
ti
al and theoreti
al
ontexts.

Many su
h important problems are known to be NP-hard; that is, unless P = NP, there is

no polynomial time algorithm that optimally solves these problems on every input instan
e,

see e.g. [GJ79℄.

We study algorithmi
 ways for \
oping" with NP-hard optimization problems. In many

ases, merely
lassifying a problem as NP-hard does not suÆ
e, and one needs to apply some

algorithm for dealing with the problem at hand. It is therefore desirable to devise algorithms

that
ope with the NP-hardness, by means of relaxing some of the requirements.

One approa
h for
oping with the NP-hardness is to relax the requirement for exa
t

solution, and settle for an approximate solution, i.e. a solution that is guaranteed to be nearly

optimal. These approximation algorithms are usually evaluated by their approximation ratio,

whi
h is the worst-
ase ratio between the values of the solution provided by the algorithm

and that of the optimum solution.

Another approa
h for
oping with the NP-hardness is to relax the requirement for worst-

ase analysis, and
onsider instead the behavior of an algorithm on average-
ase input in-

stan
es. We are interested in evaluating these heuristi
 algorithms by providing for them

rigorous performan
e guarantees (and not by experimental methods su
h as ben
hmarks).

In this work we restri
t our attention to the two approa
hes mentioned above, namely

approximation algorithms and analysis of heuristi
s, but we remark that there are also other

approa
hes. For example, one may relax the polynomial time restri
tion and seek subexpo-

nential time algorithms, trying to improve over straightforward exhaustive sear
h. Another

approa
h examines whether a problem is �xed-parameter tra
table, whi
h means that there

exists for the problem an algorithm whose running time is polynomial when some parameter

of the problem (e.g. the value of the optimum solution) is �xed independently of the input

size. It is also possible to
ombine several approa
hes, su
h as heuristi
s that produ
e (on

average) nearly optimal solutions, or (superpolynomial) bran
h and bound algorithms that

save running time by using approximation algorithms (or heuristi
s) to skip bran
hes that

do not
ontain (or are unlikely to
ontain) an optimal solution.

The literature on
oping with NP-hard optimization problems is immense, and we will

only mention a few referen
es of a broader s
ope. The famous example of the traveling sales-

man problem (TSP) is studied thoroughly in [LLKS85℄, in
luding approximation algorithms,

1

average-
ase analysis, empiri
al evaluation, polyhedral methods, and bran
h and bound

methods. The approa
h of approximation algorithms is studied in [Ho
97℄ and in [Vaz01℄

(see also the
ompendium [CK95℄). Average-
ase analysis (from the viewpoint of random

graphs) is surveyed in [FM97℄. The approa
h of �xed-parameter tra
tability is studied

in [DF99℄. Various heuristi
s are evaluated empiri
ally in [Rei94℄ and in [JT96℄.

One may wonder whether this diversity of approa
hes for
oping with NP-hardness is re-

ally ne
essary. One possible reason for this is that no one approa
h seems to be suitable in all

ases and e�e
tive for all problems. Approximation algorithms, for example, seem promising

in several problems (e.g. Eu
lidean TSP [Aro98℄), where an arbitrarily good approximation

an be found in polynomial time, but other problems (e.g. maximum
lique [H�as99℄),
annot

be approximated within ratio of n

1��

, for any �xed � > 0, unless P = ZPP. The diversity of

approa
hes seems essential also be
ause of the diÆ
ulty in
omparing di�erent approa
hes.

In parti
ular, an algorithm that performs well with respe
t to one
riterion, might perform

poorly with respe
t to another
riterion.

1.1 Basi
 terminology

An optimization problem is a sear
h problem, i.e. ea
h problem instan
e has a set of feasible

solutions, where the size of ea
h solution is polynomial in the size of the instan
e. Ea
h

solution is asso
iated with a value (e.g.
ost or bene�t), whi
h is a positive integer that

an be
omputed from the instan
e and the solution in polynomial time. The optimization

problem
an be either a minimization problem or a maximization problem, and it requires

to �nd a feasible solution with an optimal (minimal or maximal, respe
tively) value.

In general, we spe
ify the
omputational resour
es (time, spa
e and randomness) used by

an algorithm as a fun
tion of the input size, where the input is assumed to be
oded in an

alphabet of a �xed size (e.g. in binary). However, in graph problems it is more
onvenient

to
hara
terize the input size by the number of verti
es in the input graph, whi
h is denoted

throughout by n. We say that an algorithm is eÆ
ient if its running time is polynomial (in

the input size).

We next de�ne the optimization problems that we address in this work. These graph

problems are known to be NP-hard, see e.g. [GJ79, CK95℄.

Minimum bise
tion. A
ut of a graph is a partition of the graph verti
es into two nonempty

subsets
alled the sides of the
ut, and
onsists of the edges with one endpoint in ea
h subset.

The edges of a
ut are also said to
ross the
ut. The
ost of a
ut is the number of edges

that
ross it. A bise
tion is a
ut whose two sides are of equal
ardinality. The minimum

bise
tion problem requires to �nd in an input graph a bise
tion of minimal
ost.

Maximum
lique. A
lique in a graph is a subset of its verti
es that indu
e a
omplete

subgraph, i.e. every two verti
es in the subset are
onne
ted by an edge. The size of a
lique

is the number of verti
es in it. The maximum
lique problem requires to �nd in an input

graph a
lique of maximal size.

Maximum independent set (a.k.a. stable set). An independent set in a graph is a

subset of its verti
es that indu
e an empty subgraph, i.e. every two verti
es in the subset

2

are not
onne
ted by an edge. The size of an independent set is the number of verti
es in it.

The maximum independent set problem requires to �nd in an input graph an independent

set of maximal size.

It is well-known that that a
lique in a graph G
orresponds to an independent set in

the edge
omplement graph

�

G, and therefore there is an equivalen
e between the maximum

lique problem and the maximum independent set problem.

1.2 Approximation algorithms

In many appli
ations it is reasonable to
ompromise on a solution whose value is
lose to the

optimum, if su
h a solution
an be found eÆ
iently. Therefore, the quality of a solution is

measured by the proximity of its value to that of the optimal solution. Most
ommonly, the

proximity between two values is measured by their ratio (although it is sometimes plausible

to measure it by their di�eren
e).

De�nitions. A polynomial time algorithm A has approximation ratio r � 1 if for any

instan
e of the problem, algorithm A produ
es a solution whose value is within a ratio

of r from the value of an optimal solution for this instan
e. We also say that A is an r

approximation algorithm. Note that the approximation ratio is measured for the worst-
ase

instan
e of the problem. Typi
ally, r is allowed to be a fun
tion of the instan
e size (e.g. of

the number of verti
es n in the input graph for graph problems). In the
ase of a randomized

approximation algorithm we
onsider the expe
ted value of the algorithm's solution to the

instan
e (where the expe
tation is taken over the
oin tosses of the algorithm).

A family of algorithms is
alled a polynomial time approximation s
heme (PTAS) if the

family
ontains algorithms with approximation ratios that are arbitrarily
lose to 1, i.e. the

family
ontains a 1+ � approximation algorithm for every � > 0. Su
h a family of algorithms

is
alled a fully polynomial time approximation s
heme (FPTAS) if for every � > 0, the family

ontains a 1 + � approximation algorithm whose running time is polynomial in 1=�.

Ba
kground. The approximation ratio of an NP-hard problem is usually studied from

two dire
tions. An approximability result shows that this problem
an be approximated

within some ratio r

1

, by devising an approximation algorithm for it. An inapproximability

result shows that the problem
annot be approximated within some ratio r

2

, unless P = NP

(or a similar assumption). For some problems, the approximability and inapproximability

results are essentially tight, namely r

1

and r

2

are equal up to low order terms, yielding an

approximation threshold that
ompletely
lassi�es this problem in terms of approximation.

For other problems, there is
urrently a large gap between the two types of results, and

they are not well-understood in terms of approximation. The
ompendium [CK95℄
ontains

referen
es to most of the results a
hieved in this �eld, and many important results are

des
ribed in [Ho
97℄ and in [Vaz01℄.

NP-hard optimization problems might di�er quite substantially in terms of their approx-

imation ratios. We mention below a few typi
al examples, although it should be noted that

there are also other (less typi
al) approximation ratios, see e.g. [GKR

+

99℄ and [EP00℄.

3

Some problems are known to be NP-hard to solve exa
tly but have an arbitrarily good

�xed approximation ratio. One example for a problem that admit an FPTAS is Knapsa
k[IK75℄.

Examples for problems that admit PTAS in
lude Bin-Pa
king [FdlVL81℄ and Eu
lidean-

TSP [Aro98℄.

The \next" level in the quality of approximation is a
onstant ratio. On the one hand,

many problems are known to be approximable within a
onstant ratio. On the other hand,

many of them do not have a PTAS, unless P = NP. That is, for ea
h su
h problem there

is an inapproximability result to within some
onstant ratio larger than 1. Many of these

results are proved using a general te
hnique that follows from the
onne
tion between Prob-

abilisti
ally Che
kable Proofs (PCPs) and inapproximability [FGL

+

96, AS98, ALM

+

98℄. For

example, ea
h of the problems MAX-SAT, MAX-CUT, Vertex
over, Metri
-TSP, Multiway

ut and Steiner tree is approximable within some
onstant ratio, but inapproximable (assum-

ing P 6= NP) within another
onstant ratio, see e.g. [PY91, ALM

+

98℄. A few problems have

a
onstant approximation threshold, e.g. for a version of MAX-SAT known as MAX-E3SAT,

a 8=7 approximation algorithm [Joh74℄ is mat
hed by an inapproximability result [H�as97℄

within a ratio of 8=7� �, for any �xed � > 0 (assuming P 6= NP).

Other problems, su
h as Set-Cover, Hitting-Set and Dominating-Set,
an be approx-

imated [Joh74℄ within a logarithmi
 order, but
annot be approximated [Fei98℄ within

(1 � �) lnn, for any � > 0 (unless NP � DTIME(n

O(log log n)

)). Several problems have a

polylogarithmi
 approximation ratio and a far from tight (if any) inapproximability result,

e.g.
utwidth [LR99℄, bandwidth [Fei00℄ and minimum bise
tion (see Se
tion 1.4).

There are problems whi
h are even harder to approximate. Several problems, su
h as

Label
over, Nearest Latti
e Ve
tor (CVP), Nearest Codeword and Longest Path
annot

be approximated [ABSS97, KMR97℄ within 2

log

1��

n

, for any �xed � > 0, unless NP �

DTIME(n

polylogn

) (for some of these problems, these inapproximability results were slightly

improved in [DS99, DKRS99℄). However, there is still a large gap between the inapproxima-

bility results and the approximability results for these problems, and it is possible that they

are even harder to approximate.

Some problems, su
h as maximum
lique and
hromati
 number,
annot be approx-

imated [H�as99, FK98℄ within n

1��

, for any �xed � > 0, unless P = ZPP. Known al-

gorithms a
hieve approximation ratios of O(n= log

2

n) for maximum
lique [BH92℄ and

O(n(log logn)

2

= log

3

n) for
hromati
 number [Hal93℄.

1.3 Analysis of heuristi
s

Although hard to solve in the worst-
ase, NP-hard problems may be signi�
antly easier

on \average" instan
es en
ountered in pra
ti
e. It is therefore desirable to devise heuristi

algorithms, that su

essfully produ
e an optimal solution on average-
ase instan
es. We wish

to evaluate heuristi
s by rigorous analysis methods that explain or predi
t good behavior of

the heuristi
 in real-life instan
es.

Most
ommonly, a rigorous analysis of a heuristi

onsists of an input model and of

performan
e guarantees. The input model de�nes whi
h input instan
es are
onsidered as

average-
ase instan
es. The performan
e guarantees are desired properties that the heuristi

should satisfy when it is applied on average-
ase instan
es from the input model.

4

Many results and open problems in this area are surveyed by Frieze and M
Diarmid [FM97℄.

Random input models. A main diÆ
ulty in analyzing heuristi
s is to devise a input

model that realisti
ally represents average-
ase instan
es that o

ur in pra
ti
e. One possible

input model is a random model, that assumes some probability distribution on the input

instan
es. Usually, the desired performan
e guarantee is that the heuristi
 su

essfully �nds

an optimal solution on all but a \vanishing" part of the input distribution. Formally, an event

in a distribution of graphs on n verti
es is said to happen almost surely if its probability

is 1 � o(1) (i.e. approa
hes 1 as n tends to in�nity); then the formal requirement of the

performan
e guarantee stated above is that the heuristi
 almost surely �nds an optimal

solution.

A straightforward random model for graph problems is G

n;p

, the random graph on n

verti
es with edge probability p, whi
h is formally de�ned as the distribution generated by

pla
ing an edge independently with probability p between ea
h pair of n verti
es. For

example, the distribution G

n;1=2

represents a uniform distribution on all graphs on n labeled

verti
es. In general, however, p may depend on n.

For some problems, the model of a random graph G

n;p

is an inadequate framework for

evaluating heuristi
s. We illustrated this by the minimum bise
tion problem. It
an be seen

that for p� 1=n, almost surely all the bise
tions in a random graph G

n;p

have
ost roughly

pn

2

=4. Therefore, good and bad heuristi
s have nearly the same performan
e in this random

graph model.

Another random model that has been suggested is similar to the random graph model,

ex
ept that one solution is \planted" in the graph. That is, the graph is
reated by �rst

hoosing a solution at random, and then pla
ing edges in the graph at random in a way that

ensures that the
hosen solution will almost surely be an optimal solution. For example, a

planted bise
tion model may �rst
hoose a random partition of the n graph verti
es into two

equal-size subsets, and then pla
e edges at random, so that an edge is pla
ed with probability

q if it
rosses the bise
tion de�ned by the
hosen partition, and with probability p if it does

not. If q is suÆ
iently smaller than p, then the bise
tion de�ned by the
hosen partition is,

almost surely, a minimum bise
tion. Several heuristi
s for this and similar planted bise
tion

models were studied in [BCLS87, Bop87, DF89, JS98, CK99, FK01a℄.

Semi-random input models. Although the input distributions employed by random

models are quite natural, there is usually no
laim that these models represent instan
es that

o

ur in real-life appli
ations. Furthermore, a heuristi
 that relies ex
essively on statisti
al

properties of the graphs in these distributions (e.g. all verti
es have roughly the same degree),

might perform well on these spe
i�
 distributions, but poorly on more realisti
 distributions.

It is therefore desirable to have input models that represent (e�e
tively) a wider range of

instan
es.

To enri
h the input model, Blum and Spen
er [BS95℄ suggested a semi-random model, in

whi
h the input is generated by a mixture of random and adversarial
hoi
es. In the strongest

of their semi-random models, a graph is �rst drawn at random from some distribution,

and then an adversary
an modify this graph subje
t to some restri
tions. The desired

performan
e guarantee is that regardless of the adversary (i.e. for all adversaries), the

5

heuristi
 almost surely �nds an optimal solution. Here, the probability is taken over the

hoi
e of the algorithm's
oin tosses and the
hoi
e of the graph from the distribution (before

modi�
ation by the adversary).

Feige and Kilian [FK01a℄ formalized this semi-random model of [BS95℄ as a monotone

adversary model, in whi
h the adversary is allowed to add
ertain edges and/or remove
ertain

other edges (depending on the problem). For example, they
onsider the planted bise
tion

model des
ribed above, together with an adversary that is allowed to remove edges that
ross

the planted bise
tion and to add edges that do not
ross it. Clearly, su
h adversarial moves

an only de
rease the
ost of the planted bise
tion or in
rease the
ost of other bise
tions,

and so it may appear, intuitively, that the adversary
an only make the bise
tion problem

easier. However, as Feige and Kilian note, this monotone adversary
an foil many popular

te
hniques for heuristi
s, e.g. it
an alter the degrees of verti
es,
reate bise
tions that are

\lo
ally optimum", and modify the spe
trum (eigenvalues of the adja
en
y matrix) of the

graph. A heuristi
 that is su

essful in a semi-random model withstands su
h an adversarial

\help", and is therefore more robust.

Interestingly, it is also possible to show hardness results for the semi-random graph model.

Blum and Spen
er [BS95℄ show that in a
ertain semi-random model, there is no su

essful

heuristi
 for the problem of
oloring a graph with 4
olors, unless NP � BPP. Feige and

Kilian [FK01a℄ show a similar result for the maximum independent set problem.

Eviden
e for optimality. An average-
ase algorithm does not have an apriori guarantee

on its performan
e, and it is therefore valuable to
ertify that the solution it produ
ed on

the parti
ular instan
e at hand is indeed optimal. The algorithm of Boppana [Bop87℄ for

the minimum bise
tion problem has su
h a
erti�
ation property (see also [FK01a℄). His

algorithm outputs a bise
tion together with a lower bound (that is obtained by a relaxation)

on the minimum
ost of a bise
tion. If the
ost of the output bise
tion is equal to the lower

bound then it is
lear that the output bise
tion is indeed an optimal solution. Boppana's

analysis shows that this is indeed the
ase, almost surely.

Average polynomial time. Another possible performan
e guarantee is that of average

polynomial time, whi
h means that on any instan
e the heuristi
 �nds the planted solution

(or an optimal solution) and that the expe
ted running time of the heuristi
 (over the

distribution of the input instan
es) is polynomial. For example, Dyer and Frieze [DF89℄

show for several graph problems an average polynomial time algorithm in a random model

with
onstant edge probabilities. Some improvements (to smaller edge probabilities and for

semi-random models) are given in [SFVM98, Sub99℄.

Related areas. Note that NP-hard problems are not ne
essarily easy on the average.

Distributions on whi
h a problem is hard on the average
ase are ne
essary for
ryptography.

It is therefore important to identify problems and
orresponding distributions, on whi
h the

problem is hard on the average.

Levin [Lev86℄ put a basis for a theory of average NP-
ompleteness. The emphasis in

Levin's theory appears to be to identify distributions on whi
h the underlying problem is

hard. In
ontrast, the emphasis in our work is to provide algorithms that perform well on

6

average with respe
t to distributions that o

ur in pra
ti
e, and not ne
essarily with respe
t

to the most diÆ
ult distributions.

1.4 Overview of our results

Our resear
h on
oping with NP-hard optimization problems spans the two approa
hes de-

s
ribed above, namely approximation algorithms and analysis of heuristi
s. In ea
h approa
h,

we
on
entrate on one graph problem that is fundamental in the sense that a better under-

standing of it may re
e
t on our understanding of many other problems and, possibly, of the

whole approa
h.

Approximation algorithms for minimum bise
tion. In the last de
ade, our under-

standing of the approximability of many NP-hard optimization problems was greatly im-

proved, due to both approximation algorithms and hardness of approximation results. For

many problems, known algorithm ratios mat
h the hardness of approximation results, up to

an order of magnitude or less. However, there is still a large gap in our understanding of the

approximability of several fundamental problems.

Notable examples to large gaps between approximability and inapproximability results

are graph partitioning problems, and, in parti
ular, minimum bise
tion. (Re
all from Se
-

tion 1.1 that a bise
tion is a
ut that partitions the verti
es into two sets of equal
ardinality;

the minimum bise
tion problem requires to �nd in an input graph a bise
tion of minimum

ost).

In a seminal work, Leighton and Rao [LR88, LR99℄ obtained a bi
riteria approximation

(a.k.a. pseudo-approximation) algorithm. That is, given an input graph on n verti
es, their

algorithm �nds a 2/3-balan
ed
ut (i.e. a
ut that partitions the verti
es into two sets, ea
h

of
ardinality at most 2n=3) whose
ost is at most O(logn) times that of the minimum
ost

bise
tion. The te
hniques and results of Leighton and Rao found many appli
ations and

inspired additional work, see e.g. [LR99, Shm97, ENRS99℄.

However, prior to our work there was no major progress on the approximation ratio of

minimum bise
tion (i.e. when the stri
t
onstraint on the
ardinalities of two sides of the

ut
annot be relaxed). On the one hand, there is no hardness of approximation result that

ex
ludes the possibility that minimum bise
tion admits a PTAS. On the other hand, the

known approximation ratio was n=2, due to Saran and Vazirani [SV95℄.

We devise an algorithm that approximates the minimum bise
tion within a ratio of

O(log

2

n). This approximation ratio improves over the previous (linear in n) approximation

ratio signi�
antly, and is, in parti
ular, \in the same ballpark" as the bi
riteria algorithms

of [LR88, LR99℄ and [ENRS99℄.

Our algorithm extends (with the same approximation ratio) to minimum bise
tion in

graphs with arbitrary nonnegative edge
osts and polynomially bounded nonnegative integer

vertex weights. It also extends to
utting away from the graph k verti
es, where k is given

as part of the input, and to
utting the input graph into any �xed number of parts of equal

ardinality.

7

Our approximation algorithm follows a divide and
onquer approa
h, where the input

graph is re
ursively divided into smaller parts based on a new
ut notion that we de�ne,

and the parts' solutions are
ombined using dynami
 programming. Our new
ut notion is

related to a min-ratio
ut (i.e. a
ut with the minimal ratio between the
ost of the
ut and

the number of verti
es in the smaller of its two sides), and we show how it
an be
omputed

from an approximate min-ratio
ut using
ow te
hniques (i.e. min (s; t)-
ut).

The approximation ratio of our algorithm
an be des
ribed as O(� logn), where � is

the approximation ratio for the problem of �nding in a graph a min-ratio
ut. Known

algorithms for general graphs a
hieve � = O(logn), see [LR88, LR99℄ and [AR98, LLR95℄.

For graphs ex
luding any �xed graph as a minor (e.g. planar graphs), known algorithms

a
hieve a
onstant ratio, i.e. � = O(1), see [KPR93℄, and hen
e in these graphs our algorithm

approximates minimum bise
tion within ratio O(logn).

We also devise a simpler (randomized) algorithm for minimum bise
tion, whose approx-

imation ratio is better (than the one above) in the variant that requires to
ut away a

relatively small number of verti
es. Namely, the algorithm �nds a
ut that separates k ver-

ti
es (where k is given as part of the input) at a
ost that is within a ratio of 1 + �k= logn

from the minimum, for an arbitrarily small
onstant � > 0. In parti
ular, this algorithm

yields a PTAS for the problem of
utting k = O(logn) verti
es from a graph (a problem

that is not known to be in P). The algorithm extends to graphs with arbitrary nonnegative

edge weights.

These two approximation algorithms for minimum bise
tion are des
ribed in full in Chap-

ter 2. Preliminary versions of these results appeared in [FK00b℄ and in [FKN00, Se
tion 5℄.

Analysis of heuristi
s for maximum
lique. The maximum
lique problem appears to

be diÆ
ult on the input model of a random graph G

n;1=2

. It is known that the maximum

size of a
lique in G

n;1=2

is roughly 2 log

2

n, almost surely, see e.g. [AS92℄. Several simple

and natural algorithms (e.g. the greedy one) �nd a
lique of size roughly log

2

n, almost

surely. Karp [Kar76℄ suggested the problem of �nding a
lique of size signi�
antly larger

than log

2

n, but no eÆ
ient algorithm is known to a
hieve that. Finding
liques of size

3

2

log

2

n in a random graph G

n;1=2

was even suggested in [JP00℄ as a hard
omputational

problem on whi
h to base
ryptographi
 appli
ations

We fo
us on the hidden
lique problem, whi
h is a variant with a planted solution. In the

random model of this problem, a random graph G

n;1=2

is
hosen, and then a
lique of size k

is randomly pla
ed in the graph. The goal is to �nd in the graph a
lique of size k.

For the hidden
lique problem in the random model, Ku�
era [Ku�
95℄ observed that taking

the verti
es with highest degrees almost surely su

eeds in �nding the hidden
lique, when

k >

p

n logn for a suÆ
iently large
onstant
 > 0. Alon, Krivelevi
h and Sudakov [AKS98℄

showed an algorithm based on eigenvalue te
hniques that almost surely �nds the hidden

lique, when k �
(

p

n). Jerrum showed that the Metropolis pro
ess does not �nd the

lique, almost surely, when k = o(

p

n).

We devise another heuristi
 for the hidden
lique problem. Our heuristi
 also �nds the

hidden
lique, almost surely, when k �
(

p

n), but it extends to a semi-random model

of the problem, in whi
h an adversary is allowed to remove (from the random graph with

8

the planted
lique) any edge that is not inside the planted
lique. In
ontrast, the previous

algorithms of [Ku�
95, AKS98℄ have similar su

ess in the random model, but fail in the semi-

random model, unless k =
(n). An additional useful property of our heuristi
 is that it

almost surely
erti�es the optimality its solution. Namely, the heuristi
 produ
es its solution

together with an upper bound on the size of the maximum
lique in the input graph, and

the value of the solution mat
hes, almost surely, the upper bound.

Our heuristi
 is based on the Lov�asz theta fun
tion, a well-known semide�nite program-

ming relaxation of the maximum
lique problem. For the random model, our main argument

is that the relaxation is almost surely tight and
orresponds to the planted
lique. We then

extend the result to the semi-random model by using the monotoni
ity of the relaxation with

respe
t to removing edges from the graph. Note that in the worst
ase, the Lov�asz theta

fun
tion is far from being tight [Fei97℄, so in terms of approximation ratio it gives a poor

guarantee.

A possible dire
tion for extending our heuristi
 to a planted
lique of smaller size k =

o(

p

n), is to use a stronger relaxation than the Lov�asz theta fun
tion. In parti
ular, if the

relaxation is monotone with respe
t to adding edges, it may be plausible to
ompare the

almost sure value of the relaxation on a random graph G

n;1=2

, whi
h we denote by

^

k, with

the size k of the planted
lique. If k <

^

k then, almost surely, the relaxation value on the

hidden
lique graph would be at least

^

k and the relaxation would not be tight. However,

if k >

^

k then it may be the
ase that, almost surely, the relaxation is tight on the hidden

lique graph (i.e. has value k), and
an be used to �nd the planted
lique. For example, our

heuristi
 mentioned above implements this approa
h, based on Juh�asz' proof [Juh82℄ that

the theta fun
tion of a random graph G

n;1=2

is almost surely �(

p

n).

Lov�asz and S
hrijver [LS91℄ designed a powerful \lift-and-proje
t" pro
edure that pro-

du
es semide�nite programming relaxations that are stronger than the Lov�asz theta fun
tion.

Their general te
hnique (it
an be applied to any 0-1 integer programming problem) pro-

du
es a sequen
e of tighter and tighter relaxations, so that the nth relaxation in the sequen
e

is guaranteed to be tight (where n is the number of variables in the integer program). For

the maximum
lique problem, they show that the �rst relaxation in the sequen
e is already

at least as tight as the theta fun
tion. Furthermore, for any �xed r, the rth relaxation in

the sequen
e
an be
omputed in polynomial time, up to an arbitrarily small error, and is

therefore a plausible
andidate for a hidden
lique heuristi
.

We show that on a random graph G

n;1=2

, the value of the rth relaxation in the sequen
e

of Lov�asz and S
hrijver [LS91℄, for r = o(logn), is almost surely roughly

q

n=2

r

. It follows

that the rth relaxation for r = O(1) almost surely has a value of �(

p

n), whi
h is
omparable

(up to
onstant fa
tors) to the Lov�asz theta fun
tion. Hen
e, on the hidden
lique graph

with planted
lique size k = o(

p

n), those relaxations in the sequen
e that are known to be

omputable in polynomial time are not tight, almost surely, and o�er no improved heuristi

under the approa
h outlined above (sin
e improvement by arbitrarily large
onstant fa
tors

an be a
hieved by other methods due to [AKS98℄).

Our results on heuristi
s for maximum
lique are des
ribed in full in Chapter 3. One

part of these results appeared in [FK00a℄ and another part is based on [FK01b℄.

9

1.5 Perspe
tives

An important goal in the area of approximation algorithms is to a
hieve an approximation

threshold for minimum bise
tion and other graph partitioning problems. Our results in

Chapter 2 are a signi�
ant improvement in the known approximation ratio for minimum

bise
tion, but there is still a
onsiderable gap in the understanding of this problem in terms

of approximation, as no hardness of approximation result is known.

Our new
ut notion,
alled amortized
ut, is useful to both approximation and bi
riteria

approximation algorithms for minimum bise
tion. We show that an algorithm that �nds a

�-amortized
ut,
an be used to �nd a bise
tion whose
ost is at most O(� logn) times that

of the minimum
ost bise
tion, and also to �nd a 2/3-balan
ed
ut whose
ost is at most

O(�) times that of the minimum
ost bise
tion (see Se
tion 2.5.6). Our algorithm a
hieves

an amortized
ost � = O(logn) by using an approximation algorithm for min-ratio
uts.

However, we show that any graph
ontains an O(1)-amortized
ut (whi
h does not follow

immediately from the de�nition, sin
e � is not an approximation ratio). Therefore, further

investigation of the values of � that
an be a
hieved by an eÆ
ient algorithm, is interesting

in the
ontext of improved algorithms for minimum bise
tion, and may possibly have other

appli
ations.

Devising a realisti
 model of average-
ase input instan
es is a main diÆ
ulty in any

rigorous analysis of heuristi
s. Our results for the hidden
lique problem in Chapter 3,

extend results that were previously known in the random model, to a semi-random model

that represents a wider range of input graphs. A semi-random model improves over a random

model in many respe
ts, but it also has
ertain drawba
ks. For example, in many semi-

random models that use a planted solution, this planted solution is almost surely a unique

optimal solution. It is therefore possible that heuristi
s that perform well in this model,

perform poorly in other settings where the optimal solution is not unique.

The te
hnique of Lov�asz and S
hrijver [LS91℄
an be used for many optimization prob-

lems, as it allows to produ
e eÆ
iently
omputable relaxations that are tighter than before

for (almost) any 0-1 integer programming problem. In parti
ular, the relaxations that it

produ
es
an be used in various approa
hes for
oping with the NP-hardness of a problem.

So far, this te
hnique has not found appli
ations in the area of approximation algorithms,

possibly be
ause many aspe
ts of this powerful te
hnique are not well-understood. We view

our work in Chapter 3 as a step in the dire
tion of understanding this te
hnique from various

aspe
ts, and our analysis of its performan
e (for maximum
lique) on a random graph, is

the �rst appli
ation of the te
hnique to average-
ase analysis.

10

Chapter 2

Approximating minimum bise
tion

�

2.1 Introdu
tion

Let G(V;E) be an undire
ted graph with n verti
es and m edges, where n is even. For a

subset S of the verti
es (with S 6= ;; V), the
ut (S; V n S) is the set of all edges in G with

one endpoint in S and one endpoints in V n S; these edges are said to be
ut by (S; V n S).

The
ost of a
ut is the number of edges in it.

A
ut (S; V nS) is
alled a bise
tion of G if its two sides, S and V nS, are ea
h of size n=2.

We denote the minimum
ost of a bise
tion of G by b. Minimum bise
tion is the problem of

omputing b for an input graph G. Garey, Johnson, and Sto
kmeyer [GJS76℄ show that this

problem is NP-hard, and we address the problem of approximating it.

An algorithm is said to approximate a minimization problem within ratio r � 1 if it runs

in polynomial time and outputs a solution whose value (or, if the algorithm is randomized,

its expe
ted value over the
oin tosses of the algorithm) is at most r times the
ost of the

optimal solution. A problem is said to have a polynomial time approximation s
heme (PTAS)

if for every �xed r > 1 there is an algorithm with approximation ratio r.

A
ut (S; V nS) with jSj = k is
alled a (k; n�k)
ut ofG. Let b

k

denote the minimum
ost

of a (k; n�k)
ut in G. In the minimum (k; n�k)
ut problem, we are given a graph G and a

number k 2 f1; : : : ; n�1g, and we wish to
ompute b

k

. The minimum (k; n�k)
ut problem

is NP-hard, as it in
ludes minimum bise
tion as the spe
ial
ase k = n=2. Furthermore, the

proof of Bui and Jones [BJ92℄ a
tually shows that it is NP-hard to
ompute b

k

in graphs of

maximum degree 3 and for k = �n (and even k = n

�

) for any �xed 0 < � < 1. We address

the problem of approximating b

k

.

It is not known whether b

k

is polynomial time
omputable when k is a slowly growing

fun
tion of n, say k = logn. Note that a straightforward exhaustive sear
h on all vertex

subsets of size k
an �nd b

k

in time n

k+�(1)

, whi
h is polynomial only if k = O(1), i.e. a

�xed
onstant independent of n.

�

This
hapter is based on the full versions of [FK00b℄ and of [FKN00, Se
tion 5℄.

11

2.1.1 Previous work

Leighton and Rao [LR88, LR99℄ showed how to approximate within ratio O(logn) minimum-

quotient
uts, whi
h we shall
all min-ratio
uts. In these
uts, one wishes to minimize the

ut ratio (also
alled edge expansion or
ux)
=jSj, where
 is the number of edges
ut, and

jSj is the
ardinality of the smaller of the two vertex sets.

A �-balan
ed
ut is a
ut that partitions the graph into two parts, ea
h of size at most �n.

Leighton and Rao [LR88℄ used the approximate min-ratio
uts to �nd a 2/3-balan
ed
ut

(also
alled edge separator) with at most O(b logn) edges, see also [LR99, Shm97℄. Note that

su
h a 2/3-balan
ed
ut does not provide an O(logn) approximation for the value of b. For

example, when the graph
onsists of 3 disjoint
liques of equal size, an optimal 2/3-balan
ed

ut has no edges, whereas b =
(n

2

).

A straightforward approa
h for obtaining an exa
t bise
tion is to �rst �nd an almost

balan
ed
ut (e.g. using approximate min-ratio
uts) and then move a few low degree

verti
es from one side to the other. Using this approa
h one
an approximate bise
tion

within a ratio of

~

O(

q

m=b) (we use

~

O(f) to denote O(f �polylog n)) see e.g. [LR99, Footnote

10℄ and [FKN00℄. This is a dramati
 improvement over the naive ratio of O(m=b) (a
hieved

by arbitrarily pi
king n=2 verti
es), but might still be larger than n.

In terms of n, the best approximation ratio known prior to our work was n=2, due to

Saran and Vazirani [SV95℄. We presented in [FKN00℄ an approximation algorithm that

a
hieves approximation ratio

~

O(

p

n). In [FK00b℄, we improved the approximation ratio

to polylogarithmi
 in n, by using similar te
hniques (e.g. approximate min-ratio
uts and

dynami
 programming), but in a more sophisti
ated way. In this thesis, we des
ribe the im-

proved approximation algorithm from [FK00b℄, and a related result (that was not improved)

from [FKN00, Se
tion 5℄.

Additional related work in
lude the following. In [AKK99℄, Arora, Karger and Karpinski

show that bise
tion has a PTAS for everywhere-dense graphs, i.e. graphs with minimum

degree
(n). In [GSV99℄, Garg, Saran and Vazirani give an approximation ratio of 2 for

the problem of �nding a 2/3-balan
ed
ut of minimum
ost in a planar graph. Their result

extends to a �-balan
ed
ut, for any � � 2=3, but does not extend to a bise
tion, whi
h

is a 1=2-balan
ed
ut. In [BJ92℄, Bui and Jones show that for any �xed � > 0, it is NP-

hard to approximate the minimum bise
tion within an additive term of n

2��

. In terms of

approximation ratio, however, there is no known hardness of approximation result whi
h

ex
ludes the possibility that bise
tion has a PTAS. Several heuristi
s for minimum bise
tion

are studied (in terms of average-
ase behavior) in [BCLS87, Bop87, DF89, JS98, CK99,

FK01a℄.

2.1.2 Our results

Our main result is an algorithm for approximating the minimum bise
tion within a polylog-

arithmi
 ratio.

Theorem 2.1. A bise
tion of
ost within ratio of O(log

2

n) of the minimum
an be
omputed

in polynomial time.

12

In Se
tion 2.2 we give an overview of the algorithm. On a high level, the algorithm

follows a divide-and-
onquer approa
h. The input graph is re
ursively divided into parts,

using a new
ut notion whi
h we
all an amortized
ut, and then the parts are
ombined into

a bise
tion using dynami
 programming.

In Se
tion 2.4 we des
ribe our algorithm for approximating bise
tion, based on a subrou-

tine for �nding an amortized
ut. If the subroutine is guaranteed to �nd a �-amortized
ut

in a graph, the algorithm
omputes a bise
tion whose
ost is within ratio of 1 + O(� logn)

of the minimum.

In Se
tion 2.3 we devise an algorithm for �nding an O(logn)-amortized
ut in a gen-

eral graph. By using this algorithm as a subroutine in the 1 + O(� logn) approximation

algorithm for bise
tion, we are guaranteed that � = O(logn), proving Theorem 2.1. The

subroutine uses a � -approximate min-ratio
ut in order to �nd an O(�)-amortized
ut. The

best known approximation algorithms for min-ratio
ut in general graphs, due to Leighton

and Rao [LR88, LR99℄ and due to [AR98, LLR95℄, have approximation ratio � = O(logn).

In
ertain graph families, there is a better approximation ratio � for the min-ratio
ut

problem. If these graph families are
losed under taking indu
ed subgraphs, then we
an

approximate bise
tion within an improved ratio of O(� logn). For example, it is shown

in [KPR93℄ that in graphs ex
luding any �xed graph as a minor (e.g. bounded-genus graphs)

min-ratio
ut
an be approximated within a
onstant ratio, i.e. � = O(1).

Theorem 2.2. In graphs ex
luding any �xed graph as a minor (e.g. planar graphs), a

bise
tion of
ost within ratio of O(logn) of the minimum
an be
omputed in polynomial

time.

In Se
tion 2.5 we show that our results extend to several natural generalizations of the

bise
tion problem. These extensions in
lude, for example, bise
tion of graphs with arbitrary

nonnegative edge
osts and graph partitioning into three parts of equal size.

Cutting few verti
es. We present a simple randomized algorithm that is aimed towards

approximating the minimum (k; n�k)
ut problem when k is relatively small. The algorithm

and its analysis are des
ribed in Se
tion 2.6, where we prove the following theorem. We say

that an event happens with high probability if its probability approa
hes 1 as n goes to

in�nity.

Theorem 2.3. For every �xed � > 0, there is a polynomial time randomized algorithm that

�nds, with high probability (over the
oin tosses of the algorithm), a (k; n�k)
ut whose
ost

is at most (1 + �k= lnn)b

k

.

In parti
ular, the above algorithm implies (by the Markov inequality) the following ap-

proximation ratios for k = O(logn) and for k =
(logn). Note that Corollary 2.2 should be

used only when k is slightly larger than O(logn), while for larger k the approximation ratio

of Theorem 2.1 is preferable.

Corollary 2.1. For any k = O(logn), there is a PTAS for the minimum (k; n � k)
ut

problem.

Corollary 2.2. For any k =
(logn), the minimum (k; n� k)
ut problem
an be approxi-

mated within a ratio of O(k= logn).

13

2.1.3 Conventions and notation

We will often denote the two sides of a (not ne
essarily optimal) bise
tion as white W and

bla
k B. A graph may have several di�erent bise
tions of minimum
ost. For the analysis,

let us �x one of them (arbitrarily) and
all it the �xed optimal bise
tion (W

�

; B

�

).

For V

1

; V

2

two disjoint subsets of verti
es in a graph, let e(V

1

; V

2

) denote the number of

edges with one endpoint in V

1

and the other endpoints in V

2

. Subsets V

1

; V

2

� V are
alled a

partition of V if they are nonempty, disjoint, and their union is equal to V . In our
ontext,

V is the vertex set of a graph, and then a partition V = V

1

[V

2

is equivalent to the
ut

(V

1

; V

2

).

A subset of verti
es S � V with 0 < jSj < jV j,
orresponds to a
ut (S; S) in the graph,

where S = V nS. We denote by r(S) the ratio of this
ut, i.e. r(S) =

e(S;S)

minfjSj;jSjg

, and by r

0

(S)

the ratio of this
ut towards S, i.e. r

0

(S) =

e(S;S)

jSj

. We
all S a part of the graph, referring

either to the set of verti
es S or to the subgraph indu
ed on S, depending on the
ontext.

2.2 Overview and te
hniques

Our approximation algorithm for minimum bise
tion has three stages, as outlined below.

Stage 1: De
omposition. This stage
onsists of a sequen
e of divide steps. The input to

a divide step is a part of the input graph G, i.e. a vertex set and the subgraph indu
ed on

it, and the output is a partition of the vertex set into two nonempty subsets, giving two new

parts of the graph. These divide steps are applied on the input graph G re
ursively, until it

is de
omposed into individual verti
es.

The output of the whole de
omposition stage is a binary tree T , that we
all the de
om-

position tree. Ea
h node i of the tree
ontains a part V

i

obtained in a divide step, as follows.

The root of the tree
ontains the input graph G, the leaves of the tree
ontain individual

verti
es of G, and the two dire
t des
endants of a node i are the two subparts obtained in

the divide step of its part V

i

.

To
omplete the des
ription of the de
omposition stage, we need to explain how a divide

step is performed. This is done using a new notion
alled an amortized
ut, whi
h we de�ne

later in this se
tion. We devise an algorithm for �nding amortized
uts in Se
tion 2.3. The

de
omposition stage is des
ribed in more detail in Se
tion 2.4.1.

Stage 2: Labeling. Consider a labeling of the de
omposition tree T , whi
h labels ea
h

(nonleaf) tree node as either white or bla
k. Fixing a parameter 1=2 < � < 1, we say that a

labeling is �-
onsistent with respe
t to a white-bla
k bise
tion (W;B) of the input graph if

every part V

i

(at a tree node i) satis�es that jW \ V

i

j � �jV

i

j if the label of node i is white,

and that jB \ V

i

j � �jV

i

j if the label of node i is bla
k.

The desired out
ome of the labeling stage is a labeling whi
h is �-
onsistent with the �xed

optimal bise
tion (W

�

; B

�

),
alled in short an opt-
onsistent labeling. However, an optimal

bise
tion is not known to the algorithm, so instead of �nding an opt-
onsistent labeling,

this stage produ
es a family of labelings, su
h that at least one member of the family is

14

opt-
onsistent. The des
ription of how this is done is deferred to Se
tion 2.4.2. For the

purpose of this overview, it will be
onvenient to think of the labeling stage as if it produ
es

only one labeling, whi
h is opt-
onsistent.

Stage 3: Combining. Given a de
omposition tree T and an arbitrary (not ne
essarily

opt-
onsistent) labeling of it, the
ombining stage assigns to ea
h vertex v of the input graph

G a white
harge and a bla
k
harge. The two
harges are simple to
ompute based on the

labels along the path from the root of T to the leaf that
ontains the vertex v.

The
harge of a bise
tion (W;B) of the input graph G (with respe
t to the labeling) is

de�ned as the sum of the white
harges of the verti
es of W and the bla
k
harges of the

verti
es of B. The fun
tions white
harge and bla
k
harge have the property that for every

bise
tion,
harge is an upper bound on
ost (regardless of the labeling).

If the
harge is de�ned with respe
t to an opt-
onsistent labeling of T then our notion

of amortized
ut used in the de
omposition stage guarantees in addition that the
harge

of the �xed optimal bise
tion is within a polylogarithmi
 fa
tor of its
ost b. Hen
e, using

the opt-
onsistent labeling produ
ed by the labeling stage ensures that the input graph G

ontains a bise
tion whose
harge is within polylogarithmi
 ratio of b.

Finding a bise
tion of minimum
harge in G is relatively straightforward. Asso
iate with

ea
h vertex a net-
harge, whi
h is its white
harge minus its bla
k
harge, and pi
k the n=2

verti
es with smallest net-
harge to form one side W , leaving the remaining n=2 verti
es in

another side B. The bise
tion (W;B) that we �nd has minimum
harge, and its
ost is thus

within a polylogarithmi
 fa
tor of b, the
ost of the minimum bise
tion.

It is interesting to note that �nding a minimum
ost bise
tion is an optimization problem

with a quadrati
 obje
tive fun
tion (minimizing the number of edges, where edges are pairs

of verti
es). Finding a minimum
harge bise
tion (given the de
omposition tree and an

opt-
onsistent labeling) is an optimization problem with a linear obje
tive fun
tion (sum of

net-
harges over individual verti
es). Hen
e in a sense, our algorithm performs a linearization

of a quadrati
 fun
tion, and loses a polylogarithmi
 fa
tor in the pro
ess.

The above presentation of the
ombining stage was oversimpli�ed. The output of the

labeling stage is not one labeling that is opt-
onsistent, but rather a large family of labelings,

su
h that at least one of them is opt-
onsistent. Moreover, this family has exponential

ardinality, so we
annot try the above net-
harge approa
h on ea
h labeling separately.

Instead, we exploit the stru
ture of this family of labelings and use dynami
 programming

to
ompute a labeling from the family and a bise
tion, su
h that the
harge of this bise
tion

with respe
t to this labeling is minimum over all labeling-bise
tion pairs. Details appear in

Se
tion 2.4.4.

In the rest of the overview we shall introdu
e and dis
uss the notion of amortized
ut,

whi
h is of
entral importan
e in bounding the ratio between the
harge and the
ost of the

�xed optimal bise
tion. To motivate this new notion we present our algorithm as a divide-

and-
onquer algorithm. We then suggest a kind of
ut that is desirable for the algorithm's

divide step and
all this
ut notion an amortized
ut.

15

Divide and
onquer approa
h

A possible divide and
onquer approa
h for a graph problem is to divide the input graph G

into two parts (using a
ut), solve a subproblem for ea
h part, and then
ombine the solutions

of the two subproblems into a solution for G. This approa
h
an be applied re
ursively, and

then the input graph G is re
ursively divided into smaller and smaller parts, where ea
h part

is asso
iated with a subproblem. Note that the divide step
ut is a tool of this approa
h,

and is not intended to be a solution to the subproblem.

In our
ontext, the graph problem is minimum bise
tion, and we apply this divide and

onquer approa
h for the more general problem of
utting away an arbitrary number of

verti
es that is given as part of the input (bise
tion is the spe
ial
ase where the given

number is n=2). Similarly, the subproblem of ea
h part requires to
ut away (from that

part) an arbitrary number of verti
es that is given in the subproblem. Note that minimum

bise
tion is a
ut problem, and therefore in addition to the divide step
uts we have here also

solution
uts (later
alled
ombined
uts). Note that the solution
ut of a part need not be

the same as the divide step
ut of this part.

Our three stage algorithm outlined above follows this divide and
onquer approa
h. The

task of breaking the input graph into smaller and smaller parts is performed by the de
om-

position stage, whose de
omposition tree T represents the re
ursive stru
ture of the divide

steps.

For su
h a divide and
onquer approa
h to be su

essful, it is desirable that (i) ea
h of

the two subproblems
an be solved separately; and (ii) the solutions of the two subproblems

an be
ombined while in
urring a relatively small additional
ost. Below we provide an

overview of how our algorithms handles these issues.

Consider the problem of
utting away k verti
es from a part U � V of the input graph.

The
orresponding divide step uses a
ut (U

1

; U

2

) of U to break this problem into the two

subproblems of
utting away k

1

verti
es from U

1

and of
utting away k

2

verti
es from U

2

,

with k = k

1

+ k

2

. (For the sake of exposition assume that k

1

; k

2

an be guessed.) Let

us assume that the subproblem asso
iated with ea
h subpart U

i

is solved separately (by

re
ursion) and the solution obtained for it is a
ut (C

i

; F

i

) with jC

i

j = k

i

(see also Fig. 2.1).

The two solution
uts are then
ombined into a
ut of U that separates k = k

1

+ k

2

verti
es,

namely (C

1

[C

2

; F

1

[F

2

). Let Cut(U

0

; k

0

) denote the
ost of the
ut of U

0

that separates k

0

verti
es and is found by the algorithm. Then the
ost of the
ombined
ut is given by

Cut(U; k) = Cut(U

1

; k

1

) + Cut(U

2

; k

2

) + e(C

1

; F

2

) + e(C

2

; F

1

): (2.1)

Previous a

ounting method

The approa
h of [FKN00℄ is based on a straightforward upper bound on the
ost (2.1) of the

ombined
ut. The additional
ost in
urred by the divide step, i.e. e(C

1

; F

2

) + e(C

2

; F

1

), is

at most the
ost of all the edges
ut by the divide step, i.e. e(U

1

; U

2

), yielding the upper

bound

Cut(U; k) � Cut(U

1

; k

1

) + Cut(U

2

; k

2

) + e(U

1

; U

2

): (2.2)

16

F

1

C F

U

1

Divide

Step

C

1

F

2

U

2

C

2

U

U

2

U

1

k

1

k

2

Figure 2.1: The divide and
onquer paradigm

We remark that a bound similar to (2.2) is used in divide and
onquer algorithms for

many other graph problems, su
h as minimum
ut linear arrangement (a.k.a.
utwidth),

see e.g. [LR99℄.

The divide steps of [FKN00℄ use an approximate min-ratio
ut to break ea
h part U .

This
ut appears to be suitable for the bound (2.2) be
ause it minimizes the
ost of the
ut

(U

1

; U

2

), and at the same time tries to
ut the part U into parts of roughly equal size, so as

to minimize the depth of the re
ursion.

It is parti
ularly instru
tive to evaluate the quality of our upper bound in the
ase where

the
omputed
ut (C

1

[C

2

; F

1

[F

2

) is just the
ut indu
ed on U by the optimal bise
tion

(W

�

; B

�

). Intuitively, we analyze the
ase where the algorithm happens to �nd the optimal

bise
tion. In fa
t, we will later use dynami
 programming to �nd a bise
tion for whi
h the

upper bound is minimized, so su
h an analysis bounds from above the
ost of the output

bise
tion.

There are
ases where the upper bound (2.2) is tight (i.e. holds with equality). Indeed,

the
uts within ea
h U

i

are
omputed independently of ea
h other, and so it might happen

that all the edges between the two parts U

1

; U

2

end up in the
ombined
ut. However, this

bound is insensitive to
ases where only few of the edges that are
ut in the divide step end

up in the
ombined
ut, leading to a relatively poor approximation ratio.

New a

ounting method

We introdu
e a more sophisti
ated way of bounding the
ost of the
ombined
ut. Sin
e

F

1

� U

1

and F

2

� U

2

we
an bound the
ost of the
ombined
ut by

Cut(U; k) � Cut(U

1

; k

1

) + Cut(U

2

; k

2

) + e(C

1

; U

2

) + e(C

2

; U

1

): (2.3)

Unlike the a
tual
ost (2.1), the upper bound (2.3)
an be used in a divide and
onquer

approa
h, as follows. Let us
all e(C

1

; U

2

) + e(C

2

; U

1

) the
harge of the divide step of U .

This
harge
an be distributed into a
harge e(C

1

; U

2

) of the part U

1

, and a
harge e(C

2

; U

1

)

of the part U

2

. The
harge of a part U

i

onsists of the edges going from C

i

to the other

17

part U

3�i

, and thus depends on the
ut (C

i

; F

i

)
hosen in the part U

i

, but not on the
ut

hosen in the other part U

3�i

. We obtain two separate subproblems (as in ea
h part U

i

we want to �nd a
ut (C

i

; F

i

) for whi
h sum of the
ost of this
ut and the
harge to this

part is minimal), enabling a re
ursive divide and
onquer approa
h. In
ontrast, the terms

e(C

1

; F

2

) and e(C

2

; F

1

) of the a
tual
ost of the
ombined
ut depend on the
uts
hosen in

both parts, and do not allow to break the problem into two separate subproblems.

The new a

ounting method makes a distin
tion between the two sides C and F of

the
ombined
ut. Unlike e.g. in (2.2), these two sides have di�erent roles in the upper

bound (2.3), and we will
hoose in a
ertain way whi
h side is referred to as C (and whi
h

as F). Sin
e we wish to minimize the
harge, it makes sense to
hoose the smaller of the

two sides to be C. In our analysis we have a somewhat relaxed
ondition, requiring that

jCj � �jU j, for a �xed 1=2 < � < 1. The task of identifying a side C as required above

in ea
h divide step (i.e. ea
h node of the de
omposition tree) is performed by the labeling

stage, as explained in Se
tion 2.4.2.

The
harge of a bise
tion is the upper bound that is obtained by applying the upper

bound (2.3) re
ursively, i.e. it is the sum of the
harges of all the divide steps. In Se
tion 2.4.3

we dis
uss this notion in more detail, and in Se
tion 2.4.4 we show that its
urrent formulation

is equivalent to the one from Stage 3 of the algorithm outline (where the identi�
ation of a

side C at ea
h divide step
orresponds to labeling of the de
omposition tree T). >From the

urrent formulation it is straightforward that the
harge of a bise
tion is always an upper

bound on its
ost (regardless of the identi�
ation of C at ea
h divide step, i.e. the tree

labeling).

We
all the verti
es of C = C

1

[C

2

harged and the verti
es of F = F

1

[F

2

free. The edges

in the part U
an then be
lassi�ed as
harged-
harged,
harged-free or free-free, a

ording

to their two endpoints.

Desired divide step

Rather than �nd a bise
tion of minimum
ost, our approximation algorithm looks for a

bise
tion of minimum
harge. Our desired divide step is therefore one that guarantees that

for the �xed optimal bise
tion,
harge
an be used to approximate
ost. By the labeling

stage, it suÆ
es to refer here to
harge with respe
t to an opt-
onsistent labeling, so from

now on we assume that jCj � �jU j at ea
h divide step.

Consider the
harge of the �xed optimal bise
tion, and re
all that it is the sum of the

harges of all the divide steps. The
harge of a divide step of a part U is e(C

1

; U

2

)+e(C

2

; U

1

)

and
an be written also as e(C

1

; F

2

)+ e(C

2

; F

1

)+2e(C

1

; C

2

), i.e. the
ost of the
harged-free

edges that the divide step
uts and twi
e the
ost of the
harged-
harged edges that it
uts.

Observe that a
harged-free edge is always an edge of the �xed optimal bise
tion (and vi
e

versa) and that ea
h edge is
ut exa
tly on
e in the de
omposition stage. Hen
e, all the

harged-free edges
ut in all the divide steps are exa
tly all the edges of the �xed optimal

bise
tion. So for the �xed optimal bise
tion, the di�eren
e between
harge and
ost is twi
e

the
ost of all the
harged-
harged edges
ut in all the divide steps.

It is therefore desired that the divide step
uts relatively few
harged-
harged edges,

where relative here is with respe
t to b, the
ost of the �xed optimal bise
tion. Sin
e b

18

is the total
ost of the
harged-free edges that are
ut in all the divide steps, we seek an

amortization s
heme that amortizes the total
ost of all
harged-
harged edges
ut against

the total
ost of all
harged-free edges
ut. The partition of verti
es to
harged and free is

not known to the divide step, and we therefore require that the amortization s
heme holds

for every possible partition of verti
es to
harged and free.

A simple amortization s
heme
an
onsider ea
h divide step separately and amortize the

ost of the
harged-
harged edges
ut in a divide step against the
ost of the
harged-free

edges
ut in the same divide step. Suppose that in every divide step the amortized
ost in this

method is at most �, i.e. at every part U we have that e(C

1

; C

2

) � �[e(C

1

; F

2

) + e(C

2

; F

1

)℄.

Then the total
ost of
harged-
harged edges
ut in all divide steps is
learly at most �b, and

the
harge of the �xed optimal bise
tion is at most (1 + 2�)b.

The problem with this simple amortization s
heme is that in order to guarantee that the

s
heme holds for all possible partitions of verti
es to
harged and free, � might be required to

be at least n, a value that is too high for our intended appli
ation. For example,
onsider a

graph that
onsists of two
liques of size n=2
onne
ted by an edge e. If the divide step breaks

any of the
liques, then letting this
lique be C and the other
lique be F , the amortization

ost will be at least n. Otherwise, the divide step
onsists of the edge e and then letting C

onsist of the two endpoints of e, the amortization
ost will be in�nite.

We employ a more
ompli
ated amortization s
heme that allows a small amortization

ost � but introdu
es an additional logarithmi
 fa
tor. The reason for the logarithmi
 fa
tor

is that this s
heme amortizes against the same edge more than on
e (but, in a sense, not

too many times). Another
ompli
ation is that this s
heme a
tually has two amortization

methods, and it uses at ea
h divide step the one that is better (for that divide step).

Amortized
ut

We amortize the
ost of the
harged-
harged edges
ut in a divide step against the
ost of the

harged-free edges in the part being divided, i.e. in the divide step of a part U we amortize

e(C

1

; C

2

) against e(C; F). The edges that we amortize against are not
ut in this divide

step, and hen
e an edge may re
eive an amortized
ost in many divide steps. However, our

amortization s
heme des
ribed below will guarantee that the total
ost amortized against a

single edge is at most O(� � logn), for a suitable �. Sin
e the edges that we amortize against

are
harged-free edges and hen
e edges of the �xed optimal bise
tion, it would follow that

the total
ost of the
harged-
harged edges
ut in all the divide steps is at most O(� logn) �b,

and so the
harge of the �xed optimal bise
tion is (1 +O(� logn)) � b.

For motivation,
onsider the
ase where the divide steps re
ursion has depth O(logn),

e.g. when all the divide steps are roughly balan
ed. In this
ase, an edge
an re
eive an

amortized
ost in at most O(logn) divide steps. Suppose that in every divide step the

amortized
ost is at most �, i.e. in every part U we have that e(C

1

; C

2

) � � � e(C; F). Then

the total
ost amortized against a single edge is at most O(� logn).

We do not require that the divide steps are balan
ed, but rather s
ale the amortization

ost at a part U a

ording to the imbalan
e of its divide step. Out of the several possible

s
aling fa
tors we will use only the following two, where we assume, without loss of gener-

ality, that jU

1

j � jU

2

j. The �rst s
aling fa
tor is e(C

1

; F

1

)=e(C; F), and its
orresponding

19

amortization method requires that

e(C

1

; C

2

) � � �

e(C

1

; F

1

)

e(C; F)

� e(C; F): (2.4)

The se
ond s
aling fa
tor is jC

1

j=jCj, and its
orresponding amortization method requires

that

e(C

1

; C

2

) � � �

jC

1

j

jCj

� e(C; F): (2.5)

Alternative formulations. The �rst amortization method (2.4)
an be written also as

e(C

1

; C

2

) � � � e(C

1

; F

1

). A
onvenient interpretation of this formulation is that we amortize

against the
harged-free edges inside U

1

, the smaller side of the divide step
ut (rather than

inside U , the part being divided), and the amortized
ost is required to be at most �.

The se
ond amortization method (2.5)
an be written also as e(C

1

; C

2

) � � � r

0

(C) � jC

1

j

where r

0

(C) = e(C; F)=jCj (see Se
tion 2.1.3 for the di�eren
e between r

0

(C) and r(C)). A

onvenient interpretation of this formulation is that we amortize against the verti
es in C

1

,

the
harged verti
es inside the smaller side of the divide step
ut, and the amortized
ost is

required to be at most � � r

0

(C).

Total amortized
ost. The total
ost amortized in the �rst method (2.4) is at most

O(� logn) �b. Indeed, let us use the alternative formulation in whi
h the amortization is only

against edges inside U

1

, the smaller side of the divide step
ut. An edge
an be inside U

1

in

at most logn divide steps (sin
e the size of the part it is
ontained in redu
es at ea
h su
h

divide step by a fa
tor of 2). Hen
e the total
ost amortized in this method against a single

edge (of the �xed optimal bise
tion) is at most O(� logn), and the
laim follows.

The total
ost amortized in the se
ond method (2.5) is also at most O(� logn) �b. Indeed,

we show in Se
tion 2.4.3 that the total
ost amortized in this method against a single edge

(of the �xed optimal bise
tion) is at most O(� logn) (essentially by
areful summation of

the relevant terms of the form jC

1

j=jCj), and the
laim follows.

Our amortization s
heme. Our amortization s
heme
hooses at ea
h divide step the

s
aling fa
tor that is better for this divide step, and so it suÆ
es to have that at ea
h part U

at least one of (2.4) and (2.5) holds. It follows from the above dis
ussion (see Se
tion 2.4.3 for

a full proof) that the total
ost amortized in both methods together is at most O(� logn) � b.

We
an now formally de�ne our desired divide step a

ording to the (alternative formu-

lations of) the two amortization methods des
ribed above. We
all this
ut an amortized

ut.

De�nition (amortized
ut). Let (U

1

; U

2

) be a
ut with jU

1

j � jU

2

j in a graph G

0

(U;E

0

),

and let U = C [F be a partition of the graph verti
es U to
harged verti
es C and free verti
es

F . Let us denote C

i

= U

i

\ C and F

i

= U

i

\ C for i = 1; 2, as in Fig. 2.1. Let

�

e

=

e(C

1

; C

2

)

e(C

1

; F

1

)

and �

v

=

e(C

1

; C

2

)

jC

1

j � r

0

(C)

(2.6)

20

where r

0

(C) = e(C; F)=jCj. We
all �

e

the amortized
ost for the edges, and �

v

the amortized

ost for the verti
es (note that �

e

; �

v

depend on C; F).

The amortized
ost of the
ut (U

1

; U

2

) is the maximum of minf�

e

; �

v

g, where the maximum

is taken over all partitions U = C [F with 0 < jCj � �jU j for a �xed

1

2

� � < 1. We say that

the
ut (U

1

; U

2

) is �-amortized if its amortized
ost is at most �.

In order us to
orre
tly handle
ases where there is no
ost to amortize against, we use the

onvention that

0

0

is de�ned to be 0, and that

t

0

for t > 0 is de�ned to be 1. In parti
ular,

we may extend (2.6) to the
ase where C = ; and then �

e

; �

v

are de�ned to be 0.

Convenient
hara
terizations. A
onvenient
hara
terization of an amortized
ut is

given in the following proposition, whose proof is straightforward. (We will use this
hara
-

terization in Se
tion 2.4.)

Proposition 2.3. A
ut (U

1

; U

2

) with jU

1

j � jU

2

j is �-amortized if and only if for every

C � U with jCj � �jU j and F = U n C,

e(C

1

; C

2

) � � �max

n

e(C

1

; F

1

) ;

jC

1

j

jCj

� e(C; F)

o

where C

i

= U

i

\ C and F

i

= U

i

\ C for i = 1; 2.

The restri
tion jCj � �jU j implies that the two terms r(C) =

e(C;F)

minfjCj;jF jg

and r

0

(C) =

e(C;F)

jCj

di�er by no more than a
onstant fa
tor. Indeed, minfjCj; jF jg = �(jCj) and hen
e

r(C) =

e(C;F)

minfjCj;jF jg

=

e(C;F)

�(jCj)

= �(r

0

(C)).

We
an therefore
hara
terize the amortized
ost of a
ut (up to
onstant fa
tors) in

terms of r(C) rather than r

0

(C). (We will use this
hara
terization in Se
tion 2.3).

Proposition 2.4. A
ut (U

1

; U

2

) with jU

1

j � jU

2

j is O(�)-amortized if for every partition

U = C [F with 0 < jCj � �jU j,

min

(

e(C

1

; C

2

)

e(C

1

; F

1

)

;

e(C

1

; C

2

)

jC

1

j � r(C)

)

� � (2.7)

where C

i

= U

i

\ C and F

i

= U

i

\ C for i = 1; 2.

Remarks. Observe that without the restri
tion jCj � �jU j, the amortized
ost � might

be required to be
(jU j), a value that is too high for our intended appli
ation. For example,

onsider a
lique on n verti
es and a
ut (U

1

; U

2

) in it with jU

1

j � jU

2

j. Let one vertex of

U

2

be the only free vertex, and the rest of the verti
es be
harged. The number of
harged-

harged edges
ut is jU

1

j � �(n). There are no
harged-free edges in U

1

, so the amortized

ost for the edges is �

e

=1. The number of
harged verti
es in the smaller side is jU

1

j and

r

0

(C) =

n�1

n�1

= 1, so the amortized
ost for the verti
es is �

v

=

jU

1

j�(n)

jU

1

j�1

= �(n). Therefore,

the amortized
ost of any
ut would be � =
(n).

In
ontrast, we show that the restri
tion jCj � �jU j allows to obtain relatively small

values of �. Namely, there always exists a
ut whose amortized
ost is � = O(1), and a

21

ut whose amortized
ost is O(log jU j)
an be
omputed eÆ
iently. We remark that our

onstru
tions are stronger than those required by Proposition 2.4, as they satisfy (2.7) with

no restri
tion on jCj. (The point is that we use r(C) rather than r

0

(C), whi
h makes a

signi�
ant di�eren
e when jCj � jF j, as in the above
lique example.)

Note that the amortized
ost � is not an approximation ratio. On the one hand, it is not

lear from the de�nition that every graph has an O(1)-amortized
ut. On the other hand,

the amortized
ost of a
ut may be smaller than 1, as demonstrated by a graph that
onsists

of two
liques of size n=2
onne
ted by an edge. The
ut that separates the two
liques
an

be seen to have amortized
ost O(1=n).

2.3 Finding an amortized
ut

In this se
tion we devise an algorithm for �nding O(logn)-amortized
uts in general graphs,

and O(1)-amortized
uts in graphs ex
luding any �xed minor (e.g. planar graphs). The input

graph for this algorithm is denoted by G (though it may be just a part of the input graph

for bise
tion). We assume that G is
onne
ted, as otherwise we
an separate a
onne
ted

omponent while
utting no edges at all.

Se
tion 2.3.1 shows that every optimal min-ratio
ut is an O(1)-amortized
ut. It follows

that in every graph there exists an O(1)-amortized
ut. An optimal min-ratio
ut is NP-hard

to �nd in general graphs, and we thus
onsider approximate min-ratio
uts.

Se
tion 2.3.2 demonstrates an approximate min-ratio
ut whi
h would be a poor divide

step for our a

ounting method. In parti
ular, its amortized
ost is high, showing that

the arguments of Se
tion 2.3.1 do not immediately extend from optimal min-ratio
uts to

approximate ones.

Se
tion 2.3.3 presents an algorithm that uses a � -approximate min-ratio
ut in order to

�nd an O(�)-amortized
ut. Known algorithms for the min-ratio
ut problem in general

graphs [LR99, AR98, LLR95℄ have approximation ratio � = O(logn), and we
an thus

�nd an O(logn)-amortized
ut. For
ertain graph families a better approximation ratio is

possible. For example, in graphs ex
luding any �xed minor, a ratio of � = O(1) is known

due to [KPR93℄, and we
an thus �nd an O(1)-amortized
ut.

2.3.1 Min-ratio
uts are O(1)-amortized

We give an O(1) upper bound on the amortized
ost of optimal min-ratio
uts. The proof

is based on the
hara
terization given in Proposition 2.4 for an amortized
ut. We remark

that our proof satis�es (2.7) with no restri
tion on jCj.

Lemma 2.5. An optimal min-ratio
ut in a graph is O(1)-amortized.

Proof. Let (V

1

; V

2

) be an optimal min-ratio
ut in a graph G, and assume, without loss of

generality, that jV

1

j � jV

2

j. Let V = C [F be an arbitrary partition of the graph verti
es

to
harged verti
es C and free verti
es F , with 0 < jCj < jV j, and denote C

i

= V

i

\ C and

F

i

= V

i

\ F for i = 1; 2 (see also Fig. 2.2). We show below that

min

(

e(C

1

; C

2

)

e(C

1

; F

1

)

;

e(C

1

; C

2

)

jC

1

j � r(C)

)

� 2; (2.8)

22

and then by Proposition 2.4 we will have that (V

1

; V

2

) is O(1)-amortized, whi
h proves the

lemma. Note that we
an assume that jC

1

j > 0, as otherwise there is nothing to prove.

F

C

1

F

2

F

1

C

2

C

V

1

V

2

Figure 2.2: The amortized
ost of an optimal min-ratio
ut (V

1

; V

2

)

One easy
ase is when

e(C

1

;C

2

)

e(C

1

;F

1

)

(i.e. the amortized
ost for the edges �

e

) is at most 2,

whi
h
learly implies (2.8).

Another easy
ase is when

e(C

1

;C

2

)

jC

1

j

� 2r(V

1

). Sin
e (V

1

; V

2

) is an optimal min-ratio
ut,

we also have that r(V

1

) � r(C). We obtain that

e(C

1

;C

2

)

jC

1

j�r(C)

� 2

r(V

1

)

r(C)

� 2, and therefore (2.8)

holds.

We next prove that one of the two easy
ases above must hold, as otherwise we must have

that r(F

1

) < r(V

1

), in
ontradi
tion with (V

1

; V

2

) being an optimal min-ratio
ut. Indeed,

assume that e(C

1

; C

2

)=e(C

1

; F

1

) > 2 and

e(C

1

;C

2

)

jC

1

j

> 2r(V

1

). Sin
e r(V

1

) =

e(V

1

;V

2

)

jV

1

j

is the

average degree from V

1

to V

2

, it
an be represented as the following
onvex
ombination of

the average degree from C

1

to V

2

and the average degree from F

1

to V

2

, namely

r(V

1

) =

jF

1

j

jV

1

j

�

e(F

1

; V

2

)

jF

1

j

+

jC

1

j

jV

1

j

�

e(C

1

; V

2

)

jC

1

j

:

Sin
e r(F

1

) =

e(F

1

;V

2

)+e(F

1

;C

1

)

jF

1

j

(note that jF

1

j � jV

1

j �

1

2

jV j), we
an represent r(V

1

) also as

r(V

1

) =

jF

1

j

jV

1

j

� r(F

1

) +

jC

1

j

jV

1

j

�

"

e(C

1

; V

2

)� e(F

1

; C

1

)

jC

1

j

#

:

By the above two assumptions (that ex
lude the easy
ases) we have that

e(C

1

; V

2

)� e(F

1

; C

1

)

jC

1

j

�

e(C

1

; C

2

)� e(F

1

; C

1

)

jC

1

j

�

1

2

e(C

1

; C

2

)

jC

1

j

> r(V

1

):

The last two inequalities imply that

r(V

1

) >

jF

1

j

jV

1

j

� r(F

1

) +

jC

1

j

jV

1

j

� r(V

1

):

We obtained that some
onvex
ombination of r(F

1

) and r(V

1

) is smaller than r(V

1

), and

we
an therefore
on
lude that r(F

1

) < r(V

1

). This
ontradi
ts the fa
t that (V

1

; V

2

) is an

optimal min-ratio
ut, and
ompletes the proof of Lemma 2.5.

23

The
onverse of Lemma 2.5 is not true, and an O(1)-amortized
ut
an be an
(n)-

approximate min-ratio
ut, as follows from the next proposition with t = O(1).

Proposition 2.6. Fix a
onstant 1=2 < � < 1 for the de�nition of an amortized
ut.

Then for every t = o(n), there is an O(1=t)-amortized
ut whi
h is an
(n=t)-approximate

min-ratio
ut.

Proof. Consider the a graph on n verti
es, for a suÆ
iently large n, that
onsists of three

liques as follows. V

1

is a
lique on t verti
es, V

2

is a
lique on �n verti
es, and V

3

is a
lique

on the remaining
(n) verti
es. In addition, the graph
ontains one edge
onne
ting V

1

to

V

2

, and one edge
onne
ting V

2

to V

3

.

The
ut (V

1

; V

2

[V

3

) has amortized
ost O(1=t). Indeed, let C [F be a partition of the

verti
es with jCj � �n. We may assume that C
ontains both endpoints of the edge between

V

1

and V

2

, as otherwise the
ut
ontains no
harged-
harged edges and its amortized
ost

is 0. So we have that the
ost of the
harged-
harged edges
ut is 1, and that both V

1

and

V

2

ontain at least one
harged vertex. If V

1

ontains also at least one free vertex, then the

number of
harged-free edges in V

1

is at least t � 1 and hen
e �

e

=

e(C

1

;C

2

)

e(C

1

;F

1

)

� 1=(t � 1).

Otherwise, we have C

1

= V

1

; sin
e there are at most �n
harged verti
es, and at least one of

them is in V

1

, we have that V

2

ontains also free verti
es and thus e(C; F) �
(n); it follows

that �

v

=

e(C

1

;C

2

)

e(C;F)

�

jCj

jC

1

j

� O(1=t).

The
ut (V

1

; V

2

[V

3

) is an
(n=t)-approximate min-ratio
ut. Indeed, the ratio of this

ut is r(V

1

) = 1=t, while the
ut (V

3

; V

1

[V

2

) is an optimal min-ratio
ut and has ratio

r(V

3

) = O(1=n).

The next
orollary follows from Lemma 2.5.

Corollary 2.7. In every graph there exists an O(1)-amortized
ut.

Corollary 2.7 is optimal up to
onstant fa
tors, and there are graphs for whi
h any
ut

has amortized
ost
(1). For example,
onsider a
lique on n verti
es. Given a
ut (V

1

; V

2

)

with jV

1

j � jV

2

j, let � be the
onstant in the amortized
ut de�nition, and take (�� 1=2)n

verti
es of V

2

and all of V

1

to be the
harged verti
es. It
an be seen that �

e

= 1 and

�

v

= �(1), and so the amortized
ost of the
ut (V

1

; V

2

) is
(1), as
laimed.

2.3.2 Approximate min-ratio
uts might be poor amortized
uts

We demonstrate that an approximate min-ratio
ut of a graph might be a poor divide step,

and in parti
ular a poor amortized
ut. Consider, for example, the following graph G on

2n + 2

p

�n verti
es for a �xed 0 < � < 1 (see also Fig. 2.3). The vertex set of the graph is

F

1

[F

2

[C

1

[C

2

where ea
h of F

1

; F

2

are of size n, ea
h of C

1

; C

2

are of size

p

�n, and ea
h

of the four subsets forms a
lique. These four
liques are
onne
ted as follows. Between F

1

and F

2

there are n edges that form a mat
hing (i.e. have no
ommon endpoint). Between

C

1

and C

2

there are all possible �n edges, thus C

1

[C

2

forms a
lique. There are also 2

p

�n

edges between F

i

and C

i

(for i = 1; 2) so that their endpoints at F

i

are distin
t and ea
h

vertex of C

i

is an endpoint of exa
tly two of these edges.

24

F C

n

2

p

�n

�n

2

p

�n

n

n

F

2

F

1

C

2

C

1

p

�n

p

�n

Figure 2.3: A poor divide step by an approximate min-ratio
ut

Let C = C

1

[C

2

be the
harged verti
es, and F = F

1

[F

2

the free verti
es. Su
h a

partition to
harged and free may re
e
t the \right"
ut of 2

p

�n verti
es from the graph G

(if, e.g., the input graph for bise
tion
onsists of this graph G and a
lique on 2n � 2

p

�n

verti
es).

Consider a divide step based on the
ut (F

1

[C

1

; F

2

[C

2

), whose ratio is nearly optimal.

Indeed, an optimal min-ratio
ut in this graph is (F

1

; C

1

[F

2

[C

2

) and its ratio is 1+2

p

�=

p

n.

The
ut (F

1

[C

1

; F

2

[C

2

) has a slightly higher ratio of (1 + �)(1� o(1)), and so it is a 1+ �

approximate min-ratio
ut.

Observe that the
ut (F

1

[C

1

; F

2

[C

2

) is a poor divide step. It
uts �n
harged-
harged

edges while the total number of
harged-free edges in G (and the bise
tion
ost in the input

graph) is only 4

p

�n. A

ording to the new a

ounting method, su
h a divide step does not

give an approximation ratio better than
(

p

�n).

The observation that the
ut (F

1

[C

1

; F

2

[C

2

) is a poor divide step is supported by

its high amortized
ost. The amortized
ost for the edges is �

e

= �n=2

p

�n =

p

�n=2.

The ratio of the
ut (C; F) is r(C) = r

0

(C) = 2, so the amortized
ost for the verti
es is

�

v

= �n=(

p

�nr

0

(C)) =

p

�n=2. We
on
lude that a 1+o(1) approximate min-ratio
ut might

have amortized
ost � � minf�

e

; �

v

g =

p

�n=2.

2.3.3 Finding O(�)-amortized
ut

We present an algorithm that �nds an O(�)-amortized
ut, given a subroutine for
omputing

a � -approximate min-ratio
ut. The algorithm is motivated by the O(1) upper bound on the

amortized
ost of a min-ratio
ut shown in Se
tion 2.3.1. In parti
ular, we examine what

additional properties are required in order to extend the analysis of Lemma 2.5 from optimal

min-ratio
uts to approximate ones.

The proof of Lemma 2.5 uses twi
e the fa
t that (V

1

; V

2

) is an optimal min-ratio
ut. In

the �rst usage we had that

e(C

1

;C

2

)

jC

1

j�r(C)

� 2

r(V

1

)

r(C)

� 2, whi
h extends to the
ase where (V

1

; V

2

)

is an approximate min-ratio
ut with the approximation ratio
arried over to the amortized

ost, i.e. if (V

1

; V

2

) is a � -approximate min-ratio
ut then we have

e(C

1

;C

2

)

jC

1

j�r(C)

� 2

r(V

1

)

r(C)

� 2� .

The se
ond time we used the fa
t that (V

1

; V

2

) is an optimal min-ratio
ut was to say

that r(F

1

) < r(V

1

)
annot hold and gives a
ontradi
tion. In general, this usage does not

25

extend to an approximate min-ratio
ut, as demonstrated by the example in Se
tion 2.3.2.

However, the proof does extend to an approximate min-ratio
ut if we have the additional

property that the ratio of V

1

is minimal over all its subsets F

1

, i.e. r(V

1

) � r(F

1

) for all

F

1

� V

1

. We therefore obtain that the proof of Lemma 2.5 extends to approximate min-ratio

uts as follows.

Lemma 2.8. Let (V

1

; V

2

) be a � -approximate min-ratio
ut in a graph, with jV

1

j � jV

2

j. If

r(V

1

) � r(F

1

) for every F

1

� V

1

then (V

1

; V

2

) is an O(�)-amortized
ut.

Note that the proof of Lemma 2.8 is not symmetri
 with respe
t to the two amortization

methods. It guarantees that either e(C

1

; C

2

)=e(C

1

; F

1

) � 2 (i.e. the amortized
ost for the

edges �

e

is at most 2), or

e(C

1

;C

2

)

jC

1

j�r(C)

� 2� (i.e. the amortized
ost for the verti
es �

v

is O(�)).

In
ontrast, in the proof of Lemma 2.5 for optimal min-ratio both amortization
osts are

O(1).

The amortized
ut algorithm. We use Lemma 2.8 to devise an algorithm that �nds

an O(�)-amortized
ut based on a � -approximate min-ratio
ut. The algorithm, des
ribed

in Fig. 2.4, starts with a � -approximate min-ratio
ut (V

1

; V

2

) and then \�xes" it so that it

would also be \minimal" with respe
t to
ontainment, as required by Lemma 2.8. It then

follows that the output
ut is O(�)-amortized.

In order to \�x" the
ut (V

1

; V

2

), the algorithm uses minimum (s; t)-
uts in a related

graph G

0

, whi
h is de�ned in step 2. The related graph G

0

ontains edges of the input graph

G, as well as new edges. The edges from G have unit
apa
ity, while the
apa
ity of the

new edges is some parameter p > 0. Step 3 then �nds the optimal value of p with respe
t

to the minimum (s; t)-
ut. Before dis
ussing implementation issues of step 3, let us analyze

the algorithm
orre
tness.

Lemma 2.9. The
ut (S; V n S) output by algorithm FindAmortized is a � -approximate

min-ratio
ut. In addition, every nonempty subset of V

1

has ratio at least as large as S, i.e.

r(S) = minfr(S

0

) : ; 6= S

0

� V

1

g.

Proof. Consider an arbitrary value p and an arbitrary (s; t)-
ut in the related graph G

0

with

the
orresponding set S � V

1

(see Fig. 2.5). The
ut
onsists of (i) edges between s and

V

1

n S (ea
h of
apa
ity p) (ii) edges between S and V

1

n S (these are edges from the input

graph G) and (iii) edges between S and t (these are the edges between S and V

2

in the input

graph G). The
apa
ity of this (s; t)-
ut is thus

ap(S) = p � jV

1

n Sj+ e(S; V n S)

where, as usual, e(�; �) denotes the number of
orresponding edges in the input graph G. In

the spe
ial
ase of the empty set S = ;, the
apa
ity of the (s; t)-
ut is

ap(;) = p � jV

1

j

Fixing the value of p, let us
ompare the
apa
ity of the
ut de�ned by the empty set ;

with that of an arbitrary set S 6= ;, i.e.
ap(;) vs.
ap(S). The empty set ; yields a smaller

26

Algorithm FindAmortized.

1. Find in the input graph G = (V;E) a � approximate min-

ratio
ut (V

1

; V

2

) with jV

1

j � jV

2

j.

2. Create a related graph G

0

:

{ Merge all verti
es of V

2

into a single vertex t, remov-

ing self loops at t, and keeping all edges to V

1

, in
luding

parallel edges.

{ Add a new vertex s whi
h is
onne
ted to ea
h vertex

of V

1

by an edge whose
apa
ity (weight) is a parameter

p > 0.

3. Let S denote the verti
es of V

1

whi
h are on the same side

with s in a minimum (s; t)-
ut of G

0

.

{ Find (e.g. by binary sear
h) the minimum p > 0 for

whi
h S 6= ;. (Possibly, S = V

1

).

4. Output the
ut (S; V n S) of the input graph.

Figure 2.4: Algorithm for amortized
uts

apa
ity whenever

p � jV

1

j < p � jV

1

n Sj+ e(S; V n S)

m

p <

e(S; V n S)

jSj

= r(S)

where r(S) is the ratio of the
ut (S; V nS) in the input graph G (note that jSj � jV

1

j �

1

2

jV j

and that r(S) > 0 if G is
onne
ted).

We
laim that the value of p found at step 3 is essentially p

�

= minfr(S) : ; 6= S � V

1

g.

Indeed, when p < p

�

, a minimum (s; t)-
ut in G

0

orresponds to S = ;, and when p > p

�

, a

minimum (s; t)-
ut yields a set S 6= ;. When p = p

�

, a minimum (s; t)-
ut
an be obtained

either by S = ;, or by (one or more) S 6= ; with r(S) = p

�

.

When p = p

�

+ � for a very small � > 0, only the sets S 6= ; with r(S) = p

�

give smaller

apa
ity than the empty set, and thus a minimum (s; t)-
ut is obtained by one of these sets

S. By the de�nition of p

�

, this set ; 6= S � V

1

has minimal ratio r(S) over all nonempty

subsets of V

1

, i.e. r(S) = minfr(S

0

) : ; 6= S

0

� V

1

g, as
laimed. Furthermore, sin
e S = V

1

is

in
luded in this range, we get that r(S) � r(V

1

) and hen
e (S; V nS) is a � -approximate min-

ratio
ut, �nishing the proof. We remark that a slightly modi�ed algorithm
an guarantee

in addition that r(S) < r(S

0

) for every S

0

� S with S

0

6= ;; S. Details omitted.

Theorem 2.4. Given a subroutine for
omputing a � -approximate min-ratio
ut, algorithm

FindAmortized �nds an O(�)-amortized
ut.

27

t

V

1

V

1

n S

S

1

s

V

2

V

2

p

1

Figure 2.5: An (s; t)-
ut in the related graph G

0

Proof. Lemma 2.9 guarantees that the
ut found by the algorithm satis�es the requirements

of Lemma 2.8, from whi
h it follows that the
ut is O(�)-amortized.

We now address the issue of implementing step 3. Observe that p

�

is the maximum value p

for whi
h the empty set ; gives a minimum (s; t)-
ut. Sin
e, by de�nition, p

�

is the ratio r(S)

of a set S, it has only n

3

possible values, whi
h
an be exhaustively sear
hed. Alternatively,

p

�

an be found in O(logn) iterations of binary sear
h, sin
e as an exa
t multiple of 1=jSj

it is bounded between 0 and n, and the di�eren
e between any two of its possible values is

more than 1=n

2

.

On
e we �nd p

�

, we need to �nd a set S 6= ; that gives a minimum (s; t)-
ut for p

�

. We

an either guess a vertex of V

1

and merge it with s before
omputing the minimum (s; t)-
ut

for p

�

, or alternatively
ompute a minimum (s; t)-
ut for p = p

�

+ � with e.g. � = 1=n

2

.

2.4 The bise
tion algorithm

In this se
tion we des
ribe our approximation algorithm for bise
tion and prove the following

theorem. (See Se
tion 2.2 for the de�nition of an amortized
ut.)

Theorem 2.5. Given a subroutine that �nds a �-amortized
ut, a bise
tion within ratio of

1 +O(� logn) of the minimum
an be found in polynomial time.

2.4.1 De
omposition stage

The de
omposition stage re
ursively divides the input graph G = (V;E) into smaller and

smaller parts using a �-amortized
ut subroutine (e.g. the one devised in Se
tion 2.3). Ea
h

part is further divided unless it
onsists of a single vertex.

The de
omposition stage builds a rooted binary tree T ,
alled the de
omposition tree,

whi
h
orresponds to the re
ursive de
omposition of the input graph G in a natural way, as

follows. (Throughout, we
all the verti
es of T nodes, to avoid
onfusion with the verti
es

of the input graph G.) Ea
h tree node i
ontains a part V

i

� V that was found during

the re
ursive de
omposition. The root node of T
ontains V , i.e. the whole input graph G.

Let us denote the two
hildren of a nonleaf node i by L(i) and R(i). Then their two parts

28

V

L(i)

; V

R(i)

are the result of dividing V

i

, i.e. the �-amortized
ut found in V

i

is (V

L(i)

; V

R(i)

). A

leaf of the tree T
ontains a part that
onsists of a single vertex of G. Therefore T
ontains

exa
tly n leaves and n� 1 nonleaf nodes.

2.4.2 Labeling stage

Re
all the following de�nitions from Se
tion 2.2. A labeling of the de
omposition tree T labels

ea
h nonleaf node of the tree as either white or bla
k. Fixing a parameter 1=2 < � < 1,

we say that a labeling is �-
onsistent with respe
t to a white-bla
k bise
tion (W;B) of G if

every tree node i satis�es that: If the label of node i is white then jW \ V

i

j � �jV

i

j, and

if the label of node i is bla
k then jB \ V

i

j � �jV

i

j (where V

i

is the part
ontained in node

i). A labeling is
alled opt-
onsistent if it is �-
onsistent with the �xed optimal bise
tion

(W

�

; B

�

).

The labeling stage produ
es a family F of labelings. The
ardinality of F is exponential

in n, so rather than listing its members expli
itly, the labeling stage produ
es an impli
it

representation of F . The a
tual work of the labeling stage is to mark
ertain nodes of T ,

and these nodes impli
itly de�ne the family F , as des
ribed below.

The labeling stage marks some of the nodes of T in a pro
ess that goes from the root of

T towards its leaves, as follows. The root of T is always marked, and any other node i in

the tree is marked in this pro
ess if its
losest marked an
estor j satis�es jV

i

j �

1

2�

jV

j

j (as

before, V

i

and V

j

are the parts
ontained in the nodes i and j, respe
tively). Note that the

onstant � is
hosen so that

1

2

< � < 1, implying

1

2

<

1

2�

< 1.

A labeling of T is said to be derived from the marked nodes, if the label of every unmarked

node is the same as the label of its
losest marked an
estor (there is no restri
tion on the

labels of the marked nodes). Note that in this
ase the labels of the marked nodes uniquely

de�ne the labels of all the internal tree nodes.

The family F produ
ed by the labeling stage
onsists of all the labelings that
an be de-

rived from the marked nodes. Sin
e ea
h of the
(n) marked nodes
an be labeled arbitrarily

by one of two
olors, the resulting family of labelings has exponentially large
ardinality, and

we
annot expli
itly list all the family members. Instead, the algorithm impli
itly represents

this family F by identifying whi
h are the marked nodes.

Lemma 2.10. The family of labelings F
ontains at least one opt-
onsistent labeling.

Proof. Let the white-bla
k
ut (W;B) be the �xed optimal bise
tion. Consider the labeling

that is derived from the marked nodes, with the label of ea
h marked node i being the
olor

in minority among the verti
es of V

i

.

This labeling is
learly in the family F , and we
laim that it is also opt-
onsistent.

Indeed, the label of a marked node i is by de�nition the minority
olor in V

i

. The label

of an unmarked node i is the same as the label of its
losest marked an
estor j. Suppose,

without loss of generality, that this label (of i and j) is white. Then at most half the verti
es

of V

j

are white, i.e. jW \ V

j

j �

1

2

jV

j

j. Observe that V

i

� V

j

and jV

i

j >

1

2�

jV

j

j and hen
e

jW \ V

i

j � jW \ V

j

j �

1

2

jV

j

j < �jV

i

j. Hen
e, this labeling of F is opt-
onsistent.

29

2.4.3 The
harge of a bise
tion

We now formally de�ne the
harge of a bise
tion (W;B) with respe
t to the de
omposition

tree T and a labeling of it. The referen
e to T will later be omitted, as we always refer to

the tree
omputed in the de
omposition stage.

De�nition (
harge). Let (W;B) be a bise
tion of the input graph, and assume we are given

a de
omposition tree T and a labeling of it. For ea
h (nonleaf) node i of T , if i is labeled white

then we let (see Fig. 2.6) C

i

= W \ V

i

and F

i

= B \ V

i

, and if i is labeled bla
k then we let

C

i

= B\V

i

and F

i

=W \V

i

. We obtain a
ut (C

i

; F

i

) of the part V

i

, and say that C

i

is
harged

and F

i

is free. The
harge of the divide step of a (nonleaf) node i is de�ned as

e(C

i

\ V

L(i)

; V

R(i)

) + e(C

i

\ V

R(i)

; V

L(i)

):

The
harge of the bise
tion (W;B) is de�ned as the sum of all the divide steps
harges, i.e.

X

i2T

e(C

i

\ V

L(i)

; V

R(i)

) + e(C

i

\ V

R(i)

; V

L(i)

):

(These
harges are de�ned with respe
t to T and a labeling of it.)

Step

Divide

Step

Divide

Step

Divide

Step

Divide

F

i

= B \ V

i

: : :

C

i

= W \ V

i

: : :

V

R(i)

V

L(i)

V

L(L(i))

V

L(R(i))

: : : : : :

F

L(i)

=W\V

L(i)

V

R(L(i))

V

R(R(i))

: : : : : :

V

R(i)

C

R(i)

=W\V

R(i)

F

R(i)

=B\V

R(i)

C

L(i)

=B\V

L(i)

V

i

V

L(i)

Figure 2.6: The
harge of a bise
tion (W;B) throughout the de
omposition tree

30

Bise
tion
harge vs.
ost

In
ertain
onditions, a bise
tion
harge
an approximate its
ost. As shown below, the

harge of a bise
tion upper bounds its
ost, and the gap between them is not too large if the

harge is taken with respe
t to an �-
onsistent labeling (as in the
ase of the �xed optimal

bise
tion and an opt-
onsistent labeling).

Lemma 2.11. The
harge of a bise
tion (W;B) with respe
t to any labeling is at least as

large as its
ost.

Proof. As we have seen in se
tion 2.2, the true
ost of the (W;B) edges
ut in a divide step i

is e(C

i

\V

L(i)

; F

i

\V

R(i)

)+ e(C

i

\V

R(i)

; F

i

\V

L(i)

), and is therefore not larger than the
harge

of this step. The proof follows by summing over all divide steps, sin
e the de
omposition

stage eventually divides the graph into individual verti
es, and so every edge of the bise
tion

(W;B) is
ut at some divide step.

Lemma 2.12. The
harge of a bise
tion (W;B) with respe
t to a labeling that is �-
onsistent

with it is at most e(W;B) � (1 +O(� logn)).

Proof. Consider a bise
tion (W;B) and a labeling of T that is �-
onsistent with it. As we

have seen in Se
tion 2.2 and in Lemma 2.11 the
harge of a divide step is larger than the

true
ost of the (W;B) edges
ut in that step by the
ost of the
harged-
harged edges
ut in

that divide step. Summing over the divide steps we get that the
harge of (W;B) the �xed

optimal bise
tion is larger than its
ost by 2

P

i

e(C

i

\ V

L(i)

; C

i

\ V

R(i)

), where i ranges over

all (nonleaf) nodes i in T . We use the shorter notation C

L

= C

i

\ V

L(i)

and C

R

= C

i

\ V

R(i)

,

where i is
lear from the
ontext.

To upper bound 2

P

i

e(C

L

; C

R

), observe that ea
h part V

i

is divided using a �-amortized

ut, and that the �-
onsistent labeling guarantees that jC

i

j � �jV

i

j for all nodes i, so we

an use the amortization s
heme of Se
tion 2.2. Namely, let us assume, without loss of

generality, that the de
omposition stage pla
es in the left
hild of a node i the smaller of the

two subparts of V

i

, i.e. jV

L(i)

j � jV

R(i)

j for every nonleaf node i. Then by Proposition 2.3 we

an upper bound

e(C

L

; C

R

) � � �max

n

e(C

L

; F

L

) ;

jC

L

j

jC

i

j

� e(C

i

; F

i

)

o

;

and obtain

2

X

i

e(C

L

; C

R

) � 2� �

(

X

i

e(C

L

; F

L

) +

X

i

jC

L

j

jC

i

j

� e(C

i

; F

i

)

)

: (2.9)

Therefore, to
omplete the proof of Lemma 2.12 it suÆ
es to upper bound the sums in the

urly bra
kets (i.e. the total
ost amortized in ea
h of the two methods) by e(W;B)�O(logn).

Consider �rst

P

i

e(C

L

; F

L

). The edges that
ontribute to this sum are
harged-free edges

and hen
e edges of the bise
tion (W;B). An edge in the
ut (C

L

; F

L

) must be inside V

L(i)

,

the smaller side of the
ut of V

i

, and any single edge
an be inside V

L(i)

in at most logn

divide steps i throughout the tree T . Hen
e,

P

i

e(C

L

; F

L

)
onsists of at most logn times the

ost of every edge of the bise
tion (W;B), and therefore this sum is at most e(W;B) � logn.

Consider next

P

i

jC

L

j

jC

i

j

� e(C

i

; F

i

), and re
all our
onvention that

0

0

is de�ned to be 0. The

edges of e(C

i

; F

i

)
ontribute to the sum their
ost s
aled by a fa
tor of

jC

L

j

jC

i

j

. Ea
h edge of

31

e(C

i

; F

i

) is a
harged-free edge and hen
e an edge of the bise
tion (W;B). However, an edge

of the bise
tion (W;B) belongs to e(C

i

; F

i

) if and only if this edge is inside V

i

. The nodes i

for whi
h this edge is inside V

i

are all on a path from the root to a leaf of the de
omposition

tree T , and therefore the total
ontribution of this edge is at most its
ost s
aled by the sum

of

jC

L

j

jC

i

j

over that path in T .

We
laim that the sum of

jC

L

j

jC

i

j

over any path from the root to a leaf is bounded by

O(logn). It follows from this
laim that

P

i

jC

L

j

jC

i

j

� e(C

i

; F

i

)
an be des
ribed as the
ost of

every edge of the bise
tion (W;B) s
aled by at most O(logn), and therefore this sum is at

most e(W;B) �O(logn).

To prove the
laim,
onsider an arbitrary path from the root to a leaf, and denote the

path nodes by 1; 2; : : : ; p+ 1. At ea
h node i the
harged side (i.e. C

i

) may be either W or

B, depending on the label of the node, so denoting w

j

= jW \V

j

j and b

j

= jB \V

j

j, we have

that

jC

L

j

jC

i

j

is either

w

L(i)

w

i

or

b

L(i)

b

i

, and
learly at most their sum. Hen
e,

p

X

i=1

jC

L

j

jC

i

j

�

p

X

i=1

w

L(i)

w

i

+

p

X

i=1

b

L(i)

b

i

Consider �rst

P

p

1

w

L(i)

w

i

, and observe that w

i

is a nonin
reasing sequen
e, sin
e in the tree,

node i is a parent of node i + 1. If node i + 1 is a left
hild (of its parent node i), then

w

L(i)

= w

i+1

and hen
e

w

L(i)

w

i

=

w

i+1

w

i

� 1. The number of su
h nodes i is at most logn,

sin
e the path from the root to a leaf
an
ontain at most logn left
hildren i (re
all that

jV

L(i)

j � jV

R(i)

j). The
ontribution of all su
h nodes i to

P

p

1

w

L(i)

w

i

is therefore at most logn.

If node i+1 is a right
hild (of its parent i), then w

L(i)

= w

i

�w

i+1

, and the
ontribution

of all su
h nodes i is at most

P

p

1

w

i

�w

i+1

w

i

. Clearly,

w

i

�w

i+1

w

i

�

1

w

i

+ : : : +

1

w

i+1

+1

and hen
e

the
ontribution of all su
h nodes i to

P

p

1

w

L(i)

w

i

is at most

P

p

1

w

i

�w

i+1

w

i

�

1

w

1

+ : : : +

1

2

+ 1 =

H(w

1

) � H(n) where H(k) =

P

k

1

1

j

is the k-th harmoni
 number.

We
on
lude that

P

p

1

w

L(i)

w

i

� logn+H(n) � O(logn). Similarly,

P

p

1

b

L(i)

b

i

= O(logn), and

together we get that

P

p

1

jC

L

j

jC

i

j

� O(logn), proving the
laim and the lemma.

Corollary 2.13. The
harge of the �xed optimal bise
tion (W

�

; B

�

) with respe
t to an opt-

onsistent labeling is at most b(1 +O(� logn)).

Distributing
harge to verti
es

It will be
onvenient (algorithmi
ally) to distribute the
harge of a bise
tion (W;B) (with

respe
t to T and a labeling) to the verti
es of the input graph, as follows. For ea
h vertex

v 2 V

i

let the
ross-degree of v at node i, denoted
ross

i

(v), be the
ost of the edges that

are in
ident at v and are
ut in divide step i. We de�ne the
harge of a vertex v 2 V as

the sum of the
ross-degree of v at all nodes i for whi
h v belongs to the
harged side, i.e.

P

i:v2C

i

ross

i

(v). The next lemma proves that distributing the
harge of a bise
tion to the

graph verti
es is indeed
orre
t.

Lemma 2.14. The
harge of a bise
tion (W;B) is the sum of the
harges of all verti
es in

G.

32

Proof. The
harge of a divide step of node i is equal to the sum of the
ross-degrees at node

i of all verti
es v 2 V

i

, i.e.

e(C

i

\ V

L(i)

; V

R(i)

) + e(C

i

\ V

R(i)

; V

L(i)

) =

X

v2C

i

ross

i

(v) :

Summing over all nodes i in the tree T , the lefthandside is, by de�nition, the bise
tion
harge,

and the righthand side is the sum of the
harges of all verti
es in G. The proof follows.

Distributing the
harge to the verti
es of G is important algorithmi
ally. The
harge

of a vertex depends on (and
an be easily
omputed from) the side of this vertex in the

bise
tion (W;B), the de
omposition tree T , and the labeling of T , but it does not depend

on the side of the
ut (W;B) that other verti
es of the graph belong to. It follows that the

harge of a bise
tion (W;B) with respe
t to a given de
omposition tree T and a labeling of

it, depends linearly on the pla
ement of verti
es into W and B. This formulation of
harge

will be exploited by (the dynami
 programming in) the
ombining stage.

2.4.4 Combining stage

The
ombining stage
omputes a bise
tion of the input graph G and a labeling of the de-

omposition tree T , su
h that the bise
tion
harge with respe
t to the labeling is at most

b � (1+O(� logn)). It then follows from Lemma 2.11 that the
ost of the
omputed bise
tion

is at most b � (1 +O(� logn)), as desired.

Consider �rst the
ase where an opt-
onsistent labeling is known. Then it suÆ
es to

ompute a bise
tion ofG whose
harge with respe
t to this opt-
onsistent labeling is minimal,

be
ause Corollary 2.13 guarantees that the
harge of the
omputed bise
tion is at most

b � (1 + O(� logn)). Below we des
ribe a simple pro
edure for �nding a bise
tion of G with

minimal
harge with respe
t to a given labeling.

However, we do not know how to eÆ
iently �nd an opt-
onsistent labeling, and therefore

we go over all the labelings in the family F . Spe
i�
ally, using a more
ompli
ated pro
edure

des
ribed below the
ombining stage �nds a bise
tion of G and a labeling from F , su
h that

the
harge of the bise
tion with respe
t to the labeling is minimal over all su
h bise
tion-

labeling pairs. Lemma 2.10 guarantees that at least one of these labelings is opt-
onsistent,

in whi
h
ase Corollary 2.13 applies. Hen
e, the bise
tion-labeling pair
omputed by this

pro
edure satis�es that the
harge of the bise
tion with respe
t to the labeling is indeed at

most b � (1 +O(� logn)).

Minimizing
harge over a given labeling

Finding a bise
tion of minimum
harge with respe
t to a given labeling is relatively straight-

forward. By Lemma 2.14, the
harge of a bise
tion (W;B) is the sum of the vertex
harges.

Sin
e the de
omposition tree T and the labeling are �xed, the
harge of a vertex depends

only on its side in the bise
tion (W;B). We
an therefore
ompute for ea
h vertex v what is

its
harge when it belongs to W ,
alled the white
harge of v, and what is its
harge when

it belongs to B,
alled the bla
k
harge of v. (Note that summing the white
harge and the

bla
k
harge of a vertex gives the degree of that vertex in G.)

33

The
harge of a bise
tion (W;B) is then the sum of the white
harges of W and the

bla
k
harges of B. To �nd a bise
tion (W;B) with minimum
harge with respe
t to the

given labeling, we
an thus
ompute for ea
h vertex its net-
harge (white
harge minus bla
k

harge), and take W to be the n=2 verti
es with smallest net-
harge. (This algorithm for

the
ase where a labeling is given was used in the algorithm outline in Se
tion 2.2, where we

assumed that the labeling stage produ
es an opt-
onsistent labeling.)

Minimizing
harge over the family F

The
ombining stage uses dynami
 programming to �nd a bise
tion and a labeling from the

family F , so that the
harge of the bise
tion with respe
t to this labeling is minimum over

all su
h bise
tion-labeling pairs.

The dynami
 programming table Q has entries of the form Q(i; k; g), where i is a node

of the de
omposition tree T , k is an integer between 0 and jV

i

j, and g is a guess list that

ontains the labels of the marked an
estors of node i. Throughout, i is
onsidered an an
estor

of itself.

An entry Q(i; k; g) in the table
ontains the optimal solution to the following problem:

Choose k verti
es of V

i

and a labeling from F that agrees with g, so that when these k

verti
es are pla
ed in the side W and the remaining verti
es of V

i

are pla
ed in the side

B, the sum of the
harges of all the verti
es of V

i

with respe
t to the
hosen labeling, is

minimal over all su
h
hoi
es. Note that when we only
onsider labelings from the family F

that agree with g, the labels of all the an
estors of i are uniquely de�ned from g, while the

marked des
endants of i
an have arbitrary labels.

For a leaf node i, the table entry Q(i; k; g)
an be
omputed dire
tly, as follows. Sin
e i is

a leaf node, the part V

i

onsists of a single vertex, say v, and k
an be either 0 or 1. If k = 0

then v is ne
essarily in B, and if k = 1 then v is ne
essarily in W . The guess list g gives

the labels of all the nodes on the path from the leaf i to the root, and hen
e all the labels

that
an possibly a�e
t the
harge of v. Sin
e k and g uniquely de�ne all the data that the

harge of v depends on, Q(i; k; g) is just the
harge of v, and
an be
omputed dire
tly as

P

j

ross

j

(v) where j ranges over all an
estors of i whose label (a

ording to g) agrees with

the side of v (as follows from k).

For a nonleaf node i, the table entry Q(i; k; g)
an be eÆ
iently
omputed from table

entries of its
hildren nodes L(i); R(i). Indeed,
hoosing k verti
es from V

i

is equivalent to

hoosing j verti
es from one
hild part V

L(i)

and k�j verti
es from the other
hild part V

R(i)

,

so we need to add up two entries, ea
h
orresponding to one
hild node. The optimal value

of j is not known, but it
an be exhaustively sear
hed. The guess list g
an be extended into

lists g

L

; g

R

for the
hildren nodes, in possibly more than one way. Therefore,

Q(i; k; g) = min

0�j�k

min

g

L

;g

R

fQ(L(i); j; g

L

) +Q(R(i); k � j; g

R

)g

where g

L

; g

R

range over all possible extensions of g, as des
ribed below. If a
hild node L(i)

is a marked node, then there are two possible ways to extend the list g into a list g

L

(by

adding a label for V

L(i)

), and the optimum Q(i; k; g) is a
hieved by taking the one whi
h is

better. If a
hild node L(i) is not a marked node, then the only extension is g

L

= g, be
ause

i and L(i) have the same marked an
estors. The possible extensions of the
hild node R(i)

34

are similar. It follows that ea
h table entry of a nonleaf node i
an be
omputed from table

entries of its
hildren L(i); R(i) in time O(jV

i

j) = O(n).

To �ll all the table entries, start from the entries that
orrespond to leaf nodes i and

go upwards the de
omposition tree T . In parti
ular, the entries Q(i

root

; n=2; g) will be

omputed for the root node i

root

. At the root node, the guess list g
ontains the label of the

root, and thus has only two possible values. (In fa
t, the two entries must be the same due

to symmetry.) The
ombining stage outputs min

g

Q(i

root

; n=2; g), whi
h by de�nition, is the

minimum
harge of all bise
tions of the input graph with respe
t to any labelings from F ,

as desired. A bise
tion that a
hieves this minimum
harge
an also be
omputed. Simply

go over the table entries in the reversed order of
omputation, and re
over at ea
h entry the

values of j; g

L

; g

R

that gave the optimum. Alternatively, asso
iate with ea
h entry Q(i; k; g)

a set of k verti
es of V

i

whi
h is optimal for it, and its
orresponding labels.

Lemma 2.15. The
ombining stage �nds in polynomial time a bise
tion of the input graph

G and a labeling from the family F , so that the
harge of the bise
tion with respe
t to the

labeling is minimal over all su
h bise
tion-labeling pairs.

Proof. The above dis
ussion shows that the algorithm
orre
tly
omputes every entryQ(i; k; g),

and a bise
tion-labeling pair as desired.

The size of the table Q is polynomial in n. Indeed, there are only O(n) tree nodes i.

For ea
h tree node i, the range of k
ontains O(jV

i

j) = O(n) possible values. In addition,

at ea
h tree node i the guess list g
ontains labels of at most O(logn) an
estor nodes, and

thus g assumes polynomially many values. The polynomial bound on the size of the table Q

follows.

An entry for a leaf nodes i is
omputed eÆ
iently. An entry for a nonleaf node is

eÆ
iently
omputed from previously
omputed entries. By the upper bound on the table

size we
on
lude that all the table entries are
omputed in polynomial time, and in parti
ular

Q(i

root

; n=2; g).

Corollary 2.16. The
ombining stage �nds bise
tion of the input graph (and a labeling of

T) su
h that bise
tion
harge (with respe
t to the labeling) is at most b(1 +O(� logn)).

Proof. By Lemma 2.15 and Corollary 2.13 there exists a bise
tion of G and a labeling of F

su
h that the bise
tion
harge with respe
t to the labeling is at most b(1 +O(� logn)). The

proof then follows by applying Lemma 2.10.

This
orollary
ompletes the proof of Theorem 2.5, sin
e by Lemma 2.11 the
harge of a

bise
tion is an upper bound on its a
tual
ost.

2.5 Extensions

Our results extend to several variants (and generalizations) of the minimum bise
tion prob-

lem, in
luding the
ase of edges with arbitrary nonnegative
osts (Se
tion 2.5.1), the
ase of

verti
es with polynomially bounded nonnegative integer weights (Se
tion 2.5.2), the variant

that requires, in addition, to separate a given pair of verti
es s and t (Se
tion 2.5.3), the

ase of
utting away from the graph an arbitrary number of verti
es (instead of n=2) that

35

is given as part of the input (Se
tion 2.5.4), the
ase of
utting the input graph into a �xed

number of equal-size parts (Se
tion 2.5.5), and the
ase of �nding a 2/3-balan
ed
ut whose

ost is small relative to the minimum bise
tion
ost b (Se
tion 2.5.6).

In what follows, the basi
 bise
tion problem refers to the minimum bise
tion problem

that was de�ned in Se
tion 2.1. In
ontrast, the extended bise
tion problems refer to the

variants of the problem spe
i�ed above. We dis
uss ea
h extended problem separately, but

it is straightforward to
ombine together several extensions (e.g. to allow both edge
osts

and vertex weights as des
ribed above, and require that the total weight of the verti
es
ut

away is a number k that is given in the input).

We
onsider two approa
hes for extending our approximation algorithm from the basi

bise
tion problem to an extended problem. One approa
h is to redu
e the extended problem

to the basi
 one. Another approa
h is to modify the algorithm that we devised for the

basi
 bise
tion problem so that it handles also the extended variant. As we dis
uss below,

ea
h approa
h has its own advantages and so it is valuable to show both approa
hes for ea
h

extended problem. We indeed show that for almost all the extended problems spe
i�ed above

both approa
hes
an be applied, although for a few problems we provide only a modi�ed

algorithm.

A major advantage of the redu
tion approa
h is that it is self
ontained and not restri
ted

to the parti
ular algorithm that we devise, so future improvement in the approximation ratio

for the basi
 problem may lead to an immediate improvement also for the extended problem.

Most of our redu
tions transform an approximation ratio f(n) for the basi
 problem into an

approximation ratio f(n

O(1)

) for the extended problem (be
ause they in
rease the number

of verti
es n by a polynomial), and so for the
urrent approximation ratio f(n), whi
h

is polylogarithmi
, these redu
tions in
rease the approximation ratio by at most a
onstant

fa
tor. The te
hniques used in our redu
tions are similar to those devised in [BJ92, BCLS87℄

for the (di�erent) purpose of proving NP-hardness results.

The advantages of the algorithm modi�
ation approa
h are that it preserves aspe
ts that

are spe
i�
 to our algorithm, su
h as an improved O(logn) approximation ratio for planar

graphs, and that it is usually more eÆ
ient (and therefore pra
ti
al) than the redu
tion

approa
h. A drawba
k of the algorithm modi�
ation approa
h is that it requires to go

again through the algorithm's analysis. In parti
ular, we might be required to verify that

the approximate min-ratio
ut algorithm (that we use as a bla
k-box)
an be extended

a

ordingly. However, the ne
essary
hanges in the algorithm and its proof are usually

straightforward.

2.5.1 Edge
osts

Suppose that the edges of the input graph G have arbitrary nonnegative
osts, and that the

ost of a bise
tion is the total
ost (i.e. sum of the
osts) of its edges, and we wish to �nd a

bise
tion of G of (approximately) minimum
ost.

Redu
tion. We redu
e the extended problem of bise
tion with edge
osts (des
ribed

above) to the basi
 bise
tion problem, as follows. Given a graph G with edge
osts as an

input, we �rst guess the most
ostly edge in a minimum
ost bise
tion of G, by exhaustively

36

trying all O(n

2

) edges in the input graph. By s
aling all edge
osts, we
an assume, without

loss of generality, that the
ost of the guessed edge is n

2

. It follows that the
ost b of the

optimum bise
tion is at least n

2

but smaller than n

4

. We then round down all edge
osts to

their
losest integer, whi
h
an de
rease the
ost of any bise
tion by at most

�

n

2

�

� b=2 and

therefore by a fa
tor of at most 2. We next
hange to n

5

every edge
ost that is larger than

n

5

, whi
h does not a�e
t the
ost of nearly optimal bise
tions (i.e. whose original
ost was

within ratio of roughly n from the minimum). Finally, we repla
e ea
h vertex of the graph

by a
lique of size n

5

, and ea
h edge (u; v) of
ost t by t unit
ost edges pla
ed arbitrarily

between the
lique of u and the
lique of v (sin
e t < n

10

we
an do that with no parallel

edges).

The bise
tion of minimum
ost b in G
orresponds to a bise
tion of
ost �(b) in the

resulting graph. Hen
e, applying our algorithm for the basi
 problem on the resulting graph

(whi
h has n

6

verti
es) yields a bise
tion whose
ost is O(b(logn

6

)

2

) = O(b log

2

n). This

bise
tion
annot split any of the
liques that we
reated, as otherwise its
ost will be at least

n

5

�1� b log

2

n, and it therefore must
orrespond to a bise
tion of G, whose
ost is roughly

the same, namely O(b log

2

n), as required.

Modi�ed algorithm. We modify our algorithm for the basi
 bise
tion problem so that

it handles the extended problem with edge
osts, as follows. Rather than
onsidering the

number of edges we always
onsider their
ost, e.g. e(V

1

; V

2

) denotes the sum of the
osts

of the edges with one endpoint in V

1

and one endpoint in V

2

. The
orresponding
hanges in

our algorithm and analysis are straightforward. Note that the amortized
ut algorithm (see

Fig. 2.4) requires (in step 1) a subroutine that
omputes an approximate min-ratio
ut with

respe
t to the edge
osts, but known algorithms (e.g. due to [LR99℄) provide this subroutine.

Note also this algorithm's binary sear
h (step 3) takes O(M logn) iterations, where M is

the number of bits used to represent an edge
ost, and so the running time is polynomial in

the input size. The resulting approximation ratio is the same as for the basi
 problem, i.e.

O(log

2

n).

2.5.2 Polynomial vertex weights

Suppose that the verti
es of the input graph G have nonnegative integer weights that are

bounded by a polynomial n

(where n is the number of verti
es in G), and let a bise
tion be

a
ut that separates half of the total weight (i.e. sum of the weights) of the verti
es of V .

We wish to �nd a bise
tion of G of (approximately) minimum
ost. Note that if the weights

are allowed to be exponential in n, �nding any bise
tion of the graph is equivalent to the

partition (or subset-sum) problem, and therefore NP-hard.

Redu
tion. We redu
e the extended problem of bise
tion with vertex weights (des
ribed

above) to the basi
 bise
tion problem, as follows. Given a graph G with vertex weights as

an input, we repla
e ea
h vertex of
ost w in G by a
lique of maxf1; w � n

3

g unit weight

verti
es, and repla
e ea
h edge (u; v) in G by one edge pla
ed arbitrarily between the
lique

of u and the
lique of v. In addition, for ea
h vertex of weight 0 in G we pla
e in the graph

a new isolated vertex of unit weight.

37

A bise
tion of minimum
ost b in G
orresponds to a bise
tion of the same
ost b in the

resulting graph. Hen
e, applying our algorithm for the basi
 problem on the resulting graph

(whi
h has at most n

+4

verti
es) yields a bise
tion whose
ost is O(b(
 + 4)

2

log

2

n). This

bise
tion
annot split any of the
liques that we
reated, as otherwise its
ost will be at least

n

3

� 1� b � (
+4)

2

log

2

n. Furthermore, the verti
es of the
reated
liques of size at least n

3

must be partitioned evenly by this bise
tion, as otherwise their partition deviates from an

even one by at least n

3

(these
lique sizes are multiples of n

3

) whi
h is mu
h more than the

total number of remaining verti
es, 2n

2

(re
all that we added isolated verti
es for verti
es

of weight 0 in G). The
omputed bise
tion of the resulting graph therefore
orresponds to a

bise
tion of G, whose
ost is the same, namely O(b(
+ 3)

2

log

2

n), as required.

Modi�ed algorithm. We modify our algorithm for the basi
 bise
tion problem so that it

handles the extended problem with vertex weights, as follows. Rather than
onsidering the

number of verti
es in a part we always
onsider their total weight, e.g. r(S) denotes the
ost

of the
ut (S; V nS) divided by the minimum between the weight of S and the weight of V nS.

The
orresponding
hanges in our algorithm and analysis are straightforward. Note that the

amortized
ut algorithm (see Fig. 2.4) requires (in step 1) a subroutine that
omputes an

approximate min-ratio
ut with respe
t to the vertex weights, but known algorithms (e.g.

due to [LR99℄) provide this subroutine. Note also that in this algorithm's related graph G

0

(step 2) the
apa
ity of an edge between a vertex v 2 V

1

and the new vertex s is p times

the weight of v

1

. The resulting approximation ratio is the same as for the basi
 problem, i.e.

O(log

2

n).

2.5.3 Separating two verti
es from ea
h other (s� t
ut)

Suppose that the input graph G
ontains two spe
ial verti
es s and t, and we wish to �nd a

bise
tion that separates s from t and has minimum
ost. (Note that the
onverse restri
tion,

namely that s; t will not be separated, is equivalent to merging them into one vertex of

weight 2, and therefore follows from Se
tion 2.5.2).

Redu
tion. We redu
e the extended problem of a bise
tion that separates s from t to the

extended problem of bise
tion with vertex weights (des
ribed in Se
tion 2.5.2), as follows.

Given an input graph G with spe
ial verti
es s; t as above, we let the verti
es s; t have weights

n and let all other verti
es of G have weight 1. The total weight of s and t together is 2n,

while the total weight of all other verti
es is n� 2 (and thus smaller), so every bise
tion of

the resulting graph must separate s from t. It follows that every bise
tion of the resulting

graph
orresponds to a bise
tion of G that separates s from t and has the same
ost, and

vi
e versa. We
an therefore �nd a bise
tion of G that separates s from t and its
ost is

within O(log

2

n) from the minimum.

Modi�ed algorithm. We modify our algorithm for the basi
 bise
tion problem so that it

handles the extended problem of a bise
tion that separates s from t, as follows. We
hange the

dynami
 programming table Q of the
ombining stage, so that every entry Q(i; k; g)
ontains

two solutions (if they exist); one solution with the k
hosen verti
es
ontaining s but not t,

38

and the other solution with the k
hosen verti
es not
ontaining any of s and t. Computing

the table entries is straightforward, and the output of the algorithm is min

g

Q(i

root

; n=2; g),

where the minimum is taken only over solutions that
ontain s and not t. The ne
essary

hanges in our analysis are straightforward. The resulting approximation ratio is the same

as for the basi
 problem, i.e. O(log

2

n).

2.5.4 Cutting an arbitrary given number of verti
es

Suppose that the input
onsists of a graph G and a number k, and we wish to �nd a minimum

ost
ut that separates exa
tly k verti
es.

Redu
tion. We redu
e the problem of
utting away a given number k of verti
es to the

problem of bise
tion with vertex weights (des
ribed in Se
tion 2.5.2), as follows. Given an

input graph G and a number k (assume, without loss of generality, that k � n=2), we let

the verti
es of G have weight 1, and add to the graph an isolated vertex of weight n� 2k. It

is
lear that every bise
tion of the resulting graph
orresponds to a
ut of G that separates

k verti
es and has the same
ost, and vi
e versa. We
an therefore �nd a
ut of G that

separates k verti
es and its
ost is within O(log

2

n) from the minimum.

Modi�ed algorithm. We modify our algorithm for the basi
 bise
tion problem so that

it handles the extended problem of
utting a given number of verti
es, as follows. The

only
hange in the algorithm is in the
ombining stage, that now outputs min

g

Q(i

root

; k; g),

where Q is the dynami
 programming table (see Se
tion 2.4.4). The ne
essary
hanges in

our analysis are straightforward. The resulting approximation ratio is the same as for the

basi
 problem, i.e. O(log

2

n).

2.5.5 Cutting into a �xed number of parts

Suppose that we wish to �nd a
ut that separates the input graph G into a �xed number p

of parts of equal size.

We do not know of a redu
tion from this extended problem to the basi
 bise
tion problem.

A re
ursive bise
tion approa
h has a poor performan
e in general, although it may be useful

in some spe
ial
ases and if some requirements are relaxed, see [ST97℄ and the referen
es

therein.

Modi�ed algorithm. We modify our algorithm for the basi
 bise
tion problem so that it

handles the problem of
utting the graph into p parts of equal size, as follows. The
ost of

a
ut that partitions V into p parts V

1

; : : : ; V

p

is

X

j<l

e(V

j

; V

l

) =

1

2

X

j

e(V

j

; V n V

j

):

Therefore, by s
aling the value of every possible solution by a fa
tor of 2 (whi
h
learly

does not a�e
t any approximation ratio issues), we obtain that the obje
tive fun
tion of

39

the extended problem has the
onvenient form

P

j

e(V

j

; V n V

j

). Observe that ea
h
ut

(V

j

; V n V

j

)
orresponds to separating V

j

from the other parts, whi
h are grouped into

one part V n V

j

. Thus, ea
h summand e(V

j

; V n V

j

) in the obje
tive fun
tion is similar

to the basi
 bise
tion problem (with the minor ex
eption that the two sides are not of the

equal sizes). Below we des
ribe the modi�
ations to the three stages of the algorithm, whi
h

works simultaneously on all p
uts (V

j

; V n V

j

). Its analysis is based on applying the new

a

ounting method of Se
tion 2.2 separately to ea
h of these p
uts.

The de
omposition stage
omputes a de
omposition tree T exa
tly as in the algorithm

for the basi
 problem (see Se
tion 2.4.1). Observe that the amortized
ut notion does not

depend on the
ut that we seek, and so the obtained de
omposition (and its tree T)
an be

used for all
uts (V

j

; V n V

j

).

We extend the notion of a labeling of the de
omposition tree, as follows. An extended

labeling of T assigns to every tree node a ve
tor of p \basi
" labels, one label for ea
h
ut

(V

j

; V n V

j

). An extended labeling
orresponds to de
iding at ea
h tree node i and for ea
h

j, whi
h of V

j

and V n V

j

is
onsidered
harged (and whi
h is
onsidered free) in the part

V

i

. Note that an extended labeling
an be viewed as a ve
tor, whose
oordinate j forms a

basi
 labelings for (V

j

; V n V

j

).

The labeling stage marks some nodes of the tree T exa
tly as in the algorithm for the

basi
 problem (see Se
tion 2.4.2). This stage impli
itly de�nes a family F that
onsists of all

extended labelings in whi
h every unmarked node has the same label as its
losest marked

an
estor (there is no restri
tion on the labels of the marked nodes). It is straightforward

that F
ontains at least one extended labeling, for whi
h every
oordinate j (forms a basi

labeling that) is �-
onsistent with the
ut (V

j

; V n V

j

). We
an restri
t the number of

possible labels at the marked (and hen
e also unmarked) nodes from 2

p

to p + 1 values, as

follows. Similar to the proof of Lemma 2.10 it is suÆ
ient for our purposes that F
ontains

the labeling where V

j

is
onsidered free at a marked node i if more than half the verti
es of

the part V

i

are from V

j

. At any part V

i

, the latter
an happen for at most one value of j,

and so it suÆ
es to
onsider only labelings where at most one V

j

is free.

We extend the notion of a
harge of a vertex, as follows. The extended
harge of a vertex

v with respe
t to an extended labeling is the sum of the basi

harges of v with respe
t to

ea
h of the p
oordinates of this extended labeling.

The
ombining stage uses dynami
 programming on a table Q, whose entries are of the

form Q(i; k; g), as follows. i is a tree node. k = (k

1

; : : : ; k

p

), where k

j

is the desired size

of the jth part and

P

j

k

j

= jV

i

j. g = (g

1

; : : : ; g

p

) where g

j

is a guess list that
ontains the

jth label of every marked an
estor of i. An entry Q(i; k; g)
ontains the optimal solution

to the following problem: Choose a partition of V

i

into subsets with sizes a

ording to k,

and
hoose a labeling from F that agrees with g, so that the sum of the extended
harges

of all the verti
es of V

i

with respe
t to the
hosen labeling, is minimal over all su
h
hoi
es.

Note that this problem requires some
orrelation between p
uts, and therefore Q(i; k; g) is

generally not equal to

P

j

Q(i; k

j

; g

j

) (where Q is the basi
 table).

The rules for
omputing the entries of the table Q are a straightforward extension of

those for the table Q (see Se
tion 2.4.4). The algorithm
omputes all the table entries and

then outputs min

g

Q(i

root

; k; g) where k = (n=p; : : : ; n=p).

The running time of this modi�ed algorithm is polynomial in n (for �xed p). Indeed,

40

the de
omposition stage and the labeling stage are exa
tly as in the algorithm for the basi

bise
tion problem, so let us
onsider the dynami
 programming table Q of the
ombining

stage. The number of tree nodes i is O(n), and the range of k
ontains at most n

p

possible

values. The ve
tor g
ontains one of p + 1 possible values for ea
h of the O(logn) marked

an
estors (of the relevant tree node i), so g assumes one of n

O(log p)

values. It follows that

the size of the table Q is n

p+O(log p)

. Ea
h table entry is
omputed eÆ
iently from previously

omputed entries, and hen
e the
ombining stage takes polynomial time.

To analyze the approximation ratio, let V

1

; : : : ; V

p

be the optimal partition of the input

graph into p parts of equal size. Re
all that the extended
harge of a vertex is the sum of its

basi

harges with respe
t to ea
h
ut (V

j

; V n V

j

), and we
an therefore apply the analysis

of the basi
 algorithm for ea
h
ut (V

j

; V n V

j

) separately. It follows that the output value

is guaranteed to be at most O(log

2

n) �

P

j

e(V

j

; V n V

j

). Furthermore, one
an obtain from

the table Q a
ut (into p parts of equal size) whose
ost is at most (half) this value, i.e.

within a ratio of O(log

2

n) from the minimum.

2.5.6 Bi
riteria approximation and balan
ed
uts

Suppose that we wish to �nd a 2/3-balan
ed
ut (re
all that a
ut is
alled �-balan
ed if

it partitions the graph into two parts, ea
h of size at most �n) whose
ost is guaranteed

to be small relative to the minimum
ost b of a bise
tion (i.e. a 1/2-balan
ed
ut). Here,

the minimum bise
tion problem is relaxed in two respe
ts, as the solution
ut is allowed

to have
ost larger than b and also to deviate from the
ardinality
onstraints (for its two

sides). Algorithms for su
h problems are sometimes referred to as bi
riteria approximation

and sometimes as pseudo-approximation.

Known bi
riteria approximation algorithms �nd a 2/3-balan
ed
ut whose
ost is at most

O(b logn). Leighton and Rao [LR88, LR99℄ show how an algorithm that �nds a � approxi-

mate min-ratio
ut
an be used to �nd a 2/3-balan
ed
ut of
ost O(b�); the approximation

ratio � = O(logn) that they a
hieve is the best
urrently known, see also [Shm97℄. Even,

Naor, Rao and S
hieber [ENRS97℄ devise a di�erent algorithm that also �nds a 2/3-balan
ed

ut of
ost O(b logn).

We show below that amortized
uts
an be used to obtain also bi
riteria approximation

algorithms (in addition to approximation algorithms) for minimum bise
tion. In fa
t, our

algorithm is similar to the one of [LR88, LR99℄, ex
ept that we use amortized
uts instead

of approximate min-ratio
uts.

Lemma 2.17. An algorithm that �nds a �-amortized
ut
an be used to �nd a 2/3-balan
ed

ut of
ost b(1 +O(�)).

Proof. Given an input graphG(V;E) on n verti
es, use the algorithm that �nds a �-amortized

ut, as follows. Repeatedly �nd (in the graph) a �-amortized
ut and remove (from the graph)

the smaller of its two sides, until the graph
ontains no more than 2n=3 verti
es. Denoting

by S the set of verti
es that remain in the graph after the last iteration, output the
ut

(S; V n S).

It is straightforward to see that n=3 < jSj � 2n=3, and hen
e the output
ut (S; V n S)

is a 2/3-balan
ed
ut. We prove below that the total
ost of all edges
ut by the amortized

41

uts (throughout the iterations) is at most b(1 + O(�)). It would then follow immediately

that e(S; V n S) � b(1 +O(�)), as required.

We now upper bound the total
ost of all edges
ut in the amortized
uts. Let (W;B)

be a �xed optimal bise
tion of
ost b, and
all the verti
es of W white, and the verti
es of

B bla
k. The total
ost of white-bla
k edges
ut is
learly at most b. We show below that

the total
ost of all white-white edges
ut is O(b�). By the symmetry between W and B,

we will then have a similar upper bound on the total
ost of the bla
k-bla
k edges
ut, and

obtain the desired upper bound of b(1 +O(�)) on the total
ost of all edges
ut.

To show that the total
ost of white-white edges
ut in the amortized
uts is O(b�), we

onsider the white verti
es W as
harged in all the amortized
uts, and then white-white

edges are
harged-
harged edges. The algorithm applies a �-amortized
ut in parts of G that

ontain at least 2n=3 verti
es. At least n=2 � n=3 = n=6 of the verti
es in su
h a part are

bla
k, while at most n=2 of them are white, and hen
e at most 3/4 of the verti
es in this

part are
onsidered
harged. Taking a
onstant � � 3=4 in the de�nition of an amortized

ut, we have that the
ost of the
harged-
harged edges
ut
an be amortized in one of two

amortization methods (see Se
tion 2.2).

In one amortizationmethod the
ost of the
harged-
harged edges
ut is amortized against

harged-free edges in the smaller side of the
ut, with amortized
ost at most �. Observe

that an edge
an be in the smaller side of the amortized
ut (the side that is removed) in at

most one iteration, so the total
ost amortized in this method (in all the iterations) against

one
harged-free edge is at most �. Hen
e, the total
ost amortized in this method (in all

the iterations) is at most b�.

In the other amortization method the
ost of the
harged-
harged edges
ut is amortized

against
harged-free edges in the part being divided, with amortized
ost at most �jC

1

j=jCj,

where C denotes the
harged verti
es in the part being divided and C

1

denotes the
harged

verti
es in the smaller side of the
ut. The total
ost amortized in this method (in all

the iterations) against one
harged-free edge is then upper bounded by � times the sum of

jC

1

j=jCj over all iterations. Re
all that the
harged verti
es are the white verti
es, and so

jCj � n=6 in all amortized
uts (i.e. iterations). Furthermore, ea
h vertex is in the smaller

side of the
ut (the side that is removed) in at most one iteration, and so the sum of jC

1

j

over all iterations is at most n=2. It follows that the total
ost amortized in this method

(in all the iterations) against one
harged-free edge is at most 3�, and hen
e the total
ost

amortized in this method is at most b � 3�.

We
on
lude that the total
ost of all
harged-
harged (i.e. white-white) edges
ut in all

the iterations is at most b �4�. As des
ribed above, this proves that the total
ost of all edges

ut in all the iterations is at most b(1 + 8�) = b(1 +O(�)), and the lemma follows.

We remark that a 2/3-balan
ed
ut of
ost b(1 + O(�))
an be found also by modifying

the algorithm we devised for the basi
 bise
tion problem so that its
ombining stage outputs

min

g;n=3�k�n=2

Q(i

root

; k; g) (and its
orresponding
ut). Indeed, the proof of Lemma 2.17

shows a 2/3-balan
ed
ut whose
harge (with respe
t to a
ertain labeling in F) is at most

b(1 +O(�)). Details omitted.

42

2.6 Cutting a few verti
es from a graph

In this se
tion we present a randomized algorithm for approximating the minimum (k; n�k)

ut problem when k is relatively small. In parti
ular, we prove Theorem 2.3 by showing that

for an arbitrary �xed � > 0, the algorithm �nds, with high probability, a (k; n�k)
ut whose

ost is at most (1 + �k= lnn)b

k

. The algorithm appears in Se
tion 2.6.1. Some extensions of

this algorithm are des
ribed in Se
tion 2.6.2.

Te
hniques. Our algorithm utilizes random edge
ontra
tion and dynami
 programming.

Random edge
ontra
tion was introdu
ed by Karger and Stein [KS96℄ to devise eÆ
ient

algorithms for the minimum
ut problem. Ea
h iteration of their algorithm sele
ts an edge

at random and merges its endpoints, so as to form
lusters of verti
es. If no edge of a �xed

minimum
ut (S; V n S) is ever
ontra
ted, then every
luster is
ontained entirely either in

S or in V n S. When only two
lusters remain, they
orrespond to the �xed minimum
ut.

It
an be shown that there is a noti
eable probability that no edge of the �xed minimum
ut

is ever
ontra
ted, and then the algorithm su

eeds.

Our algorithm also applies random edge
ontra
tions iteratively, but instead of requiring

that only two
lusters remain, we stop at an earlier point, in whi
h we are guaranteed that

dynami
 programming will �nd a nearly minimum (k; n � k)
ut. The algorithm a
tually

does not know the \right" stopping point, and therefore tries all possible stopping points

(taking the best solution).

2.6.1 A randomized algorithm

Our algorithm for �nding a (k; n � k)
ut (of nearly minimum
ost) uses the random edge

ontra
tion te
hnique of Karger and Stein [KS96℄. It
onsists of repeating the following

algorithm Contra
t suÆ
iently many times in order to amplify its su

ess probability.

Algorithm Contra
t works in iterations, where ea
h iteration
onsists of (i) a random

edge
ontra
tion stage followed by (ii) a
ombining stage that
omputes a
ut of the graph

that
orresponds to a (k; n� k)
ut of the input graph. (Both stages are des
ribed below).

The algorithm pro
eeds with the iterations until there are no edges in the graph (to
ontra
t)

and then it outputs a
ut of minimum
ost among all (k; n� k)
uts found throughout the

iterations (if any).

Let us now des
ribe in more detail the two stages that form an iteration of algorithm

Contra
t. A s
hemati
 des
ription of the algorithm appears in Figure 2.7.

In the
ontra
tion stage we
hoose an edge uniformly at random and
ontra
t it by

merging its two endpoints. If as a result there are several edges between some pairs of

(newly formed) verti
es (i.e. parallel edges), we retain them all. Edges between verti
es that

were merged are removed, so that there are never any self-loops.

We refer to the verti
es of the formed graph as
lusters. Ea
h
luster is a set of verti
es

(of the input graph) merged together. Note that the edges inside a
luster are removed from

the graph. The size of a
luster is the number of verti
es in it, and its degree is the number

of edges leaving the
luster.

43

In the
ombining stage we �nd in the graph (of the
urrent iteration) a set of
lusters

whose total size is exa
tly k, and for whi
h the sum of
luster degrees is minimal. Note that

any set of
lusters, and in parti
ular the one that we �nd,
orresponds to a (k; n� k)
ut (of

the input graph) whose
ost is no more than the sum of degrees of these
luster.

It is straightforward to see that the
ombining stage
an be implemented in polynomial

time using dynami
 programming, see e.g. [CLR90, Chapter 16℄.

Algorithm Contra
t.

Input: Graph on n verti
es and a number k.

Output: (k; n� k)
ut in the graph.

1. While the graph
ontains edges, do

1.1. edge
ontra
tion stage;

1.2.
ombining stage to �nd a (k; n�k)
ut.

2. Output the
ut of minimum
ost among the

uts found in step 1.2 (if any).

Figure 2.7: Algorithm for �nding a (k; n� k)
ut

Lemma 2.18. The running time of algorithm Contra
t is polynomial in n.

Proof. Ea
h edge
ontra
tion de
reases the number of verti
es by 1, and thus the number of

iterations is bounded by n. Ea
h iteration takes a polynomial time and the proof follows.

We analyze the su

ess probability of the algorithm based on the following desired s
e-

nario. Suppose that the edges
hosen to be
ontra
ted do not belong to a �xed optimum
ut

(S; V n S), i.e. these edges are either inside S or inside V n S, until at some point the edges

inside S (that remain in the graph) have a small
ost relative to the
ost of the optimum

ut. At this point, it
an be seen that the
ombining stage must �nd a (k; n� k)
ut (of the

input graph) whose
ost is nearly optimal.

Lemma 2.19. For every (not ne
essarily �xed) � > 0, algorithm Contra
t outputs a

(k; n� k)
ut whose
ost is at most (1 + �k)b

k

with probability at least e

�2=�

.

Proof. For the analysis, �x one
ut (S; V n S) with jSj = k whose
ost b

k

is minimum. Note

that algorithm Contra
t is not aware of this
ut.

Consider a run of the algorithm, and let A

t

(for 0 < t < n) be the event that the graph

G

t

resulting from the �rst t
ontra
tions satis�es the following two
onditions:

(a) The total
ost of edges of G

t

with both endpoints in S is at most �kb

k

=2.

(b) No
luster of G

t

ontains verti
es both from S and from V n S.

Equivalently,

44

(b') None of the �rst t
ontra
ted edges belongs to the optimum
ut (S; V n S).

We
laim that if the event A = [

t

A

t

happens then the algorithm su

eeds, i.e. �nds a

(k; n � k)
ut of
ost at most (1 + �k)b

k

. Indeed, assume that the event A

t

happens and

onsider the
ombining stage of iteration t, whi
h is performed on G

t

. >From (b) we have

that every
luster in G

t

is either a subset of S or a subset of V n S. Therefore, the
lusters

ontained in S have together all the verti
es of S, and thus their total weight is k. >From (a) it

follows that the sum of degrees of these
lusters (inG

t

) is at most b

k

+2(�kb

k

=2) = b

k

(1+�k).

The
ombining stage of iteration t will therefore �nd a set of
lusters of total weight k and

whose sum of
luster degrees is no larger, whi
h gives a (k; n� k)
ut (of the input graph),

with
ost at most b

k

(1 + �k).

We next lower bound the probability of the event A. Let us say that an iteration is

su

essful if the edge
hosen to be
ontra
ted is inside S, a ruin if it is from the optimum

ut (S; V n S), and void if it is inside V n S. By (a) and (b'), the event A is equivalent to

saying that the
ost of edges inside S redu
es to �kb

k

=2 or less before any ruin iteration

o

urs. In this sense, the event A is a�e
ted by the su

essful and ruin iterations, but not by

the void iterations. In other words, we need to
ompute the probability that an iterations is

su

essful
onditioned on the iteration not being void. As long as the
ost of edges inside S,

denoted jE

S

j, is more than �kb

k

=2, the
onditioned probability for a su

essful iteration is

jE

S

j

jE

S

j+ b

k

=

1 +

b

k

jE

S

j

!

�1

�

1 +

1

�k=2

!

�1

:

For the event A to happen we need that the �rst k � 1 or less iterations that are not void

will all be su

essful, and thus

Pr[A℄ �

1 +

1

�k=2

!

�(k�1)

> e

�

2(k�1)

�k

> e

�2=�

:

The probability that the algorithm outputs a (k; n� k)
ut of
ost at most b

k

(1 + �k) is

at least Pr[A℄ > e

�2=�

, as
laimed.

For example, taking � = �= lnn for a �xed � > 0 we obtain the following.

Corollary 2.20. For every �xed � > 0, with probability at least n

�2=�

, algorithm Contra
t

outputs a (k; n� k)
ut whose
ost is at most (1 + �k= lnn)b

k

.

We
an amplify the above su

ess probability by repeating algorithm Contra
t poly-

nomially many (roughly n

2=�

) times and taking from all the repetitions the
ut of minimum

ost. We then obtain Theorem 2.3.

2.6.2 Extensions

Edge
osts. Suppose that the edges of the input graph have arbitrary nonnegative
osts,

and let the
ost of a
ut be the total
ost (i.e. sum of the
osts) of its edges.

Our results for approximating the minimum (k; n � k)
ut extend to this
ase of edge

osts. The algorithm should be modi�ed so that that the probability of
hoosing an edge

(for
ontra
tion) is proportional to its
ost, and that the degree of a
luster is the
ost of

the edges leaving the
luster. The proof follows.

45

s�t
uts. Suppose that the graph
ontains two spe
ial verti
es s; t that must be separated,

i.e. we wish to �nd a minimum
ost
ut (S; V n S) with jSj = k, s 2 S and t 2 V n S.

Unlike the minimum
ut algorithm of Karger and Stein [KS96℄ that does not extend to

s� t
uts (see e.g. [MR95, Problem 1.8℄), our approximation ratio does extend to this s� t

ut variant of the problem. The proof follows by modifying the
ombining stage to
onsider

only
lusters that do not
ontain t and su
h that at least one of them
ontains s.

Vertex weights. Suppose that the verti
es of G have nonnegative integer weights. A

w-
ut
uts away verti
es of total weight w, i.e. it is a
ut (S; V n S) for whi
h the sum of

weights of S is w. Let b

w

be the minimum
ost of a w-
ut.

We
onsider the problem of �nding a nearly optimal w-
ut, i.e. whose
ost approximates

b

w

. We assume that the vertex weights are bounded by a polynomial in n, sin
e for expo-

nential vertex weights it is NP-hard to de
ide whether G
ontains a w-
ut (as this is simply

the subset-sum problem).

Let b

w;k

be the minimum
ost of a
ut that
uts away k 2 f1; : : : ; n� 1g verti
es of total

weight w (and 1 if no su
h
ut exists). Modifying the
ombining stage to �nd a w-
ut

(using dynami
 programming), it is straightforward to extend the proof of Lemma 2.19 and

show that if b

w;k

is �nite then with probability at least e

�2=�

algorithm Contra
t �nds a

ut of
ost at most (1 + �k)b

w;k

. By taking suÆ
iently many repetitions with � = �= logn

for a �xed � > 0, we
on
lude that one
an �nd in polynomial time a w-
ut whose
ost is at

most min

k

f(1 + �k= logn)b

w;k

g with high probability. Note that the minimum in the latter

bound is not ne
essarily obtained at a value of k for whi
h b

w;k

= b

w

.

2.7 Con
luding remarks.

Designing an algorithm that �nds a
ut of amortized
ost better than O(logn) remains

an important open question. An eÆ
ient algorithm that a

omplishes that will not only

improve the approximation ratio for minimum bise
tion (by Theorem 2.5), but also the

bi
riteria approximation ratio for minimum bise
tion (by Lemma 2.17), whi
h will lead, in

turn, to improved approximation ratios for many other problems, see [LR99, Se
tion 3℄.

Finding a
ut whose amortized
ost is better than O(logn) is, in a sense, no harder (and

possibly easier) than approximating min-ratio
uts within a ratio better than O(logn), as the

former problem is redu
ible (by Theorem 2.4) to the latter. Furthermore, an O(1)-amortized

ut always exists (by Corollary 2.7), and we know of no hardness result for the problem of

�nding su
h a
ut.

46

Chapter 3

Heuristi
s for maximum
lique

�

3.1 Introdu
tion

Let G(V;E) be a graph on n verti
es. A
lique in G is a subset of the verti
es every two of

whi
h are
onne
ted by an edge. The maximum
lique problem requires to �nd a
lique of

maximum size in an input graph G. The
lique number of G denoted !(G), is the maximum

size of a
lique in G.

An independent set (a.k.a. stable set) in G is a subset of the verti
es no two of whi
h are

onne
ted by an edge. The maximum independent set problem requires to �nd an indepen-

dent set of maximum size in an input graph G. The independen
e number (a.k.a. stability

number) of G denoted �(G), is the maximum size of an independent set in G. It is straight-

forward that a
lique in G forms an independent set in the edge
omplement graph G, so

!(G) = �(G). It follows that the maximum
lique problem and the maximum independent

set problem are equivalent in many respe
ts, in
luding in our
ontext. For
onsisten
y with

the related literature, we refer to one problem in some parts and to the other problem in

others.

The maximum
lique problem is fundamental in the area of
ombinatorial optimization,

and is
losely related, in addition to the maximum independent set problem, also to the

vertex
over problem (the vertex
omplement of an independent set) and the
hromati

number problem (minimum
over by independent sets). The maximum
lique problem (or

even �nding !(G)) is one of the �rst problems shown to be NP-hard [Kar72℄.

A
ommon way to
ope with NP-hardness of a problem is to devise algorithms that give

approximate solutions. An eÆ
ient (i.e. polynomial time) algorithm is said to have an

approximation ratio r > 1 for the maximum
lique problem if for every input graph, the

ratio between !(G) and the size of the
lique returned by the algorithm is at most r = r(n).

It is known through work
ulminating in [H�as99℄ that for any �xed � > 0 it is impossible

to approximate the
lique number !(G) within a ratio of n

1��

, unless NP has randomized

polynomial time algorithms (NP=ZPP). The best approximation algorithm that is known

for !(G), due to [BH92℄, has approximation ratio O(n= log

2

n).

The intra
tability of the maximum independent set problem in the worst
ase suggests

�

This
hapter is based on [FK00a℄ and on [FK01b℄.

47

studying the performan
e of algorithms on average instan
es. A possible rigorous des
ription

of average instan
es is by probabilisti
 models, see e.g. the survey [FM97℄ on average-
ase

analysis of several graph algorithms on random graphs.

The problem of �nding a maximum
lique on a random graph appears to be diÆ
ult.

Let G

n;1=2

denote the random graph of n labeled verti
es obtained by
hoosing, randomly

and independently, ea
h pair of verti
es to be an edge with probability 1/2. It is known

that the
lique number of G

n;1=2

is roughly 2 log

2

n, almost surely, i.e. with probability that

approa
hes 1 as n tends to in�nity. Several simple and natural algorithms (e.g. the greedy

one) �nd a
lique of size roughly log

2

n, almost surely. However, no algorithm is known to

�nd eÆ
iently an independent set of size signi�
antly larger than log

2

n, see [Kar76℄. Finding

liques of size

3

2

log

2

n in random graphs was even suggested as a hard
omputational problem

on whi
h to base
ryptographi
 appli
ations, see [JP00℄.

The hidden
lique problem. Jerrum [Jer92℄ and Ku�
era [Ku�
95℄ suggested indepen-

dently the following hidden
lique problem. A random graph G

n;1=2

is
hosen and then a

lique of size k is randomly pla
ed in the graph and we wish to �nd in this graph, denoted

G

n;1=2;k

, a maximum
lique. Jerrum showed that the Metropolis pro
ess will not �nd the

lique when k = o(

p

n). Ku�
era observed that when k >

p

n logn for an appropriate
on-

stant
, the verti
es of the planted
lique would almost surely be the ones with the largest

degrees in G, and hen
e it is easy to re
ognize them eÆ
iently. Alon, Krivelevi
h and Su-

dakov [AKS98℄ showed an algorithm that almost surely �nds the planted
lique whenever

k �
(

p

n). Their algorithm is based on spe
tral properties of the graph, namely, it uses

the eigenve
tor that
orresponds to the se
ond largest eigenvalue of the adja
en
y matrix of

the graph.

Performan
e guarantees for heuristi
s. A major motivation for studying various prob-

abilisti
 input models in general is to evaluate algorithms performan
e in real-life appli
a-

tions. It would be en
ouraging if we
ould rigorously show that really diÆ
ult instan
es are

very rare, and we are more likely to en
ounter in pra
ti
e a \solvable" instan
e. However, it

is diÆ
ult to establish a
onne
tion between probabilisti
 input models and instan
es that

o

ur in pra
ti
e. For example, random graph models are usually highly regular (all verti
es

are of roughly the same degree). While most graphs indeed have this property, real-life

instan
es not ne
essarily do. It is therefore desirable to have an algorithm whi
h is e�e
tive

on a wider range of instan
es.

One approa
h to enri
h the
lass of solvable instan
es is to
onsider a semi-random model,

in whi
h the input is generated by a mixture of random and adversarial
hoi
es. Blum

and Spen
er [BS95℄ introdu
ed two variants of the semi-random model. In one variant, an

adversary makes its
hoi
es for the graph edges, but ea
h of these
hoi
es is
ipped with

some small probability (\noise"). In the other variant, a random graph is
hosen �rst, and

then an adversary
an modify this graph subje
t to some restri
tions. This last variant of

the semi-random model was formalized by Feige and Kilian [FK01a℄ as a sandwi
h model.

First, two instan
es G

min

and G

max

, both
ontaining the same planted
lique of size k, are

generated using random de
isions. Then, an adversary is allowed to
hoose any graph G

�

whi
h is sandwi
hed in between, i.e. G

min

� G

�

� G

max

, where in
lusion is with respe
t to

48

edges.

The algorithm of Feige and Kilian [FK01a℄ �nds a
lique of linear size (k =
(n)), in

the following sandwi
h setting. G

min

is the empty graph ex
ept a
lique of size k. G

max

is the
omplete graph ex
ept for roughly n logn random missing edges
hosen from those

edges
onne
ting the (same)
lique and the rest of the graph. An adversary then
hooses

G

min

� G

�

� G

max

, and thus has
omplete
ontrol over the edges whi
h are not adja
ent to

the
lique verti
es, and large
ontrol over the edges
onne
ting the
lique to the rest of the

graph. The algorithm of [FK01a℄ uses semide�nite programming and mat
hings te
hniques

and �nds, almost surely, a
lique of k verti
es in the graph.

Sin
e average-
ase algorithms do not have an a priori guarantee on their performan
e,

it is important to
ertify that the algorithm is indeed su

essful on the parti
ular instan
e

at hand. Boppana [Bop87℄ shows an algorithm with su
h a
erti�
ation property for the

minimum bise
tion problem (see also [FK01a℄). The algorithm outputs a bise
tion together

with a lower bound on the size of the optimal bise
tion. The analysis shows that the output

bise
tion and lower bound are equal, almost surely, in whi
h
ase the algorithm proves the

optimality of its output bise
tion.

We present an algorithm for �nding a
lique of size k �
(

p

n) planted in a random

graph G

n;1=2

. Our algorithm improves over the algorithm of [AKS98℄ in two respe
ts:

1. Extends to a semi-random model, where an adversary may remove edges from G

n;1=2;k

(the graph of [AKS98℄), ex
ept for the edges forming the planted
lique of size k. In

the sandwi
h model terminology, let G

max

= G

n;1=2;k

be the graph of [AKS98℄, and let

G

min

be the empty graph ex
ept the same
lique of size k. Then our algorithm �nds a

lique of size k in an arbitrary graph G

�

sandwi
hed in between G

min

and G

max

, almost

surely over the distribution of G

min

and G

max

. Observe that in this sandwi
h model,

the verti
es of the
lique will not ne
essarily have higher degree, even if k �

p

n logn,

so also the algorithm of Ku�
era would not work in this model.

2. Certi�es optimality of its solution. Using a semide�nite programming relaxation of the

lique problem, the algorithm provides an upper bound on the size of the maximum

lique in the graph. The upper bound mat
hes, almost surely, the solution of the

algorithm, proving that the
lique output by the algorithm is the optimal one.

3.1.1 Semi-random model for the hidden
lique problem

We study heuristi
s for the following sandwi
h model of the hidden
lique problem. The

semi-random graph G

�

on n labeled verti
es is
onstru
ted by a
ombination of random and

adversarial de
isions, as follows.

1. Random graph: for any pair of verti
es i; j the edge (i; j) is pla
ed in the graph with

probability 1/2. This gives the random graph G

n;1=2

.

2. Planted
lique: a subset Q of k verti
es is
hosen at random. Let G

min

be the empty

graph ex
ept a
lique on the verti
es of Q. Let G

max

be the random graph G

n;1=2

with a

planted
lique on the verti
es of Q (i.e. an edge is for
ed between every pair of verti
es

in Q). G

max

is the G

n;1=2;k

graph of [AKS98℄.

49

3. Adversarial
omponent: having
omplete knowledge of G

max

, an adversary may remove

from the graph arbitrary edges ex
ept those whi
h form the
lique on Q (i.e. it is not

allowed to remove edges both of whose endpoints are in Q). This gives the input graph

G

�

whi
h is sandwi
hed in between G

min

and G

max

.

Both graphs G

min

; G

max

ontain the same
lique Q, and thus any sandwi
hed graph G

�

must also have a
lique on Q. An adversary
an remove any of the edges of G

max

outside

the
lique Q, so it has
ontrol over roughly half of all possible edges in the graph.

Observe that the algorithm is essentially required to output G

min

. The adversary is given

G

max

and may only remove edges, as long as G

�

still
ontains G

min

. Thus, it may appear as

if the adversarial moves only make the problem easier. Nevertheless, many algorithms that

would re
over a large
lique in G

max

would fail on G

�

. A major motivation for the sandwi
h

graph model is to identify those algorithms whi
h are robust enough to withstand su
h an

adversarial \help".

3.1.2 Relaxations of the problem

Lov�asz theta fun
tion. A well known relaxation of the independent set problem is the

theta fun
tion of a graph #(G), introdu
ed by Lov�asz [Lov79℄ (see also [GLS93, Chapter

9℄ or Knuth's survey [Knu94℄). The formulation of the theta fun
tion as a semide�nite

program implies that, up to arbitrary pre
ision, it
an be
omputed in polynomial time,

see e.g. [GLS93℄. Note that the equivalen
e between the independent set problem and the

lique problem through the edge
omplement graph G, implies that #(G) is an eÆ
iently

omputable relaxation of the
lique number !(G).

In terms of approximation ratio, the theta fun
tion appears to have little to o�er. The

ratio between #(G) and the
lique !(G)
an be as large as n

1�o(1)

, as shown in [Fei97℄.

Indeed, Hastad [H�as99℄ shows that no polynomial time
omputable fun
tion approximates

!(G) within a ratio of n

1��

, unless NP has random polynomial time algorithms.

Also on the average there is a gap between the Lov�asz theta fun
tion #(G) and the
lique

!(G). While the
lique number of a random graph G

n;1=2

is almost surely roughly 2 log

2

n,

see e.g. [AS92℄, it is shown by Juh�asz [Juh82℄ that the value of the theta fun
tion is almost

surely �(

p

n).

Our approa
h is motivated by Juh�asz' result [Juh82℄ that the theta fun
tion of a random

graph G

n;1=2

is �(

p

n), almost surely. When a
lique of size k �

p

n, for a suÆ
iently large

onstant
 > 0, is planted in a random graph, the theta fun
tion (being a relaxation) must

in
rease to at least k. Furthermore, it is plausible that su
h a noti
eable in
rease in the theta

fun
tion will allow to �nd the planted
lique. Indeed, we show that on this graph, whi
h is

the hidden
lique graph G

n;1=2;k

, the value of the theta fun
tion is almost surely exa
tly k,

and then we
an �nd (with some extra work) the planted
lique.

In
ontrast, when a
lique of size k = o(

p

n) is planted in a random graph, the mono-

toni
ity properties of the theta fun
tion, see e.g. [Knu94, Se
tions 18-19℄), guarantee that

its value
an only in
rease, but not by more than k. It follows that on the hidden
lique

graph G

n;1=2;k

, the value of the theta fun
tion is also almost surely �(

p

n), and it is therefore

possible that the planted
lique has no noti
eable e�e
t on the theta fun
tion.

50

A possible dire
tion for extending the above approa
h to a planted
lique of smaller

size k = o(

p

n), is to use a relaxation that is stronger than the Lov�asz theta fun
tion. In

parti
ular, it is desirable to obtain a relaxation whose value on a random graph G

n;1=2

is

almost surely o(

p

n).

The general Lov�asz-S
hrijver te
hnique. Lov�asz and S
hrijver [LS91℄ propose a gen-

eral te
hnique for obtaining stronger and stronger relaxations of 0-1 integer programming

problems. They devise several pro
edures,
alled matrix-
ut operators, that produ
e from

a
onvex (e.g. linear programming) relaxation P � [0; 1℄

n

of the problem, a
onvex set

that is an improved relaxation for the 0-1 ve
tors in P . That is, the resulting
onvex set

is
ontained in P and
ontains all the 0-1 ve
tors in P . The matrix-
ut operators follow a

lift-and-proje
t approa
h; they lift the
onvex relaxation P into a higher (quadrati
) dimen-

sion by introdu
ing new variables and new
onstraints, and proje
t it ba
k into the original

spa
e.

The two main matrix-
ut operators of Lov�asz and S
hrijver [LS91℄ are denoted by N

and N

+

. The di�eren
e between the two operators is that the lifting of the latter involves,

in addition, a positive semide�nite
onstraint. That is, if P is a linear programming re-

laxation, then N(P) is also a linear programming relaxation, while N

+

(P) is a semide�nite

programming relaxation.

The matrix-
ut operators
an be applied iteratively, say r � 0 times, and the iterated

operators are denoted N

r

and N

r

+

. The N-rank of a
onvex relaxation P is de�ned as the

number of iterations of the N operator, that are needed to obtain the
onvex hull of the 0-1

ve
tors of P (i.e. a perfe
tly tight relaxation). The N

+

-rank is de�ned similarly. Lov�asz

and S
hrijver [LS91℄ show that the N -rank of a relaxation is always at most the dimension

(i.e. number of variables) d. The N

+

operator is a strengthening of the N operator, and

hen
e also the N

+

-rank is always at most d. Goemans and Tun�
el [GT00℄ and Cook and

Dash [CD00℄ show that there exist relaxations whose N

+

-rank meets the upper bound d.

Furthermore, Lov�asz and S
hrijver [LS91℄ show that the N and N

+

operators have the

following important algorithmi
 property. If one
an eÆ
iently optimize (linear obje
tive

fun
tions) over a relaxation P , then it is possible to eÆ
iently optimize over the relaxation

produ
ed from P by the operator. It follows that for every �xed r � 0, the iterated operators

N

r

and N

r

+

also satisfy this property.

Strong relaxations for maximum independent set. To obtain relaxations of the max-

imum independent set problem, Lov�asz and S
hrijver [LS91℄ apply their general te
hnique

of matrix-
ut operators on a
lassi
al linear programming relaxation FRAC of the prob-

lem. The relaxation FRAC is a linear program of polynomial size, and hen
e for every �xed

r � 0, one
an eÆ
iently optimize over N

r

+

(FRAC). In
ontrast, the dimension (i.e. number

of variables) d of FRAC is the number of verti
es n in the graph, and hen
e optimizing over

N

n

(FRAC) is NP-hard.

Lov�asz and S
hrijver [LS91℄ show that the semide�nite programming relaxationN

+

(FRAC)

is at least as strong as the Lov�asz theta fun
tion. It follows, for example, that for any graph

on whi
h the theta fun
tion is not tight, the relaxation N

r

+

(FRAC) for r � 2 is stronger

than the theta fun
tion.

51

The N-rank of a graph is de�ned as the N -rank of the relaxation FRAC. The N

+

-rank is

de�ned similarly. It follows that for graphs with bounded N

+

-rank, the stable set problem

an be solved in polynomial time. This in
ludes, in parti
ular, perfe
t graphs, sin
e their

N

+

-rank is at most 1 by the above
onne
tion to the theta fun
tion.

Stephen and Tun�
el [ST99℄ study the
ase where the graph G on n verti
es is the line

graph of an h-vertex graph H. They show that the N

+

-rank of G is at most bh=2
, and

that this bound is met if H is a
omplete graph on an odd number of verti
es, in whi
h
ase

n =

�

h

2

�

and the N

+

-rank of G is
(

p

n). Note that stable sets in G
orrespond to mat
hings

in H, and that a maximum weight mat
hing
an be found eÆ
iently; it follows that there

are graphs with unbounded (and rather large) N

+

-rank in whi
h the (weighted) stable set

problem
an be solved in polynomial time.

3.1.3 Our results

We present an algorithm for the semi-random model of the hidden
lique problem of Se
-

tion 3.1.1. Our algorithm is based on the Lov�asz theta fun
tion, and its performan
e is

summarized in the next theorem. Throughout, we say that an event o

urs almost surely

if its probability, over the distribution of G

max

, tends to 1 when n ! 1. The adversarial

omponent is, of
ourse, always assumed to have the worst possible e�e
t.

Theorem 3.1. For any k =
(

p

n), there is a polynomial time algorithm that, given a

semi-random graph G

�

, outputs, almost surely, a
lique of size k together with a tight upper

bound of k on the size of the largest
lique in G

�

.

The key to the proof of Theorem 3.1 is the following lemma, that
hara
terizes the value

of the theta fun
tion on a random graph with a planted
lique of a suÆ
iently large size k.

Note that this graph is exa
tly the graph G

max

of our semi-random model. Throughout, the

term with extremely high probability will be used to denote a probability 1 � e

�n

r

for some

onstant r > 0.

Lemma 3.1. Let G = G

n;1=2;k

= G

max

, where k >

0

p

n for a large enough
onstant

0

. Then

with extremely high probability #(G) = k.

We also examine the asymptoti
 behavior on a random graph G

n;1=2

of relaxations of

Lov�asz and S
hrijver [LS91℄℄ that are stronger than the theta fun
tion. In parti
ular, we

show that the typi
al value of the semide�nite programming relaxation N

r

+

(FRAC) on a

random graph is, loosely speaking, \roughly"

q

n=2

r

for r = o(logn). We note that this

hara
terization answers (up to a
onstant fa
tor) a question of Knuth [Knu94, Se
tion

37,Problem P6℄.

Theorem 3.2. For every �xed Æ > 0 and r = o(logn), the value of the relaxation N

r

+

(FRAC)

on a random graph G

n;1=2

is at least

q

n=(2 + Æ)

r+1

and at most 4

q

n=(2� Æ)

r+1

, almost

surely.

Re
all that the strongest relaxations of Lov�asz and S
hrijver [LS91℄ whose value is known

to be eÆ
iently
omputable are N

r

+

(FRAC) for r = O(1). Theorem 3.2 shows that on

52

a random graph, the typi
al value of these relaxations is smaller than that of the theta

fun
tion by no more than a
onstant fa
tor. In the hidden
lique problem, the planted
lique

size k that a heuristi

an handle
an be improved by an arbitrarily large
onstant fa
tor

using a method of [AKS98℄, and therefore it appears that the improvement o�ered by these

stronger relaxations
an be a
hieved by other methods.

We use Theorem 3.2 to
hara
terize, up to a
onstant fa
tor, the typi
al N

+

-rank of a

random graph G

n;1=2

.

Theorem 3.3. The N

+

-rank of a random graph G

n;1=2

is almost surely �(logn).

Our results for the N

+

operator extend to a somewhat stronger variant of the matrix-

ut operators of Lov�asz and S
hrijver [LS91℄. This operator, that we denote by N

FR+

, is

spe
ialized for the maximum independent set problem and retains the important algorithmi

property of N

+

that an eÆ
ient optimization over P implies an eÆ
ient optimization over

N

FR+

(P).

Organization. Se
tion 3.2 proves Lemma 3.1, by using a known formulation of the theta

fun
tion as an eigenvalue minimization problem. This formulation
an be interpreted as

duality of semide�nite programming, see e.g. [Ali95℄.

Se
tion 3.3 gives a proof of Theorem 3.1, based on Lemma 3.1. In Se
tion 3.4.2 we address

the
ase where the size of the planted
lique is k >

0

p

n (where

0

is as in Lemma 3.1), and

show that a dire
t appli
ation of Lemma 3.1 gives an algorithm that re
ognizes, almost surely,

the verti
es of the planted
lique in G

max

. In Se
tion 3.3.2 we use an idea from [AKS98℄

to extend this algorithm to the
ase k �

p

n for
 <

0

. It will follow quite easily in

Se
tion 3.3.3 that our algorithm has two additional performan
e guarantees, whi
h are the

robustness against the sandwi
h model adversary and a
erti�
ate (almost surely) for the

optimality of its solution. In Se
tion 3.3.4 we dis
uss the extension of the algorithm to a

random graph with edge probability di�erent than 1/2.

Se
tion 3.4 gives a te
hni
al des
ription of the matrix-
ut operators of Lov�asz and S
hri-

jver [LS91℄ (in
luding our variant N

FR+

), and is intended mainly to readers who are unfa-

miliar with these operators. We present the formal de�nitions in Se
tion 3.4.1,
olle
t some

basi
 properties in Se
tion 3.4.2, and review known bounds on the N -rank and N

+

-rank in

Se
tion 3.4.3.

Se
tion 3.5 des
ribes our results on matrix-
uts in a random graph. The lower bound

on the value of the relaxation N

r

+

(FRAC) is shown in Se
tion 3.5.1, and the upper bound is

shown in Se
tion 3.5.2.

Preliminaries. Throughout, we omit the graph G(V;E) if it is
lear from the
ontext. We

let n denote the number of verti
es in the graph G, and assume, without loss of generality,

that V = f1; : : : ; ng. For a vertex i in the graph, let �(i) denote the set of the verti
es that

are adja
ent to i in the graph, i.e. �(i) : fj : ij 2 Eg, and let �(S) denote the set of verti
es

that are adja
ent to at least one vertex of S, i.e. �(S) := [

i2S

�(i).

An n� n (real) matrix Y is positive semide�nite if Y is symmetri
 and x

T

Y x � 0 for all

x 2 IR

n

. It is well-known that a symmetri
 matrix Y is positive semide�nite if and only if

all the eigenvalues of Y are nonnegative.

53

A Gram matrix representation of an n � n matrix Y is a set of real-valued ve
tors

fv

1

: : : ; v

n

g su
h that Y

ij

= v

T

i

v

j

for all i; j. It is well-known that a matrix Y is positive

semide�nite if and only if it has a Gram matrix representation.

3.2 The theta fun
tion in a hidden
lique graph

In this se
tion we prove Lemma 3.1. Throughout this se
tion, let us denote by G the

graph G

max

, whi
h
an be equivalently des
ribed as a random graph G

n;1=2

with a planted

independent set on k randomly
hosen verti
es. Sin
e G has a (planted) independent set of

size k and the theta fun
tion is a relaxation of the independent set problem, #(G) � �(G) �

k.

The main part is to show the other dire
tion, i.e. that with extremely high probability

#(G) � k. The theta fun
tion has several equivalent formulations (
f. [Lov79, GLS93,

Knu94℄. We will use the formulation as an eigenvalue minimization problem:

#

2

(G) = min

M

f�

1

(M)g

where M is an n � n real symmetri
 matrix with M

ij

= 1 whenever verti
es i; j are non-

adja
ent in G, and �

i

(M) denotes the i-th largest eigenvalue of the matrixM . We derive an

upper bound on #(G) by \guessing" a parti
ular matrix M , and
learly

#

2

(G) � �

1

(M) (3.1)

So it suÆ
es to show that with extremely high probability, our
hoi
e of M is su
h that

�

1

(M) � k.

Assume, without loss of generality, that the verti
es of the planted independent set are

the �rst k
oordinates. Then our
hosen M looks like

M =

2

6

6

6

4

J

k

B

t

B C

3

7

7

7

5

=

2

6

6

6

6

6

6

6

4

J

k

1=�1+x

j

1 1=� 1

1

1=�1+x

i

.

.

.

1=� 1 1

3

7

7

7

7

7

7

7

5

where J

k

is the all ones matrix of order k, B

t

is the transpose of B, and B;C are as follows.

Roughly half of the entries of B and C have to be +1 be
ause they
orrespond to pairs of

non-adja
ent verti
es in the graph G. We set all other entries of C to be -1. The remaining

entries of B are
hosen so that the sum of ea
h row of B is 0. At ea
h row, we
hoose

all entries to be equal. Formally, we de�ne the entries of C to be

ij

= 1 if (i; j) 62 E and

ij

= �1 otherwise (for all k < i; j � n). B is de�ned by b

ij

= 1 if (i; j) 62 E and b

ij

= �1+x

i

otherwise (for all i > k and j � k), where x

i

= (2deg(x

i

; Q)� k)=deg(x

i

; Q), and deg(x

i

; Q)

denotes the number of verti
es in Q whi
h are adja
ent to x

i

in the graph.

It is easy to see that k is an eigenvalue of M . By our
hoi
e of B the ve
tor with 1 in

its �rst k entries and 0 otherwise is an eigenve
tor whose eigenvalue is k. In order to prove

54

that this ve
tor
orresponds to the largest eigenvalue, i.e. �

1

(M) = k, it suÆ
es to show

that �

2

(M) < k.

Let us des
ribe M as the sum of three matri
es M = U +V +W . the three matri
es are

random but
orrelated, as follows.

U is a random 1/-1 symmetri
 matrix, with 1 on the diagonal.

V is a random 0/2 symmetri
 matrix in the upper left k� k blo
k (with 0 in the diagonal),

and 0 otherwise. The matrix V is
orrelated with U by v

ij

= 1�uij for all 1 � i; j � k.

W is the
orre
tion matrix for having the row sums of B equal to 0.

U =

2

6

6

6

6

4

1 1=� 1

1

.

.

.

1=� 1 1

3

7

7

7

7

5

V =

2

6

6

6

4

0=2 0

0 0

3

7

7

7

5

W =

2

6

6

6

4

0 0=x

j

0=x

i

0

3

7

7

7

5

From [FK81℄ we know that with probability 1� e

�n

r

for some
onstant r > 0:

8i � 1; j�

i

(U)j �

1

p

n 8i � 2; j�

i

(V)j �

2

p

k

By the Weyl theorem (
f. [HJ85, page 181℄),

�

2

(M) � �

1

(U) + �

2

(V) + �

1

(W) �

1

p

n+

2

p

k + �

1

(W) (3.2)

To bound �

1

(W), it suÆ
es to bound Tr(W

2

) be
ause

Tr(W

2

) =

X

i

�

i

(W

2

) =

X

i

(�

i

(W))

2

� (�

1

(W))

2

(3.3)

Sin
e W is symmetri
 Tr(W

2

) =

P

i

(W

i

W

t

i

) =

P

i;j

W

2

ij

= 2

P

i<j

W

2

ij

. Look at the i-th row

of B and the
orresponding row of W . Let us denote by S

i

(for k < i � n) the number of

non-zero (i.e. x

i

) entries in this row ofW , i.e. S

i

= deg(i; Q). Then Tr(W

2

) = 2

P

n

i=k+1

S

i

x

2

i

.

Re
all x

i

was
hosen so that the
orresponding row sum in B would be zero, so

x

i

= (2S

i

� k)=S

i

Sin
e S

i

= deg(i; Q) is binomially distributed S

i

� B(k; 1=2), then k = 2ES

i

and we get

Tr(W

2

) = 2

n

X

i=k+1

S

i

((2S

i

� k)=S

i

)

2

= 8

n

X

i=k+1

(S

i

� ES

i

)

2

=S

i

(3.4)

The following Lemma allows us to bound these quantities.

Lemma 3.2. With extremely high probability (at least 1� e

�n

r

for some
onstant r > 0)

1.

P

n

i=k+1

(S

i

� ES

i

)

2

� k

3

=96.

2. S

i

� k=3.

55

Proof. 1. We shall bound Y =

P

n

i=k+1

(S

i

�ES

i

)

2

by Azuma's inequality,
f. [AS92℄. Let

us �rst
ompute its expe
tation:

E(S

i

� ES

i

)

2

= V ar(S

i

) = k=4

EY = (n� k)k=4 � nk=4

Let Y

0

; Y

1

; Y

2

; : : : ; Y

k(n�k)

= Y be a Doob martingale of Y de�ned by exposing one

by one ea
h of the k(n � k) Bernoulli trials (re
all S

i

� B(k; 1=2)). Let us now

bound the Martingale di�eren
e. To see how an exposure of a single Bernoulli trial

an a�e
t the �nal result Y , assume that all other Bernoulli trials have been �xed.

The sum Y =

P

i

(S

i

� ES

i

)

2

is then �xed ex
ept for the
ontribution of a single S

i

(whi
h in
ludes the yet unexposed Bernoulli trial). When that trial is exposed, the

ontribution of the
orresponding S

i

will be either (v�ES

i

)

2

or (v+1�ES

i

)

2

, for some

value 0 � v � k=2�1. The di�eren
e between the two values is maximized when v = 0

or v = k=2�1. The Martingale di�eren
e is thus bounded by � = (

k

2

)

2

�(

k

2

�1)

2

= k�1.

By Azuma's inequality, for any � > 0

Pr

�

jY

k(n�k)

� EY

k(n�k)

j � ��

q

k(n� k)

�

� 2e

��

2

=2

Take � = n

1=4

to get

Pr

�

jY � EY j � n

1=4

k

q

k(n� k)

�

� e

�

p

n=4

Sin
e EY � nk=4 and k >

0

p

n for a suÆ
iently large
onstant

0

> 0 we
on
lude

that with extremely high probability, Y � EY +n

3=4

k

3=2

� k

3

=4

02

+ k

3

=

03=2

� k

3

=96,

as
laimed.

2. Follows immediately from Cherno� bound:

Pr[S

i

� k=3℄ = Pr[S

i

� 2=3 � ES

i

℄ � e

�k=36

� e

�

0

p

n=36

Using (3.3),(3.4) and Lemma 3.2 we get that with extremely high probability

(�

1

(W))

2

� Tr(W

2

) < 8 � k

3

=96 � (3=k) = k

2

=4

and using (3.1),(3.2) we arrive at

�

2

(M) � �

1

(U) + �

2

(V) + �

1

(W) <

1

p

n+

2

p

k + k=2 < k

as
laimed.

56

3.3 Algorithm for the hidden
lique problem

In this se
tion we prove Theorem 3.1 and des
ribe its algorithm, extensively relying on the

result of Lemma 3.1. We shall start with the stri
tly random model, in whi
h the input graph

is G

max

and there is no adversary. First (Se
tion 3.4.2) we address the basi

ase of k >

0

p

n

for a large enough
onstant

0

, where we
an easily use Lemma 3.1. Then (Se
tion 3.3.2) we

improve the result to any k =
(

p

n). We use the approa
h of [AKS98℄ of guessing a �xed

number of verti
es from the planted
lique, in order to redu
e the problem to the basi

ase.

Finally (Se
tion 3.3.3), we show how our analysis easily extends to the semi-random model

with the exa
t same algorithm.

The monotoni
ity properties of the theta fun
tion,
f. [Knu94, Se
tions 18-19℄, are used

throughout this se
tion. Spe
i�
ally, addition (or removal) of an edge (or a vertex) from a

graph has a monotone e�e
t on the theta fun
tion, similarly to the independen
e number

�(G). For example, adding (resp. removing) an edge may only de
rease (resp. in
rease) the

theta fun
tion.

Observe that in all
ases Q is almost surely the unique maximum
lique. Indeed, any

lique
ontaining a vertex from V nQ, almost surely
ontains at most (1 + o(1))k=2 verti
es

from Q, and at most 2 logn verti
es from V nQ, whi
h is altogether mu
h smaller that jQj.

3.3.1 The basi

ase

In the basi

ase we assume that the input graph is G

max

= G

n;1=2;k

(so there is no adversary),

and assume also that k >

0

p

n for a large enough
onstant

0

.

Finding the
lique verti
es
an then be performed by testing separately ea
h vertex v to

see whether it belongs to the planted
lique or not. To test if v belongs to the planted
lique,

remove v from the graph G

max

to get the graph G

max

n v, and
he
k how this removal a�e
ts

the theta fun
tion. We
an analyze G

max

n v by using the prin
iple of deferred de
isions. If

the vertex v belongs to the planted
lique, then G

max

n v has a
lique of size k � 1 in an

otherwise random graph. If v does not belong to the planted
lique, then G

max

n v has a

lique of size k in an otherwise random graph.

Applying Lemma 3.1 on G

max

and on G

max

n v for all verti
es v, and using the union

bound we get the following observation.

Observation. With extremely high probability, #(G

max

) = k and

#(G

max

n v) =

�

k � 1 if v belongs to the planted
lique;

k otherwise;

This suggests the following simple algorithm for the basi

ase:

Algorithm Basi
Find.

Input: Graph G = G

max

where k >

0

p

n for a large enough
onstant

0

.

1. P fv : #(G n v) < #(G)� 1=2g

2. Output P and #(G).

The dis
ussion above shows that with extremely high probability, the output P of algorithm

Basi
Find is the planted
lique Q of size k, and #(G) = jP j, proving its optimality.

57

Improved Algorithm

The same observation leads to a more eÆ
ient algorithm, whi
h uses only one
omputation

of the theta fun
tion. The theta fun
tion has several equivalent formulations,
f. [Lov79,

GLS93, Knu94℄, but we will use a parti
ular geometri
 maximization form, des
ribed as #

4

in [GLS93, Chapter 9.3℄, as follows. An orthonormal representation of G is a sequen
e of

unit length ve
tors fu

i

2 IR

n

: i 2 V g, su
h that u

i

� u

j

= 0 whenever i; j are non-adja
ent

verti
es. Then

#

4

(G) = max

d;fu

i

g

X

i2V

(d � u

i

)

2

where d 2 IR

n

ranges over all ve
tors of unit length, and fu

i

2 IR

n

: i 2 V g is an orthonormal

representation of G.

Using semide�nite programming, it is possible to solve #

4

(G) within arbitrary small

additive error, and arrive at a
orresponding ve
tor d and an orthonormal representation

fu

i

g. (More pre
isely, formulation #

3

(G) des
ribes a semide�nite program, whose solution

an be eÆ
iently transformed to an equivalent orthonormal representation for #

4

(G). See

the above referen
es for details).

Suppose now that we solve #

4

(G) for our input graph G = G

max

, and we get a solution

d; fu

i

g. We
laim that the k verti
es whose
ontribution (d�u

i

)

2

is the largest, are the verti
es

of the
lique, with extremely high probability. This, of
ourse, will enable us to re
ognize

the verti
es of the planted
lique with only one su
h
omputation of the theta fun
tion.

To prove the
laim, assume that the result of the above observation regarding #(G

max

) and

#(G

max

n v) indeed holds (whi
h happens with extremely high probability). Then #(G

max

) =

k, and thus the solution d; fu

i

g we get from the semide�nite programming has a value of

at least k � � (for arbitrary small �xed � > 0). In this solution, the
ontribution of every

vertex of the planted
lique, q 2 Q, is at least 1 � �, or otherwise, the same orthonormal

representation would give that #

4

(G

max

n q) �

P

i 6=q

(d �u

i

)

2

> k� 1,
ontradi
ting the above

observation. However, the
ontribution of any vertex j 2 V n Q is bounded, be
ause j is

(with extremely high probability) a neighbor of some q 2 Q, so u

j

� u

q

= 0 and therefore

(d � u

j

)

2

+ (d � u

q

)

2

� 1, and (d � u

j

)

2

� �. This shows that the
ontribution of every vertex

q 2 Q is larger than that of vertex j 2 V nQ, as
laimed.

As an estimate for k = jQj we
an take the value we get from the semide�nite program-

ming for #

4

(G

max

), rounded to the nearest integer. This gives the following algorithm, whi
h

outputs P = Q and # = k with extremely high probability.

Algorithm ImprovedBasi
Find.

Input: Graph G = G

max

where k >

0

p

n for a large enough
onstant

0

.

1. Compute # #

4

(G) within small additive error � = 1=3, together with

a
orresponding orthonormal representation fu

i

g and its handle d.

2. P fi : (d � u

i

)

2

> 1=2g.

3. Output P and #.

58

3.3.2 Smaller values of k

Following [AKS98℄, the main idea in improving the algorithm for G

max

to any k =
(

p

n)

is to guess a
onstant number of verti
es from the planted
lique. We
an then work on the

subgraph indu
ed on those verti
es whi
h are
ommon neighbors to all of our guess set. The

indu
ed subgraph is mu
h smaller the G

max

, and is random ex
ept for the planted
lique of

size k. Thus we improve the ratio between the size of the
lique and the size of the graph

by a
onstant fa
tor, and
an use the algorithm of the basi

ase (either Basi
Find or

ImprovedBasi
Find of Se
tion 3.3.1).

Guessing a
onstant number of verti
es from the graph
an be repla
ed by an exhaus-

tive sear
h on a polynomial number of possibilities. Let

^

N(S) denote the set of verti
es

neighboring to all of S. The algorithm for k �

p

n with arbitrary �xed
 > 0 is as follows.

Algorithm FindClique.

Input: Graph G = G

max

where k �

p

n.

1. s 2dlog

2

(

0

=
)e+ 3

2. For all subsets S of s verti
es, do

2.1. V

1

^

N(S).

2.2. (P

S

; #

S

) Basi
Find(the subgraph indu
ed on V

1

)

2.3. End-for.

3. Output the set S [P

S

whi
h is a
lique in G and has maximum size

over all
hoi
es of S.

4. Output # = s +max

S

#

S

.

We
laim that for any �xed
, algorithm FindClique almost surely outputs the planted

lique Q and a tight upper bound # = k. First observe that for any �xed subset S of size

s, the
ardinality of

^

N(S) in the random graph G

n;1=2

is a binomially distributed random

variable with parameters n� s and 1=2

s

. Thus, almost surely, j

^

N(S)j = (1 + o(1))n=2

s

for

all subsets of verti
es of size s in G

n;1=2

. Planting a
lique of size k
an in
rease j

^

N(S)j by

at most k. Therefore, for all S, j

^

N(S)j = (1 + o(1))n=2

s

almost surely also in G

max

.

Sin
e algorithm FindClique
he
ks all possible subsets S of size s, in some step it will

rea
h some S whi
h is a subset of the planted
lique Q. At this iteration we almost surely

�nd the planted
lique Q = S [P

S

. Indeed, by the prin
iple of deferred de
isions, the

subgraph indu
ed on

^

N(S) is a random graph G

j

^

N(S)j;1=2

with a planted
lique of size k� s.

By our
hoi
e of s, the planted
lique size satis�es k� s �

p

n=2 �

0

q

2n=2

s

�

0

q

j

^

N(S)j.

Thus, algorithm Basi
Find will almost surely �nd the planted
lique Q n S in

^

N(S), and

as a result we will �nd the planted
lique of size k in G

max

.

With extremely high probability, for all subsets S of size s
he
ked by the algorithm

FindClique, the theta fun
tion of the subgraph indu
ed on

^

N(S) is at most k � s, i.e.

#

S

� k�s for all S. Indeed, for ea
h subset S, either S � Q or S
ontains a vertex not from

59

Q. In the �rst
ase the subgraph indu
ed on

^

N(S) is a random graph with a planted
lique

of size at most k�s. In the se
ond
ase, with extremely high probability

^

N(S)
ontains only

(1+o(1))k=2 < k� s verti
es of the planted
lique Q. In either
ase, using the monotoni
ity

properties, we may assume

^

N(S)
ontains exa
tly k� s verti
es of the planted
lique Q, and

by Lemma 3.1, with extremely high probability the theta fun
tion of the indu
ed subgraph

is at most k � s. Using the union bound on polynomially many
hoi
es of S, the event that

all these theta fun
tions will be at most k � s takes pla
e with extremely high probability.

3.3.3 A sandwi
hed graph G

�

To show that algorithm FindClique is robust enough to withstand a monotone adversary

of the sandwi
h model, we argue that an adversary
annot prevent the algorithm from

su

eeding. Thus, the proof for the stri
tly random model G

max

extends to the semi-random

model G

�

.

For simpli
ity,
onsider �rst the basi

ase where k >

0

p

n for a large enough
onstant

0

.

Let G

�

be an arbitrary sandwi
hed graph, i.e. G

min

� G

�

� G

max

. Then by the monotoni
ity

properties of the theta fun
tion,

k � #(G

min

) � #(G

�

) � #(G

max

) � k

where the last inequality holds, almost surely, by our previous analysis. A similar phe-

nomenon happens when we remove one vertex, i.e. also in #(G

max

n v), as in the observation

of Se
tion 3.3.1. This shows that an adversary
annot prevent the algorithm from �nding

the planted
lique nor from
ertifying the optimality of its solution.

In the general
ase where k �
(

p

n), we
onsider the possible e�e
t of an adversary in

any of the appli
ations of the theta fun
tion in algorithm FindClique. These appli
ations

are equivalent to the removals of one vertex in the observation of Se
tion 3.3.1 (whi
h are

used in the proof of algorithm ImprovedFindClique).

The algorithm FindClique only applies the theta fun
tion on indu
ed subgraphs of the

input graph G

�

. Let H be any su
h indu
ed subgraph of the
orresponding G

max

. It follows

from the prin
iple of deferred de
isions, that the indu
ed subgraph H is a random graph

(with edge probability 1/2) with a randomly planted
lique of size k

0

� k. Consider the

e�e
t of an adversary on this appli
ation of the theta fun
tion, i.e. on #(H). Re
all that

an adversary is only allowed to remove edges. Thus, its e�e
t is limited to either removing

some verti
es from H (by redu
ing

^

N(S)), or removing some edges from H (by removing

the same edges from G

max

).

On the one hand, these operations may only de
rease the theta fun
tion, #(H), by the

aforementioned monotoni
ity properties. On the other hand, whenever the theta fun
tion is

tight on H due to its planted
lique, (i.e. #(H) = k

0

), an adversary
annot a�e
t the theta

fun
tion be
ause it
annot remove any of the edges forming the planted
lique, and H must

still
ontain a
lique of size k

0

. Note that these are exa
tly the properties used in the analysis

of algorithm FindClique.

Hen
e, an adversary
annot prevent the algorithm from �nding the planted
lique of size

k, and
annot in
rease the upper bound #, whi
h thus must remain k. Overall, whenever

60

algorithm FindClique su

eeds on G

max

, it also su

eeds on an arbitrary sandwi
hed G

�

,

regardless of the adversary operations, as
laimed.

3.3.4 Extension to other edge probabilities

The approa
h that we present
an be generalized to �nd a hidden
lique in a random graph

G

n;p

where the edge probability p is di�erent than 1/2.

For every �xed p, and thus �xed q = 1 � p, the main result holds, ex
ept, maybe, for a

hange in the (polynomial) running time of the algorithm. That is, a hidden
lique of size

p

n
an be found, for every �xed
 > 0. Indeed, it is known from [Juh82℄ that with extremely

high probability #(G

n;p

) = #(G

n;q

) = �(

q

np=q). To �nd in a G

n;p

graph a hidden
lique

of size k �

0

q

np=q, for a suÆ
iently large
onstant

0

> 0 (and thus extend Lemma 3.1),

one
an take the matrix M of our proof in the spirit of [Juh82℄. To �nish the argument,

observe that the idea from [AKS98℄ of guessing a
onstant number of verti
es allows handling

a hidden
lique of size

p

n for arbitrary �xed
 > 0, and that the sandwi
h properties of

the theta fun
tion give robustness against a monotone adversary.

When p = o(1) �nding hidden
liques be
omes easier. For example, if p = 1=n

Æ

for a

�xed Æ > 0, it is possible to �nd a hidden
lique of size O(1=Æ) << n

(1�Æ)=2

'

q

np=q by

exhaustively trying all subsets of this size in the graph. Indeed, with high probability the

maximum
lique in the random graph is of size O(1=Æ), and
an thus be found in polynomial

time by exhaustive sear
h. If a
lique of size

0

=Æ is planted in the graph, for a suÆ
iently

large
onstant

0

> 0, then with high probability it will be the unique maximum
lique in

the graph, and
an similarly be found in polynomial time.

When q = o(1) �nding a hidden
lique be
omes more diÆ
ult. For example, the idea

of [AKS98℄ of guessing a
onstant number of verti
es in the hidden
lique has only a negligible

e�e
t in redu
ing the size of the graph. Nevertheless, we believe that our analysis of the

algorithm based on the theta fun
tion
an be extended to work for a large range of values

of q = o(1), �nding
liques of size

0

q

n=q for suÆ
iently large

0

. We remark that the
ase

of extremely small q, namely q =

 log n

n

for a suÆ
iently large
 > 0, was handled in [FK01a℄

(in a model that is more adversarial than the one studied here), where it was shown how to

�nd hidden
liques of linear size k =
(n). Note that this value of q is larger by a fa
tor of

logn then the one whi
h a general bound of

0

q

n=q would have required for a linear sized

lique. It appears to us that the loss of the logn fa
tor is unavoidable for the semi-random

graph model when q is so small (for reasons that are explained in [FK01a℄), but
an perhaps

be avoided in a random graph model that involves no adversary.

3.4 The matrix-
ut operators of Lov�asz and S
hrijver

In this se
tion we des
ribe several lift-and-proje
t operators proposed by Lov�asz and S
hri-

jver [LS91℄. They
alled them matrix-
ut operators. When given a
onvex set (e.g. a

polytope) P , these operators
onsider it as a relaxation of the
onvex hull of its 0-1 ve
tors,

and produ
e another relaxation that is tighter. In other words, these operators produ
e a

61

onvex set that is sandwi
hed (in terms of
ontainment) between P and (the
onvex hull of)

its 0-1 ve
tors. Furthermore, the produ
ed relaxation is stri
tly tighter than P , (unless P is

already tight).

For
ompleteness, we review in this se
tion the de�nitions of these operators, many of

their properties (that we need) and relevant known results. We may repeat some known

proofs and examples, partly in order to extend them to a more general setting that in
ludes

the N

FR+

operator, and partly to aid readers who are unfamiliar with these operators.

We mention properties that hold for general 0-1 optimization, and fo
us on the stable set

problem. In Se
tion 3.4.1 we des
ribe the required framework and present the de�nitions of

the matrix-
ut operators. In Se
tion 3.4.2 we
olle
t some basi
 properties of these operators.

In Se
tion 3.4.3 we des
ribe known te
hniques to evaluate the e�e
tiveness of these operators,

and known results. Lov�asz gives an alternative formulation of the matrix-
ut operators

in [Lov94℄.

Our notation mostly follows that of Lov�asz and S
hrijver [LS91℄. Throughout, let e

j

be

the jth unit ve
tor, let 0 be the ve
tor of all zeros, and let 1 =

P

j

e

j

be the ve
tor of all

ones. The sizes (dimensions) of 0; 1 and e

j

will be
lear from the
ontext.

Re
all that a set is
alled a
one if it is
losed under multipli
ation by a nonnegative

number. A
onvex
one is thus a set that is
losed under a nonnegative linear (a.k.a.
oni
)

ombination. (Throughout, we will
onsider
onvex
ones rather than polytopes.) A poly-

hedral
one is a
one that is also a polyhedron; equivalently, a polyhedral
one is a set that

an be de�ned by fx : Ax � 0g for some matrix A.

3.4.1 De�nitions

Homogenization. It will be
onvenient to deal with homogenous systems of inequali-

ties. We therefore embed the n-dimensional spa
e IR

n

in IR

n+1

as the hyperplane x

0

= 1

(throughout, the 0th variable plays a spe
ial role), and work with
onvex
ones in IR

n+1

, as

follows.

Sin
e we deal with 0-1 programming on n variables, our basi
 example is a polytope P

that is
ontained in [0; 1℄

n

(the
onvex hull of the n-dimensional hyper
ube f0; 1g

n

). To

homogenize P using the new variable x

0

, �rst embed P in the hyperplane x

0

= 1 of IR

n+1

,

and then generate from it a
onvex
one. That is, if

P = fx 2 IR

n

: Ax � b; 0 � x � 1g ; (3.5)

then the
onvex
one obtained by homogenization is

K :=

��

x

0

x

�

2 IR

n+1

: Ax � x

0

b; 0 � x � x

0

1

�

: (3.6)

Note that su
h K
an be des
ribed as the interse
tion of �nitely many linear
onstraints

u

t

x � 0 (here x 2 IR

n+1

), and hen
e it is a polyhedral
one.

We denote by Q � IR

n+1

the
onvex
one that is obtained from the polytope [0; 1℄

n

via

the homogenization pro
edure (3.5)-(3.6). Namely,

Q :=

n

(x

0

; x

1

; : : : ; x

n

)

T

: 0 � x

i

� x

0

for all 1 � i � n

o

: (3.7)

62

Note that Q is a polyhedral
one that
an be des
ribed by 2n linear inequalities.

Throughout, let K � Q be a (
losed)
onvex
one. We denote by K

I

the
onvex
one

that is generated by all 0-1 ve
tors in K. Observe that within the hyperplane x

0

= 1, K

I

is

exa
tly the integral hull (i.e.
onvex hull of the integral ve
tors) of K. For example, Q

I

= Q.

The polar
one of K, denoted K

�

, is the
onvex
one de�ned by

K

�

:= fu 2 IR

n+1

: x

T

u � 0 for all x 2 Kg:

Observe that a ve
tor u 2 K

�

orresponds to a linear
onstraint u

T

x � 0 that is valid for K

(i.e. satis�ed by all ve
tors x 2 K). The polar
one K

�

is thus the
olle
tion of valid linear

onstraints for K. For example, Q is de�ned in (3.7) by 2n linear
onstraints, and hen
e Q

�

is spanned by the ve
tors e

i

and f

i

= e

0

� e

i

, for i = 1; : : : ; n.

Fra
tional stable sets. We will be mostly intereted in the stable set problem. LetG(V;E)

be a graph with no isolated verti
es and jV j = n. Then the stable sets of G
orrespond to

the 0-1 solutions of the system of linear inequalities

x

i

� 0 for all i 2 V (nonnegativity
onstraints) (3.8)

and

x

i

+ x

j

� 1 for all ij 2 E (edge
onstraints) (3.9)

Let STAB(G) � IR

n

denote the
onvex hull of the 0-1 solutions of the system (3.8)-(3.9).

Let FRAC(G) � IR

n

(for \fra
tional stable sets") denote the solution set of the system

(3.8)-(3.9) (i.e. without integrality restri
tion). Clearly, STAB(G) � FRAC(G).

Let FR(G) � IR

n+1

be the polyhedral
one that is obtained from the polytope FRAC(G)

via the homogenization pro
edure (3.5)-(3.6). That is, FR(G) is the solution set of the

following homogenous system of linear inequalities for the stable set problem:

x

i

� 0 for ea
h i 2 V (3.10)

x

0

� x

i

� x

j

� 0 for ea
h ij 2 E (3.11)

Let ST(G) be the polyhedral
one that is obtained from the polytope STAB(G) via the

homogenization pro
edure (3.5)-(3.6). It is straightforward that (FR(G))

I

= ST(G).

Throughout, we omit the graph G when it is
lear from the
ontext, denoting STAB(G)

by STAB et
. It
an be seen that its polar
one FR

�

is spanned by the ve
tors e

i

for

i = 1; : : : ; n and the ve
tors f

ij

= e

0

� e

i

� e

j

for ij 2 E. Note that FR � Q and hen
e

FR

�

� Q

�

.

Matrix-
ut operators. Let K

1

; K

2

� Q be
losed
onvex
ones in IR

n+1

(e.g. K

1

=

FR(G) and K

2

= Q). Consider the
one K

1

\K

2

. For ea
h u 2 K

�

1

the
onstraint u

T

x � 0

is valid for K

1

, and for ea
h v 2 K

�

2

the
onstraint v

T

x � 0 is valid for K

2

. It follows that

the quadrati
 inequality (u

T

x)(x

T

v) � 0 is valid for K

1

\K

2

. Furthermore,

K

1

\K

2

=

n

x : u

T

xx

T

v � 0 for all u 2 K

�

1

; v 2 K

�

2

; x

0

� 0

o

(3.12)

63

be
ause any original inequality, say u

T

x � 0 for K

1

,
an be re
overed by adding the two

quadrati
 inequalities obtained by e

i

; f

i

2 Q

�

� K

�

2

, giving u

T

x � x

0

= u

T

xx

T

(e

i

+ f

i

) � 0.

Furthermore, all 0-1 ve
tors in K

1

\K

2

satisfy x

2

i

= x

i

. Therefore, if x is a 0-1 ve
tor in

K

1

\K

2

and with x

0

= 1, then setting Y = xx

T

we have that

(a) Y is symmetri
.

(b) Y e

0

= diag(Y), i.e. Y

ii

= Y

i0

for all 1 � i � n.

(
) u

T

Y v � 0 for all u 2 K

�

1

and v 2 K

�

2

.

(d) Y is positive semide�nite.

Note that (
)
an be written as

(
') Y K

�

2

� K

1

Lov�asz and S
hrijver [LS91℄ proposed the following lift-and proje
t pro
edure. Given

K

1

; K

2

,
onsider the derived
ones:

M(K

1

; K

2

) := fY 2 IR

(n+1)�(n+1)

: Y satisi�es (a)-(
)g

M

+

(K

1

; K

2

) := fY 2 IR

(n+1)�(n+1)

: Y satisi�es (a)-(d)g

and de�ne the proje
tions of these liftings on IR

n+1

:

N(K

1

; K

2

) := fY e

0

: Y 2M(K

1

; K

2

)g

N

+

(K

1

; K

2

) := fY e

0

: Y 2M

+

(K

1

; K

2

)g:

It follows from the above dis
ussion that

(K

1

\K

2

)

I

� N

+

(K

1

; K

2

) � N(K

1

; K

2

) � K

1

\K

2

(3.13)

Relevant variants of the operators. We use shorter notation to easily handle two spe
ial

ases. When K

2

= Q we omit K

2

, i.e. N(K) := N(K;Q) and N

+

(K) := N

+

(K;Q). In this

ase, we have that (
') is equivalent to:

(
") Every
olumn of Y is in K

1

; the di�eren
e of the �rst
olumn and any other
olumn

of Y is in K

1

.

Note that we have from (3.13) that

K

I

� N

+

(K) � N(K) � K (3.14)

For the stable set problem, we may take K

2

= FR, whi
h we denote in the subs
ript,

i.e. N

FR

(K) := N(K;FR) and N

FR+

(K) := N

+

(K;FR). In this
ase, we have that (
') is

equivalent to:

(
"') Y e

i

2 K

1

for all i � 1, and Y f

ij

2 K

1

for all ij 2 E.

64

We assume throughout that K � FR, and then we have from (3.13) that

K

I

� N

FR+

(K) � N

FR

(K) � K (3.15)

It follows from the de�nition that using K

2

= FR is at least as strong as using K

2

= Q in

the same operator, i.e. N

FR

(K) � N(K) and N

FR

+

(K) � N

+

(K). We therefore have that

K

I

� N

FR+

(K) � N

FR

(K) � N(K) � K (3.16)

K

I

� N

FR+

(K) � N

+

(K) � N(K) � K (3.17)

The power of these operators is dis
ussed in Se
tion 3.4.3. As for the relation between

N

FR

(K) and N

+

(K), it
an be seen that N

FR

(K) 6� N

+

(K) (e.g. by a
lique on 5 verti
es

and K = FR, see Se
tion 3.4.3), but it is not
lear (to us) whether N

+

(K) � N

FR

(K).

Iterated operators. De�ne the iterated operator N

r

(K) re
ursively by N

0

(K) = K and

N

r

(K) = N(N

r�1

(K)) for r � 1. For other operators, the iterated operator is de�ned

similarly.

The following Theorem of Lov�asz and S
hrijver [LS91℄ proves that even without the

positive semide�niteness
onstraint (d), it suÆ
es to apply n iterations in order to get from

a
onvex
one K � Q the
one K

I

. It follows that applying the N operator on K 6= K

I

produ
es a relaxation of K

I

that is stri
tly tighter than K.

Theorem 3.4 (Lov�asz and S
hrijver [LS91℄). Let K � Q be a
onvex
one in IR

n+1

.

Then N

n

(K) = K

I

.

It is often easier to work in the original n-dimensional spa
e (without homogenization),

so in the
ase that K is the
one obtained from a polytope (or a
onvex set) P in [0; 1℄

n

via

the homogenization pro
edure (3.5)-(3.6), de�ne

N(P) :=

�

x 2 IR

n

:

�

1

x

�

2 N(K)

�

and similarly for the other operators (in
luding the iterated ones).

For the stable set problem, K will be one of the
ones obtained from FR(G) by an

iterated operator, e.g. N

r

(FR(G)). Going ba
k to the original n-dimensional spa
e we shall

abbreviate N

r

(G) := N

r

(FRAC(G)) and similarly for the other operators. We then have

from Theorem 3.4 that N

n

(G) = STAB(G).

Ranks. The N-rank of an inequality u

T

x � 0 that is valid for K

I

, is the smallest nonneg-

ative integer r su
h that u

T

x � 0 is valid for N

r

(K). (Note that the rank is relative to K).

For N

+

,N

FR

and N

FR+

the rank is de�ned similarly. Theorem 3.4 states that these ranks

are at most n (the dimension) for any valid inequality.

The N-rank of a
one K is the smallest nonnegative integer r su
h that N

r

(K) = K

I

,

and similarly for the other operators. By Theorem 3.4, the N -rank of K is at most n (the

dimension).

The N -rank of a graph G, is the N -rank of FR(G), and similarly for the other operators.

For example, for a bipartite graph STAB = FRAC and hen
e the N -rank of a bipartite

graph is 0. We will elaborate on bounds on the rank in Se
tion 3.4.3.

65

Algorithmi
 aspe
ts. Lov�asz and S
hrijver [LS91℄ give suÆ
ient
onditions for eÆ
ient

weak (i.e. up to arbitrary pre
ision) optimization (of linear obje
tive fun
tions) over N(K),

N

+

(K), N

FR

(K) and N

FR+

(K). Te
hni
ally, the matrix-
ut operators have the following

algorithmi
 property.

Theorem 3.5 (Lov�asz and S
hrijver [LS91℄). A polynomial time weak separation ora-

le for K gives a polynomial time weak separation ora
le for N

r

(K); N

r

+

(K); N

r

FR

(K) and

N

r

FR+

(K) for any �xed
onstant r.

By the equivalen
e between weak (i.e. up to arbitrary pre
ision) optimization and weak

separation (see [GLS93℄), Theorem 3.5 implies a weak optimization of any linear obje
tive

fun
tion over these relaxations of K

I

.

Lov�asz and S
hrijver [LS91℄ suspe
t that Theorem 3.5 does not extend to N(K;K).

They remark, however, that it if K is given by an expli
it system of polynomially many

linear inequalities, then Theorem 3.5 does extend to N(K;K).

For the stable set problem, the
one K = FR is given by an expli
it linear program of

polynomial size, so one
an solve the separation problem for it in polynomial time. We thus

obtain the following theorem.

Theorem 3.6. For every �xed r � 0, the weak optimization problem for N

r

(G)
an be solved

in polynomial time, and similarly for N

r

+

; N

r

FR

; N

r

FR+

.

3.4.2 Basi
 properties

We
olle
t some properties of the matrix-
ut operators de�ned in Se
tion 3.4.1. In parti
ular,

Corollary 3.7 and Lemma 3.16 will be used in Se
tion 3.5.1.

Monotoni
ity. It is straightforward that the matrix-
ut operators are monotone with

respe
t to
ontainment of K

1

and K

2

, as follows.

Lemma 3.3. Let K

0

1

� K

1

and K

2

� K

0

2

. Then N(K

0

1

; K

0

2

) � N(K

1

; K

2

) and similarly for

N

+

.

It follows that the matrix-
ut operators are monotone with respe
t to adding/removing

edges.

Corollary 3.4. Let G

0

be a graph that is obtained from another graph G by adding edges.

Then N

r

(G

0

) � N

r

(G), and similarly for N

r

+

,N

r

FR

,N

r

FR+

.

Proof. Observe that FR(G

0

) � FR(G). The proof follows from Lemma 3.3.

Down-monotoni
ity. Throughout, we use x � y, where x; y are two ve
tors, to denote

x

i

� y

i

for every
oordinate i.

A non-empty
onvex set P � [0; 1℄

n

is
alled down-monotone (in [0; 1℄

n

) if for every

x 2 P , every y 2 [0; 1℄

n

with y � x is also in P (see e.g. [GLS93, page 11℄). Similarly, a

66

onvex
one f0g 6= K � Q is
alled down-monotone if for every x 2 K, every y 2 Q with

y � x and y

0

= x

0

is also in K.

The next lemma shows that the matrix-
ut operators preserve down-monotoni
ity. It

extends a similar result for N(�) and N

+

(�), that is given by Goemans and Tun�
el [GT00,

Theorem 5.1℄ (where a down-monotone polytope is
alled lower-
omprehensive) and by Cook

and Dash [CD00, Lemma 2.6℄ (where the polytope is said to be of an anti-blo
king type).

Lemma 3.5. Let K

1

; K

2

� Q be down-monotone
onvex
ones. Then N(K

1

; K

2

) is down-

monotone, and similarly for N

+

.

Proof. Let x 2 N(K

1

; K

2

) and 0 � x

0

� x with x

0

0

= x

0

. It suÆ
es to prove that x

0

2

N(K

1

; K

2

) when x; x

0

di�er only in a single
oordinate, say i = 1, sin
e we
an repeat the

same argument for ea
h
oordinate. Furthermore, for a single
oordinate i = 1 it suÆ
es to

prove the
ase x

0

1

= 0, sin
e N(K

1

; K

2

) is
onvex, and so
onvex
ombinations of x

0

and x

give any desired value for
oordinate i = 1.

Sin
e x 2 N(K

1

; K

2

), there exists a matrix Y 2 M(K

1

; K

2

) with x = Y e

0

. De�ne the

matrix Y

0

by

Y

0

ij

=

�

0 if i = 1 or j = 1;

Y

ij

otherwise.

We
laim that Y

0

2M(K

1

; K

2

). Indeed, Y

0

learly satis�es (a) and (b). To prove (
), let

u 2 K

�

1

; v 2 K

�

2

, and from Lemma 3.6 below we have that u� u

1

x

1

2 K

�

1

and v� v

1

x

1

2 K

�

2

and hen
e

u

T

Y

0

v = (u� u

1

x

1

)

T

Y (v � v

1

x

1

) � 0

Observe that x

0

= Y

0

e

0

, and therefore x

0

2 N(K

1

; K

2

), as required.

For the proof of N

+

we need to show that (d) also holds, and indeed from the Gram

matrix representation of Y we
an obtain a Gram matrix representation of Y

0

by repla
ing

the ve
tor that
orresponds to
oordinate i = 1 with the all zeros ve
tor 0.

Lemma 3.6. Let K � Q be down-monotone and let v 2 K

�

. Then v � v

i

e

i

2 K

�

for all

i � 1.

Proof. By the down-monotoni
ity of K, for every x 2 K we have that x � x

i

e

i

2 K, and

hen
e (v � v

i

e

i

)

T

x =

P

j 6=i

v

j

x

j

= v

T

(x� x

i

e

i

) � 0.

Observe that Q is down-monotone by its de�nition in (3.7), and that FRAC is down-

monotone by its de�nition in (3.10)-(3.11). By Lemma 3.5 the matrix-
ut operators preserve

down-monotoni
ity and we obtain the following
orollary for the iterated operators.

Corollary 3.7. N

r

(G) is down-monotone, and similarly for N

r

+

,N

r

FR

,N

r

FR+

.

Flipping and renaming
oordinates. The operators N;N

+

; N

FR

; N

FR+

are invariant

under various operations, in
luding renaming indi
es (i.e. permuting the order of
oordi-

nates), and
ipping
oordinates x

i

! (x

0

� x

i

) for any subset of the indi
es f1; 2; : : : ; ng.

More formally,

67

Lemma 3.8 (Lov�asz and S
hrijver [LS91℄). Let A be a linear transformation mapping

Q onto itself. Then N(AK

1

; AK

2

) = AN(K

1

; K

2

) and similarly for N

+

. Hen
e N(AK) =

AN(K) and similarly for N

+

.

By
ipping
oordinates, one
an extend Lemma 3.5. For example, it follows that the

N and N

+

operators preserve up-monotoni
ity (shown by Cook and Dash [CD00, Se
tion

2℄ as the blo
king property), and a \
onvex
orner" property (shown by Goemans and

Tun�
el [GT00, Se
tion 5℄).

Interse
tion with fa
es. A fa
e of Q is the interse
tion of Q with hyperplanes of the

form fx : x

i

= 0g or fx : x

i

= x

0

g. The interse
tion of K with a fa
e of Q
onsists of all

x 2 K with one or more of their
oordinates �xed to 0 or x

0

(re
all that x

0

orresponds to

1 in the non-homogenous
ase).

The following lemma proves equivalen
e between �xing some
oordinates before applying

a matrix-
ut operator (e.g. in K) and afterwards (e.g. in N(K)). It extends a similar result

that is given by Goemans and Tun�
el [GT00℄ for N(�) and N

+

(�).

Lemma 3.9. If F is a fa
e of Q, then N(K

1

\ F;K

2

) = N(K

1

; K

2

) \ F and similarly for

N

+

.

Proof. The dire
tion \�" follows from Lemma 3.3, sin
e N(K

1

\ F;K

2

) � N(K

1

; K

2

) and

N(K

1

\ F;K

2

) � N(F;K

2

) � F , and similarly for N

+

.

For the
onverse dire
tion \�" with the N operator, let x 2 N(K

1

; K

2

)\ F . Then there

exists a matrix Y 2 M(K

1

; K

2

) with Y e

0

= x. Let H be any one of the hyperplanes of the

form fx : x

i

= 0g or fx : x

i

= x

0

g that de�ne F . Sin
e e

j

; f

j

2 Q

�

� K

�

2

for all j, we have that

Y e

j

2 K

1

� Q and Y f

j

2 K

1

� Q, while their sum satis�es Y e

j

+Y f

j

= Y e

0

= x 2 F � H.

Sin
e H de�nes a fa
e of Q then by de�nition of a fa
e we have that Y e

j

(and also Y f

j

) must

belong to H.

1

But every v 2 IR

n+1

is a linear
ombination of fe

0

; e

1

; : : : ; e

n

g and Y e

j

2 H

for all j � 0, and so Y v 2 H for every v, in
luding all v 2 K

�

2

.

For every v 2 K

�

2

we have that Y v belongs to K

1

� Q, by the de�nition of Y . We saw

above that Y v also belongs to all hyperplanes H that de�ne F , and we
on
lude that Y v

belongs also to F . Hen
e, Y v 2 K

1

\ F for all v 2 K

�

2

, implying that Y 2 M(K

1

\ F;K

2

)

and x 2 N(K

1

\ F;K

2

). The proof for N

+

is similar, sin
e Y is also known to be positive

semide�nite.

We remark that the above proof of Lemma 3.9 extends to the
ase where F is a fa
e of

K

1

, as shown by Cook and Dash [CD00, Lemma 2.2℄ for N(�) and N

+

(�). For the spe
ial

ases K

2

= Q and K

2

= FR we obtain the following.

Corollary 3.10. If F is a fa
e of Q (or a fa
e of K), then N(K \ F) = N(K) \ F and

similarly for N

+

,N

FR

,N

FR+

.

1

In other words, suppose that the hyperplane H is de�ned by the equality u

T

x = 0 (i.e. u = e

i

or u = f

i

)

and that the inequality u

T

x � 0 is valid for Q (i.e. Q is entirely
ontained in one side of H). We then have

that u

T

(Y e

j

); u

T

(Y f

j

) � 0 while their sum is u

T

x = 0, implying that u

T

(Y e

j

) = u

T

(Y f

j

) = 0.

68

Deleting �xed
oordinates. Suppose that K is
ontained in a fa
e of Q. Then some

of the
oordinates are �xed (i.e. x

i

= 0 or x

i

= x

0

), and it may be desirable to delete

these
oordinates and redu
e the dimension. Formally, a deletion operation of indi
es subset

I � f1; : : : ; ng is the fun
tion f : IR

n+1

! IR

n+1�jIj

where f(x) is the ve
tor x restri
ted to

the
oordinates not in I, i.e. f(x) = (x

i

)

i 62I

.

In the following we show that deleting �xed
oordinates of K before applying a matrix-

ut operator (e.g. in K) is equivalent to deleting them afterwards (e.g. in N(K)). The

following handles the basi

ase of one
oordinate that is �xed to 0.

Lemma 3.11. Let F = Q \ fx : x

n

= 0g and let f be the deletion operation of
oor-

dinate i = n. If K

1

; K

2

are
onvex
ones that are
ontained in F then f(N(K

1

; K

2

)) =

N(f(K

1

); f(K

2

)),

2

and similarly for N

+

.

Proof. The deletion operation f is a linear transformation from IR

n+1

to IR

n

, and thus
an

be des
ribed as an n� (n+1) matrix A. Note that
olumns 0 to n� 1 of A form an identity

matrix and
olumn n of A is all zeros. We �rst
laim that AK

�

= (AK)

�

for K = K

1

and

for K = K

2

. Indeed, by de�nition, u 2 AK

�

if there exists r 2 IR with

�

u

r

�

2 K

�

. Note

that

�

u

r

�

2 K

�

holds either for all values of r or for no value of r, sin
e K � fx : x

n

= 0g.

Therefore,

AK

�

= fu : 9r 2 IR with

�

u

r

�

2 K

�

g = fu :

�

u

0

�

2 K

�

g:

We also have that

(AK)

�

= fu : u

T

(Ax) � 0 8x 2 Kg = fu : A

T

u 2 K

�

g:

Sin
e A

T

u =

�

u

0

�

, we obtain AK

�

= (AK)

�

.

Let us now prove that M(AK

1

; AK

2

) = AM(K

1

; K

2

)A

T

. For the dire
tion \�", let

Y 2 M(AK

1

; AK

2

). Then by (
), for every u 2 K

�

1

; v 2 K

�

2

we have that u

T

A

T

Y Av � 0.

We therefore have that

�

Y 0

0

T

0

�

= A

T

Y A 2M(K

1

; K

2

):

Multiplying by A from the left and by A

T

from the right, we obtain (sin
e AA

T

is the identity

matrix) that Y 2 AM(K

1

; K

2

)A

T

.

For the
onverse dire
tion \�", let Y 2 AM(K

1

; K

2

)A

T

. Sin
e K

1

� fx : x

n

= 0g, every

matrix in M(K

1

; K

2

) has only zeros in row n, and by the symmetry (a) it has only zeros

also in
olumn n. Hen
e,

A

T

Y A =

�

Y 0

0

T

0

�

2M(K

1

; K

2

):

By (
), for every u 2 K

�

1

; v 2 K

�

2

it holds that u

T

A

T

Y Av � 0, and hen
e Y 2M(AK

1

; AK

2

).

2

Note that the appli
ation of N in the righthand side is in a smaller dimension than in the lefthand side.

69

Now sin
e A

T

e

0

is just e

0

(in a larger dimension), we
on
lude that

N(AK

1

; AK

2

) = AM(K

1

; K

2

)A

T

e

0

= AM(K

1

; K

2

)e

0

= AN(K

1

; K

2

):

The proof for the N

+

operator is similar sin
e Y is positive semide�nite if and only if

A

T

Y A is (observe that Y has a Gram matrix representation if and only if A

T

Y A has su
h

a representation).

We
an extend Lemma 3.11 to an arbitrary fa
e F and to an arbitrary K

2

, as follows.

Lemma 3.12. Let F = Q \ fx : x

i

= 0 8i 2 I

0

g \ fx : x

i

= x

0

8i 2 I

1

g and let f be the

deletion operation of the
oordinates I

0

[I

1

. If K

1

is a
onvex
one
ontained in F and K

2

is a
onvex
one
ontained in Q, then f(N(K

1

; K

2

)) = N(f(K

1

); f(K

2

\ F)), and similarly

for N

+

.

Proof. K

1

and K

2

\ F are both
ontained in F , so we
an repeatedly apply Lemma 3.11 on

them, and delete the
oordinates of I

0

[I

1

. (Note that by using Lemma 3.8 we
an extend

Lemma 3.11 also to deleting
oordinates that are �xed to x

0

.) It follows that f(N(K

1

; K

2

\

F)) = N(f(K

1

); f(K

2

\ F)).

By Lemma 3.9 we have that N(K

1

; K

2

\ F) = N(K

1

; K

2

) \ F , and sin
e N(K

1

; K

2

) �

K

1

� F , we have that N(K

1

; K

2

\ F) = N(K

1

; K

2

). The proof follows.

For the stable set problem, it is straightforward to see that �xing and deleting a
oordinate

of FR(G) has the following e�e
t.

Lemma 3.13. Let F = Q \ fx : x

i

= 0g, and let f be the deletion operation of
oordinate

i. Then f(FR(G) \ F) = FR(G� i).

Lemma 3.14. Let F = Q \ fx : x

i

= x

0

g, and let f be the deletion operation of
oordinate

i. Then f(FR(G) \ F) = FR(G� i) \ fx : x

j

= 0 for j 2 �(i)g.

For the spe
ial
ases K

2

= Q and K

2

= FR we obtain the following from Lemma 3.12.

Corollary 3.15. Let F = Q \ fx : x

i

= 0 8i 2 I

0

g \ fx : x

i

= x

0

8i 2 I

1

g and let f be

the deletion operation of the
oordinate I

0

[I

1

. If K is a
onvex
one
ontained in F then

f(N(K)) = N(f(K)),

3

and similarly for N

+

; N

FR

and N

FR+

.

Proof. For the N operator we have from Lemma 3.12 that

f(N(K)) = N(f(K); f(Q \ F))

and f(Q \ F) is just Q in the smaller dimension, so f(N(K)) = N(f(K)). The proof for

the N

+

operator is similar.

For the N

FR

operator we have from Lemma 3.12 that

f(N

FR

(K)) = N(f(K); f(FR(G) \ F));

3

Note that the appli
ation of N in the righthand side is in a smaller dimension than in the lefthand side.

70

and it follows from Lemmas 3.13 and 3.14 that f(FR(G)\F) = FR(G� I

0

� I

1

)\H, where

H = fx : x

i

= 0 8i 2 �(I

1

)� I

0

� I

1

g. We therefore have that

f(N

FR

(K)) = N(f(K);FR(G� I

0

� I

1

) \H):

Note that f(K) � H sin
e K � F \ FR(G) � H, and so by Lemma 3.9 we have that

f(N

FR

(K)) = N

FR

(f(K)), as required. The proof for N

FR+

(K) is similar.

Corollary 3.15 extends a similar result that is given by Cook and Dash [CD00℄ for N(�)

and N

+

(�). Te
hni
ally, they de�ne an embedding operation as one that introdu
es new

oordinates that are �xed (to either 0 or x

0

), and state that for every
onvex
one K

0

and

an embedding operation g, g(N(K

0

)) = N(g(K

0

)), and similarly for N

+

(see also [ST99℄).

The deletion operation is the inverse of embedding, so for N(�) and N

+

(�) Corollary 3.15 is

equivalent to the result of Cook and Dash [CD00℄.

Removing verti
es from the graph. For the stable set problem, the properties
olle
ted

so far, and in parti
ular Corollary 3.15, give a useful
hara
terization to whether x 2 N

r

(G)

in the
ase that x has a �xed
oordinate (i.e. x

i

= 0 or x

i

= x

0

).

Re
all that V = f1; : : : ; ng. For a ve
tor x 2 IR

n

and a subset W � V , we denote by x

W

the restri
tion of x to the
oordinates of W .

Lemma 3.16. Let x 2 IR

n

, and assume that for some i we have that x

i

= 1 and that x

j

= 0

for all j 2 �(i). Then for all r � 0, x 2 N

r

(G) if and only if x

V ��(i)�i

2 N

r

(G� �(i)� i),

and similarly for N

r

+

,N

r

FR

and N

r

FR+

.

Proof. It is
lear that x belongs to the fa
e F of Q that is de�ned by the hyperplanes

fx : x

i

= x

0

g and fx : x

j

= 0g for all j 2 �(i). Then x 2 N

r

(G) if and only if x 2 N

r

(G)\F ,

whi
h is equivalent, by Corollary 3.10, to x 2 N

r

(FR(G)\F). Let f be the deletion operation

of the
oordinates �(i)[fig, and then we have equivalently that f(x) 2 f(N

r

(FR(G)\F)).

By Corollary 3.15, the latter is equivalent to f(x) 2 N

r

(f(FR(G) \ F)). By Lemmas 3.13

and 3.14, we have that f(FR(G)\ F) = FR(G� �(i)� i), and the proof follows. The proof

for N

r

+

,N

r

FR

and N

r

FR+

is similar.

Lemma 3.17. Let x 2 IR

n

be a ve
tor and assume that x

i

= 0 for some i. Then x 2 N

r

(G)

if and only if x

V �i

2 N

r

(G� i), and similarly for N

r

+

,N

r

FR

and N

r

FR+

.

Proof. It is
lear that x belongs to the fa
e F of Q that is de�ned by the hyperplane x

i

= 0.

Then x 2 N

r

(G) if and only if x 2 N

r

(G) \ F , whi
h is equivalent, by Corollary 3.10, to

x 2 N

r

(FR(G) \ F). Let f be the deletion operation of the
oordinate i, and then we have

equivalently that f(x) 2 f(N

r

(FR(G) \ F)). By Corollary 3.15, the latter is equivalent to

f(x) 2 N

r

(f(FR(G) \ F)). By Lemma 3.13 we have that f(FR(G) \ F) = FR(G� i), and

the proof follows. The proof for N

r

+

,N

r

FR

and N

r

FR+

is similar.

3.4.3 Bounds on the rank

We des
ribe general methods to obtain upper and lower bounds on the N -rank and N

+

-

rank of valid inequalities, and extend them to N

FR

-rank.We also illustrate the use of these

methods on a few valid
onstraints for the stable set problem (see Table 3.4.3 on page 78).

71

Vertex deletion and
ontra
tion. Let a

T

x � b be an inequality valid for STAB(G).

For a subset W � V , we denote by a

W

the restri
tion of a to the
oordinates of W . For

every i 2 V , if a

T

x � b is valid for STAB(G), then a

T

V�i

x � b is valid for STAB(G� i) and

a

T

V��(v)�i

x � b � a

i

is valid for STAB(G � �(i) � i). Following the terminology of Lov�asz

and S
hrijver [LS91℄, we say that these inequalities arise from a

T

x � b by the deletion and

ontra
tion of vertex i, respe
tively. Note that if a

T

x � b is an inequality su
h that for some

i, both the deletion and the
ontra
tion of i yield inequalities valid for the
orresponding

graphs, then a

T

x � b is valid for G.

The N -rank of an inequality valid for STAB(G) depends only on the subgraph indu
ed

by those verti
es with a nonzero
oeÆ
ient, and similarly for N

+

,N

FR

and N

FR+

. Indeed,

if a vertex i has a zero
oeÆ
ient, then the inequality being valid for N

r

(G) is equivalent,

by Corollary 3.7, to the inequality being valid for N

r

(G) \ fx : x

i

= 0g, whi
h in turn is

equivalent, by Lemma 3.17, to the inequality being valid for N

r

(G� i).

Upper bounds on the N-rank. Lov�asz and S
hrijver [LS91℄ give an upper bound on

N(K), whi
h allows to upper bound the N -rank of an inequality, as follows.

The sum of two sets K

0

; K

00

� IR

n+1

is de�ned as K

0

+ K

00

:= fx

0

+ x

00

: x 2 K

0

; x

00

2

K

00

g. Note that if K

0

; K

00

are
onvex
ones in Q then K

0

+ K

00

is also a
onvex
one in

Q. Furthermore, if K

0

; K

00

are obtained via the homogenization pro
edure (3.5)-(3.6) from

polytopes P

0

; P

00

� IR

n

, respe
tively, then K

0

+K

00

orresponds to all
onvex
ombinations

of a point from P

0

and a point from P

00

(re
all that
oordinate 0 needs to be s
aled to 1).

Lemma 3.18 (Lov�asz and S
hrijver [LS91℄). For all 1 � i � n,

N(K) �

�

K \ fx : x

i

= 0g

�

+

�

K \ fx : x

i

= x

0

g

�

:

Proof. If x 2 N(K) then there exists Y 2M(K) with x = Y e

0

= Y e

i

+Y f

i

for any i � i � n.

Clearly, Y e

i

2 K \ fx : x

i

= x

0

g and Y f

i

2 K \ fx : x

i

= 0g, and the proof follows.

Corollary 3.19. If an inequality is valid for both K \ fx : x

i

= 0g and K \ fx : x

i

= x

0

g,

then it is valid for N(K).

Goemans and Tun�
el [GT00℄ note that repeatedly using Lemma 3.18 and Corollary 3.10,

gives that for all I � f1; : : : ; ng with jIj = r,

N

r

(K) �

X

I

0

�I

�

K \ fx : x

i

= 0 8i 2 I

0

g \ fx : x

i

= x

0

8i 2 I n I

0

g

�

:

In parti
ular, this shows that the N -rank of any
one K is at most n, proving Theorem 3.4.

For the stable set problem, Corollary 3.19
an be rephrased as follows (using Lemmas 3.16

and 3.17).

Lemma 3.20 (Lov�asz and S
hrijver [LS91℄). Let P be a
onvex set with STAB � P �

FRAC. If a

T

x � b is an inequality su
h that for some i 2 V , both the deletion and
ontra
tion

of i give an inequality valid for P , then a

T

x � b is valid for N(P).

72

For example, if C indu
es a
hordless odd
y
le in G, the odd hole
onstraint

X

i2C

x

i

�

jCj � 1

2

(3.18)

has N -rank at most (and a
tually exa
tly) 1, be
ause both the
ontra
tion and the deletion of

any vertex result in an inequality that is valid for FRAC. (In fa
t, Lov�asz and S
hrijver [LS91℄

prove that N(FRAC) is exa
tly the relaxation that is obtained by adding to FRAC all the

odd hole
onstraints.)

Lov�asz and S
hrijver [LS91℄ also give the following upper bound on the N -rank of a graph.

The proof follows by applying Lemma 3.20 repeatedly for n � �(G) � 1 verti
es outside a

maximum stable set in the graph, sin
e the graph indu
ed on the other verti
es must be

bipartite.

Corollary 3.21 (Lov�asz and S
hrijver [LS91℄). The N-rank of a graph G of stability

number �(G) is at most n� �(G)� 1.

It follows that the N -rank of any graph G is at most n� 2. Note that the N -rank of FR

is at most n� 2, while the N -rank of a general
one K is at most (and
an a
tually be) n.

We next analyze the N -rank of a few more examples, due to Lov�asz and S
hrijver [LS91℄.

By Corollary 3.21, if B is a
lique in G, the
lique
onstraint

X

i2B

x

i

� 1 (3.19)

has N -rank at most (and a
tually exa
tly) jBj�2. Note that the
lass of all
lique
onstraints

strengthens the
lass of all edge
onstraints (3.9).

If D indu
es a
hordless odd
y
le in G (the edge
omplement of G), the odd antihole

onstraint

X

i2D

x

i

� 2 (3.20)

has N -rank at most (and a
tually exa
tly) (jDj � 3)=2, be
ause the
ontra
tion of a vertex

results in an inequality trivially valid for FRAC, and the deletion of a vertex results in an

inequality that is the sum of two
lique
onstraints, ea
h of size (jDj � 1)=2 and hen
e of

N -rank (jDj � 5)=2.

If W indu
es an odd wheel in G with
enter i

0

2 W , the odd wheel
onstraint

X

i2Wnfi

0

g

x

i

+

jW j � 2

2

x

i

0

�

jW j � 2

2

(3.21)

has N -rank at most (and a
tually exa
tly) 2, sin
e the
ontra
tion of the
enter vertex

results in a trivial inequality, and the deletion of the
enter vertex results with the odd hole

onstraint.

73

Upper bounds on the N

FR

-rank. The methods for obtaining upper bounds on the N -

rank
an be extended (with modi�
ations) to upper bounds on the N

FR

-rank, as follows.

Lemma 3.22. For all ij 2 E,

N(K) �

�

K \ fx : x

i

= x

j

= 0g

�

+

�

K \ fx : x

j

= x

0

g

�

+

�

K \ fx : x

i

= x

0

g

�

:

Proof. If x 2 N

FR

(K) then there exists Y 2 M(K) with x = Y e

0

= Y e

i

+ Y e

j

+ Y f

ij

for any ij 2 E. Clearly, Y e

i

2 K \ fx : x

i

= x

0

g and Y e

j

2 K \ fx : x

j

= x

0

g and

Y f

ij

2 K \ fx : x

i

= x

j

= 0g, and the proof follows.

Corollary 3.23. If an inequality is valid for K \ fx : x

i

= x

0

g, for K \ fx : x

j

= x

0

g, and

for K \ fx : x

i

= x

j

= 0g, then it is valid for N

FR

(K).

Corollary 3.23
an be rephrased as follows (using Lemmas 3.16 and 3.17).

Lemma 3.24. Let P be a
onvex set with STAB � P � FRAC. If a

T

x � b is an inequality

su
h that for some ij 2 E, the
ontra
tion of i, the
ontra
tion of j and the deletion of fi; jg

give an inequality valid for P , then a

T

x � b is valid for N(P).

The following upper bound on the N

FR

-rank of a graph follows by applying Lemma 3.24

repeatedly on edges, so that the removal of their endpoints results in a bipartite graph (e.g.

a mat
hing that is maximal with respe
t to
ontainment).

Corollary 3.25. Suppose that a graph G
ontains a set of � edges, whose endpoints removal

results in a bipartite graph. Then the N

FR

-rank of G is at most �.

It follows that the N

FR

-rank of a graph G is at most (n� 2)=2 if n is even and (n� 1)=2

if n is odd; in general it is at most b(n� 1)=2
. In parti
ular, the N

FR

-rank of the
lique

onstraint (3.19) is at most b(jBj � 1)=2
.

We
an apply these bounds on the other examples. The N

FR

-rank of the odd hole

onstraint
onstraint (3.18) is at most (and thus exa
tly) 1, sin
e the N

FR

operator is at least

as strong as N . The N

FR

-rank of the odd antihole
onstraint (3.20) is at most b(jDj+ 1)=4
,

be
ause the
ontra
tion of a vertex results in an inequality trivially valid for FRAC, and the

deletion of two verti
es results in an inequality that is the sum of two
lique
onstraints, ea
h

of size at most (jDj � 1)=2 and hen
e of N

FR

-rank b(jDj � 3)=4
. (In fa
t, it
an be shown

by dire
t
al
ulations that the N

FR

-rank of the odd antihole
onstraint (3.20) with jDj = 7

is at most 1.) The N

FR

-rank of the wheel
onstraint (3.21) is at most (and thus exa
tly) 1,

sin
e the
ontra
tion of the
enter vertex results in a trivial inequality, the
ontra
tion of a

non-
enter vertex results in an inequality is valid for FRAC, and the deletion of these two

verti
es also results in an inequality is valid for FRAC.

Lower bounds on the N-rank. Lov�asz and S
hrijver [LS91℄ show that
ertain uniform

fra
tional stable sets belong to N

r

(G), regardless of the graph G. For example, for r = 0

it is straightforward that (1=2)1 2 FRAC(G). The following lemma gives an extension to

larger r, with the uniform solution being smaller, depending on r.

74

Lemma 3.26 (Lov�asz and S
hrijver [LS91℄). Assume that P is down-monotone and

ontains STAB(G). If (1=r)1 2 P for r > 0 then 1=(r + 1)1 2 N(P).

Proof. Let K be the
onvex
one obtained from P via the homogenization pro
edure (3.5)-

(3.6). De�ne the matrix Y 2 IR

(n+1)�(n+1)

by

Y

ij

=

8

<

:

1 if i = j = 0;

1=(r + 1) if (i = 0; j > 0) or (i > 0; j = 0) or (i = j > 0);

0 otherwise.

To see that Y 2 M(K;Q) observe that (a),(b)
learly hold, and let us now show that (
")

holds.

Y e

i

=

1

t + 1

(e

0

+ e

i

) 2 ST(G) � K

and

Y f

i

=

r

r + 1

e

0

+

X

j 6=0;i

1

r + 1

e

j

=

r

r + 1

0

�

e

0

+

X

j 6=0;i

1

r

e

j

1

A

:

By the indu
tion hypothesis we have that

X

j 6=0;i

1

r

e

j

�

X

j 6=0

1

r

e

j

2 P;

and the down-monotoni
ity of P implies that Y f

i

2 K, and thus (
") holds. We
on
lude

that Y e

0

2 N(K), i.e. 1=(r + 1)1 2 N(P).

Corollary 3.27 (Lov�asz and S
hrijver [LS91℄). 1=(r + 2)1 2 N

r

(G) for all r � 0.

Proof. Pro
eed by indu
tion on r. We mentioned above that the
ase r = 0 is trivial. The

indu
tive step follows from Lemma 3.26, sin
e N

r

(FRAC(G))
learly
ontains STAB(G) and

is down-monotone by Corollary 3.7.

Corollary 3.28 (Lov�asz and S
hrijver [LS91℄). The N

FR

-rank of a graph G of stability

number �(G) is at least n=�(G)� 2.

Proof. Let r be the N -rank of G, and hen
e N

r

(G) = STAB(G). By Corollary 3.27 we have

that 1=(r + 2)1 2 N

r

(G). The inequality 1

T

x � � is valid for STAB(G) = N

r

(G), and in

parti
ular for 1=(r + 2)1, implying that n=(r + 2) � �(G), and the proof follows.

For example, the stability number of a
lique B is 1, so the N -rank of B is at least,

and hen
e exa
tly, jBj � 2. In fa
t, the above proof shows that the N -rank of the
lique

onstraint (3.19) is at least, and hen
e exa
tly, jBj � 2. The stability number of an an odd

antihole D is 2, so the N -rank of D is at least jDj=2� 2, and sin
e jDj is odd, it must be at

least (jDj � 3)=2. In fa
t, this shows that the N -rank of the odd antihole
onstraint (3.20)

is at least, and hen
e exa
tly, (jDj � 3)=2. Corollary 3.27 also yields a lower bound on the

N -rank of the wheel
onstraint (3.21). Indeed, let r be the N -rank of this
onstraint. Then

we have that this
onstraint is valid for N

r

(G) and, in parti
ular, for 1=(r + 2)1 2 N

r

(G).

Thus,

1

r + 2

jW j � 1 +

jW j � 2

2

!

�

jW j � 2

2

whi
h gives that

2(jW j�1)

jW j�2

+ 1 � r+ 2 and thus r � 1 +

2

jW j�2

. Sin
e the N -rank of the wheel

onstraint is an integer, it must be at least, and hen
e exa
tly, 2.

75

Lower bounds on the N

FR

-rank. The methods for obtaining lower bounds on the N -

rank
an be extended (with modi�
ations) to lower bounds on the N

FR

-rank, as follows.

Lemma 3.29. Assume that P be down-monotone and
ontains STAB(G). If (1=r)1 2 P

for r > 0 then 1=(r + 2)1 2 N

FR

(P).

Proof. De�ne the matrix Y 2 IR

(n+1)�(n+1)

by

Y

ij

=

8

<

:

1 if i = j = 0;

1=(r + 2) if (i = 0; j > 0) or (i > 0; j = 0) or (i = j > 0);

0 otherwise.

To see that Y 2M(K;FR) observe that (a),(b)
learly hold, and let us now show that (
")

holds.

Y e

i

=

1

r + 2

(e

0

+ e

i

) 2 ST(G) � K

and for ij 2 E

Y f

ij

=

r

r + 2

e

0

+

X

l 6=0;i;j

1

r + 2

e

l

=

r

r + 2

0

�

e

0

+

X

l 6=0;i;j

1

r

e

l

1

A

By the indu
tion hypothesis we have that

X

l 6=0;i;j

1

r

e

l

�

X

l 6=0

1

r

e

l

2 P

and the down-monotoni
ity of P implies that Y f

ij

2 K, and thus (
") holds. We
on
lude

that Y e

0

2 N

FR

(K), i.e. 1=(r + 2)1 2 N

FR

(P).

Corollary 3.30. 1=(2r + 2)1 2 N

r

FR

(G) for all r � 0.

Proof. Pro
eed by indu
tion on r. We mentioned above that the
ase r = 0 is trivial. The

indu
tive step follows from Lemma 3.29, sin
e N

r

FR

(FRAC(G))
learly
ontains STAB(G)

and is down-monotone by Corollary 3.7.

Corollary 3.31. T N

FR

-rank of a graph G of stability number �(G) is at least n=(2�(G))�1.

Proof. Let r be the N -rank of G, and hen
e N

r

(G) = STAB(G). By Corollary 3.30 we have

that 1=(r + 2)1 2 N

r

(G). The inequality 1

T

x � �(G) is valid for STAB(G) = N

r

(G), and

in parti
ular for 1=(r + 2)1, implying that n=(2r + 2) � �(G), and the proof follows.

For example, the N

FR

-rank of a
lique B is at least jBj=2� 1 (sin
e the stability number

of B is 1), and it must be an integer, so we have that it is at least b(jBj � 1)=2
. In fa
t, the

above proof shows that the N

FR

-rank of the
lique
onstraint (3.19) is at least, and hen
e

exa
tly, b(jBj � 1)=2
. The N

FR

-rank of an odd antihole D is at least jDj=4� 1 (sin
e the

stability number of D is 2), and it must be an integer (while jDj is odd), so we have that it

is at least bjDj=4
. In fa
t, this shows that the N -rank of the odd antihole
onstraint (3.20)

is at least bjDj=4
. Corollary 3.27 also yields a lower bound on the N -rank of the wheel

76

onstraint (3.21). Indeed, let r be the N -rank of this
onstraint. Then we have that this

onstraint is valid for N

r

(G) and, in parti
ular, for 1=(r + 2)1 2 N

r

(G). Thus,

1

r + 2

jW j � 1 +

jW j � 2

2

!

�

jW j � 2

2

whi
h gives that

2(jW j�1)

jW j�2

+ 1 � r+ 2 and thus r � 1 +

2

jW j�2

. Sin
e the N -rank of the wheel

onstraint is an integer, it must be at least, and hen
e exa
tly, 2.

Upper bounds on the N

+

-rank. Lov�asz and S
hrijver [LS91℄ give also a suÆ
ient
on-

dition for an inequality to be valid for N

+

(K). The following lemma
onsiders an inequality

u

T

x � 0 with u

0

� 0 and u

i

� 0 for i � 1. It
an be extended to an arbitrary inequality

u

T

x � 0 by
ipping the relevant
oordinates a

ording to Lemma 3.8.

Lemma 3.32 (Lov�asz and S
hrijver [LS91℄). If for all i with u

i

< 0, u

T

x � 0 is valid

for K \ fx : x

i

= x

0

g, then u

T

x � 0 is valid for N

+

(K).

For the stable set problem, Lemma 3.32 implies the following lemma, whi
h is des
ribed

in the original n-dimensional spa
e, i.e. by inequalities a

T

x � b (with a 2 IR

n

) that are valid

for STAB(G). Observe that the only non-trivial
ase is b > 0 and a � 0, and then we
an

use Lemma 3.32.

Lemma 3.33 (Lov�asz and S
hrijver [LS91℄). If a

T

x � b is an inequality valid for

STAB(G) su
h that for all i 2 V with a

i

> 0 the
ontra
tion of i gives an inequality with

N

+

-rank at most r, then a

T

x � b has N

+

-rank at most r + 1.

For example, the
lique, odd hole, odd wheel, and odd antihole
onstraints all have N

+

-

rank at most (and thus exa
tly) 1. Lov�asz and S
hrijver [LS91℄ show also that the so-
alled

orthogonality
onstraints (see [Lov79, GLS93℄ for de�nition) are valid for N

+

(FRAC) by

de�nition, and hen
e their N

+

-rank is also 1.

One simple way to derive fa
et-de�ning valid inequalities from other fa
et-de�ning in-

equalities is
loning a
lique at a vertex i. That is, repla
ing the vertex i by a
lique and

repla
ing every edge in
ident to i by
orresponding edges that are in
ident to all the
lique

verti
es, and substituting the variable of i in the inequality with the sum of the variables of

the
lique verti
es. In general, it is not
lear how
loning in
uen
es the N

+

-rank of an in-

equality. However, Goemans and Tun�
el [GT00℄ note that Lemma 3.33 implies that
loning

at the
enter vertex of an odd wheel inequality still has N

+

-rank 1, and that
loning at one

or several verti
es of an odd wheel, odd hole, or odd antihole inequality, the N

+

-rank is

at most 2. Indeed, �xing any variable (of the
orresponding subgraph) to 1, the resulting

inequality
an be seen to be a linear
ombination of
lique inequalities and hen
e valid for

N

+

(FRAC).

Corollary 3.34 (Lov�asz and S
hrijver [LS91℄). If G� �(i)� i has N

+

-rank at most r

for every i 2 V , then the N

+

-rank of G is at most r + 1.

It follows for example, that the N

+

-rank of a
lique, an odd antihole or an odd wheel, is

at most (and hen
e exa
tly) 1.

77

ConstraintnRank N N

FR

N

+

N

FR+

odd hole (3.18) 1 1 1 1

lique (3.19) jBj � 2 b(jBj � 1)=2
 1 1

antihole (3.20) (jDj � 3)=2 bjDj=4
 � rank � b(jDj+ 1)=4
 1 1

wheel (3.21) 2 1 1 1

Table 3.1: The ranks of some example
onstraints

Corollary 3.35 (Lov�asz and S
hrijver [LS91℄). The N

+

-rank of a graph G is at most

its stability number �(G).

Note that Corollary 3.35 is tight for a
lique.

Lower bounds on the N

+

-rank. Lov�asz and S
hrijver [LS91℄ give no general method

to lower bound the N

+

-rank. The approa
h taken by Stephen and Tun�
el [ST99℄, Goemans

and Tun�
el [GT00℄, and Cook and Dash [CD00℄ is to obtain an analog of Corollary 3.27 that

holds for a spe
i�

one K. That is, they show that N

r

+

(K)
ontains a \uniform" solution

that does not belong to K

I

, and thus obtain that the N

+

-rank of K must be larger than r.

Our analysis in Se
tion 3.5 also follows this approa
h.

We note that Goemans and Tun�
el [GT00℄ give a suÆ
ient
ondition for N

+

(K) = N(K)

to hold, but this
ondition appears to be not appli
able to the stable set problem.

The ranks of the example
onstraints are listed in Table 3.4.3.

3.5 The Lov�asz-S
hrijver relaxations in a random graph

In this se
tion we show that the N

+

-rank of a random graph G

n;1=2

is �(logn), almost surely.

In parti
ular, we analyze the asymptoti
 behavior of maxf1

T

x : x 2 N

r

+

(G)g for r = o(logn).

Loosely speaking, we show that the value of this relaxation is \roughly"

q

n=2

r

, almost surely.

Below are the pre
ise formulations of our lower bound and upper bound on maxf1

T

x :

x 2 N

r

+

(G)g. Our proofs extend the proof of Juh�asz [Juh82℄ whi
h shows that the theta

fun
tion of a random graph is almost surely �(

p

n).

Theorem 3.7. For any �xed
 >

p

2 there exists a �xed �

0

> 0, su
h that if 0 � r � �

0

logn,

then almost surely maxf1

T

x : x 2 N

r

+

(G

n;1=2

)g �

p

n=

r+1

.

The proof of Theorem 3.7 appears in Se
tion 3.5.1. Te
hni
ally, we show that N

r

+

(G

n;1=2

)

ontains, almost surely, the \uniform" solution (1=

r+1

p

n)1, and hen
e obtain a lower bound

on the value of the relaxation.

To show that the above lower bound is nearly tight, we give in the next thereom an upper

bound on the value of the relaxation. Its proof appears in Se
tion 3.5.2.

Theorem 3.8. For any �xed d <

p

2 there exists a �xed �

0

> 0, su
h that if 1 � r � �

0

logn,

then almost surely maxf1

T

x : x 2 N

r

+

(G

n;1=2

)g � 4

p

n=d

r+1

.

It is straightforward that Theorem 3.2 follows from Theorems 3.7 and 3.8 by taking

 =

p

2 + Æ and d =

p

2� Æ.

78

The N

+

-rank of a random graph G

n;1=2

. We
an now use Theorem 3.7 and Corol-

lary 3.35 to show that the N

+

-rank of a random graph is almost surely logarithmi
 in n,

proving Theorem 3.3. In
omparison, the N -rank of a random graph is almost surely at least

(n= logn) by Corollary 3.28, and at most n� O(logn) by Corollary 3.21.

Proof of Theorem 3.3. Let G be a random graph from the distribution G

n;1=2

, and let us

�rst show a lower bound on the N

+

-rank. It is well known that, almost surely, the maximum

size of a stable set in G is roughly 2 log

2

n, i.e.

maxf1

T

x : x 2 STABg � O(logn)

We have from Theorem 3.7 with r = �

0

logn that, almost surely,

maxf1

T

x : x 2 N

r

+

(FRAC)g � n

(1)

It follows that N

r

+

(FRAC) 6= STAB, and hen
e the N

+

-rank of FRAC (and therefore of G),

is larger than r = �

0

logn =
(logn).

The upper bound on N

+

-rank of G follows from Corollary 3.35. Indeed, the stability

number of a random graph G

n;1=2

is, almost surely, roughly 2 log

2

n, and hen
e the N

+

-rank

of G is, almost surely, O(logn), as
laimed.

3.5.1 Lower bound on the value of N

r

+

(G

n;1=2

)

We prove Theorem 3.7 by showing that N

r

+

(G

n;1=2

)
ontains, almost surely, the \uniform"

solution (1=

r+1

p

n)1. First we exhibit in Lemma 3.36
ertain
onditions that are suÆ
ient

for su
h a uniform solution to be feasible in N

r

+

(G

n;1=2

). We then show in Lemma 3.37 that

these
onditions are almost surely satis�ed by a random graph G

n;1=2

.

Notation. We will say that two verti
es are non-adja
ent if they are not adja
ent and they

are not equal (i.e. they are adja
ent in the
omplement graph). We make no attempt to

optimize
onstants.

Lemma 3.36. Let G be a graph on n verti
es, let
 =

p

2(1 + �)

10

for 0 < � < 1=5 and let

r � 0. Assume that for every S � V with jSj � r, the graph G

0

= G � S � �(S) satis�es

(let n

0

denote the number of verti
es in G

0

):

(i) All eigenvalues of the adja
en
y matrix of G

0

are at least �(1 + �)

p

n

0

.

(ii) The degree of every vertex in G

0

is between

1

1+�

n

0

2

and (1 + �)

n

0

2

.

If

r+1

� �

p

n then (1=

r+1

p

n)1 2 N

r

+

(G).

Proof. Pro
eed by indu
tion on r. For the base
ase r = 0, observe that (1=

r+1

p

n)1 satis�es

the nonnegativity and edge
onstraints and therefore is in FR(G) by de�nition.

For the indu
tive step, assume it holds for r � 0, and let us show that it holds for r + 1.

Let G be a graph with (i),(ii) holding for any jSj � r + 1, and

r+2

� �

p

n. We
an
hoose,

79

in parti
ular, jSj = 0 and have that (i),(ii) hold for the graph G itself. To ease notation,

de�ne

� := (1 + �)

5

(

r+1

=

p

2)

p

n (3.22)

Let A be the n� n adja
en
y matrix of G, i.e. A

ij

= 0 whenever (i; j) 2 E or i = j and

A

ij

= 1 otherwise. We know from (i) that all eigenvalues of A are at least �(1+ �)

p

n � ��.

Hen
e, the matrix B = A + �I is positive semide�nite, and there exist ve
tors z

1

; : : : ; z

n

su
h that B

ij

= z

T

i

z

j

. Therefore

kz

i

k

2

= B

ii

= �; 8i � 1: (3.23)

Let z

0

=

P

n

i=1

z

i

. Then

kz

0

k

2

= (

X

i>0

z

i

)

T

(

X

j>0

z

j

) =

X

i;j>0

B

ij

: =

X

i>0

X

j>0

B

ij

To estimate

P

j>0

B

ij

=

P

j>0

A

ij

+ � for i > 0, observe that we have from (ii) that

1

1 + �

n

2

�

X

j>0

A

ij

� (1 + �)

n

2

while � � (

r+2

=2)

p

n � �n=2. Hen
e,

1

1 + �

n

2

�

X

j>0

B

ij

� (1 + �)

2

n

2

; (3.24)

and we
on
lude that

1

1 + �

n

2

2

� kz

0

k

2

� (1 + �)

2

n

2

2

(3.25)

For every i � 0 let v

i

be the unit length ve
tors in the dire
tion of the ve
tor z

i

, i.e.

v

i

= z

i

=kz

i

k, and let x

i

= (v

T

i

v

0

)

2

. Observe that x

0

= (v

T

0

v

0

)

2

= 1.

We
laim that x = (x

1

; : : : ; x

n

)

T

is in N

r+1

+

(G). Let us �rst show how the proof of

Lemma 3.36 follows from this
laim. Indeed, from (ii) we have that

v

T

i

v

0

= (

z

i

kz

i

k

)

T

(

P

j>0

z

j

kz

0

k

) =

P

j>0

B

ij

p

�kz

0

k

Together with (3.24) and (3.25) we
an estimate x

i

= (v

T

i

v

0

)

2

by

1

(1 + �)

4

�

1

2�

� x

i

� (1 + �)

5

1

2�

(3.26)

and from (3.22) we have that

x

i

�

1

2(1 + �)

4

�

p

2

(1 + �)

5

r+1

p

n

�

1

r+2

p

n

80

and thus (1=

r+2

p

n)1 � x 2 N

r+1

+

(G). By the monotoni
ity guaranteed in Corollary 3.7 we

have (1=

r+2

p

n)1 2 N

r+1

+

(G), whi
h indeed proves the indu
tive step.

We now prove the
laim x 2 N

r+1

+

(G), by presenting a matrix Y 2 M

+

(N

r

+

(G)) whose

0th
olumn
orresponds to x. Indeed, let Y be the (n + 1) � (n + 1) matrix de�ned by

Y

ij

= (v

T

i

v

j

)

p

x

i

x

j

for all i; j � 0. By de�nition, Y

i0

= (v

T

i

v

0

)

p

x

i

= x

i

for i � 0, and in

parti
ular Y

00

= x

0

= 1. We will show that Y satis�es (a),(b),(
") and (d). Three of them

are straightforward:

(a) Y is symmetri
 by de�nition.

(b) Y

ii

= kv

i

k

2

x

i

= x

i

and hen
e Hen
e Y

ii

= x

i

= Y

i0

.

(d) Y is positive semide�nite be
ause it
an be represented by the ve
tors f

p

x

i

v

i

g, i.e.

Y

ij

= (

p

x

i

v

i

)

T

(

p

x

j

v

j

) for all i; j � 0.

Before proving (
"), observe that for i; j > 0 we have

Y

ij

= (

z

i

kz

i

k

)

T

(

z

j

kz

j

k

)

p

x

i

x

j

= (1=�)B

ij

p

x

i

x

j

and B

ij

is either �, 0 or 1. So for i; j > 0 we have

Y

ij

=

8

>

<

>

:

x

i

if i = j

0 if i 6= j and ij 2 E

(1=�)

p

x

i

x

j

if i 6= j and ij 62 E

and the estimate of (3.26) gives that x

i

� 1=2� and

p

x

i

x

j

� 1=2�. Hen
e,

Y =

2

6

6

6

6

6

4

1 x

1

� � � x

n

x

1

x

1

0

�

�

�

p

x

i

x

j

�

.

.

.

.

.

.

x

n

0

�

�

�

p

x

i

x

j

�

x

n

3

7

7

7

7

7

5

�

2

6

6

6

6

6

6

4

1

1

2�

� � �

1

2�

1

2�

1

2�

0

�

�

�

1

2�

2

.

.

.

.

.

.

1

2�

0

�

�

�

1

2�

2

1

2�

3

7

7

7

7

7

7

5

Consider Y e

i

, the ith
olumn of Y , for i > 0, and s
ale it by a fa
tor of 1=x

i

so that

its 0th entry will be 1. We get a fra
tional solution where vertex i has value 1, its adja
ent

verti
es have value 0, and its non-adja
ent verti
es j have value (1=�)

q

x

j

=x

i

� 1=�. Let G

0

be the subgraph of G indu
ed on the latter verti
es (i.e. those non-adja
ent to i), and let

n

0

denote the number of verti
es in G

0

. Then by Lemma 3.16, we have that the fra
tional

solution Y e

i

is in N

r

+

(G) if and only if its restri
tion to G

0

is in N

r

+

(G

0

). Ea
h
oordinate in

the fra
tional solution restri
ted to G

0

is bounded by

1

�

s

x

j

x

i

�

1

�

(1 + �)

9=2

�

p

2

r+1

q

n(1 + �)

�

1

r+1

p

n

0

where the �rst inequality is due to (3.26), the se
ond is due to (3.22), and the third follows

from n

0

� (1 + �)

n

2

whi
h we have from (ii). The fra
tional solution restri
ted to G

0

is

81

thus dominated by the uniform solution (1=

r+1

p

n

0

)1, whi
h belongs to N

r

+

(G

0

) by applying

the indu
tion hypothesis to G

0

. (Note that G

0

satis�es (i),(ii) for any 0 � jSj � r by

de�nition, and that we have

r+1

� �

p

n=
 � �

p

n

0

.) From the monotoni
ity guaranteed by

Corollary 3.7, we
on
lude that also the fra
tional solution restri
ted to G

0

is in N

r

+

(G

0

), and

therefore Y e

i

2 N

r

+

(G).

Consider Y f

i

, the di�eren
e between
olumn 0 and
olumn i of Y , for i > 0. Its 0th

entry is 1 � x

i

� 1 � 1=2�, its ith entry is 0, and any other jth entry is at most roughly

1=2�. Observe that

x

i

�

(1 + �)

5

2�

�

1

p

2n

� 1�

1

p

2

(3.27)

where the �rst inequality is due to (3.26), the se
ond is due to (3.22) and the third is due

to

p

n � 5�

p

n � 5

r+2

> 10. S
aling the ve
tor Y f

i

by a fa
tor 1=(1� x

i

) so that its 0th

entry is 1, we obtain a fra
tional solution in whi
h the value of the jth entry is at most

x

j

1� x

i

�

(1 + �)

5

=2�

1=

p

2

=

1

r+1

p

n

:

The fra
tional solution is thus dominated by (1=

r+1

p

n)1, whi
h by the indu
tion hypothesis

belongs to N

r

+

(G). (Note that G satis�es the requirements for r). From the monotoni
ity

guaranteed by Corollary 3.7, (as all entries of Y f

i

are nonnegative) we
on
lude that Y f

i

2

N

r

+

(G).

We therefore have that (
") holds, whi
h
ompletes the proof of the indu
tive step and

of Lemma 3.36.

The proof of Lemma 3.36 extends also to N

r

FR+

(G). Indeed, we need to
onsider also

Y f

ij

for ij 2 E. The 0th entry of this ve
tor is 1�x

i

�x

j

� 1�2=2�, the ith and jth entries

are 0, and any other kth entry is either roughly 1=2� if k is adja
ent to both i; j, or roughly

1=2�� 2=2�

2

� 1=2� if k is non-adja
ent to both i; j, or roughly 1=2�� 1=2�

2

� 1=2� if k

is adja
ent to exa
tly one of i; j. Similar to (3.27) we have that

x

i

+ x

j

� 2 �

1

p

2n

� 1�

1

p

2

:

S
aling this ve
tor (by a small fa
tor) so that the 0th entry is 1, we obtain a fra
tional

solution in whi
h the value of the kth entry is at most

x

k

1� x

i

� x

j

�

(1 + �)

5

=2�

1=

p

2

=

1

r+1

p

n

:

The fra
tional solutions is thus dominated by (1=

r+1

p

n)1, whi
h by the indu
tion hypoth-

esis belongs to N

r

+

(G). From the monotoni
ity guaranteed by Corollary 3.7, (as all entries

of Y f

ij

are nonnegative) we
on
lude that Y f

ij

2 N

r

+

(G).

Lemma 3.37. Let � > 0 be �xed. Then there exists a �xed �

0

> 0 that depends on �, su
h

that for any r � �

0

logn, a random graph G

n;1=2

almost surely satis�es the requirements of

Lemma 3.36.

82

Proof. Observe that a suÆ
iently small �

0

> 0 that depends on � guarantees that

r+1

� �

p

n

(we
an assume, without loss of generality, that � < 1=5).

Consider a parti
ular
hoi
e of S of size s � r, and its
orresponding graph G

0

(V

0

; E

0

)

(the subgraph of G indu
ed on the verti
es that are non-adja
ent to all the verti
es of S).

The number of verti
es in G

0

, whi
h we denote by n

0

= jV

0

j, has binomial distribution

B(n� s; 1=2

s

). Sin
e s � logn � n=4, we have by Cherno� bound that

Pr

h

n

0

� n=2

s+1

i

� 2

�Æ

1

n=2

s

(3.28)

for some �xed Æ

1

> 0.

G

0

is a random graph (with edge probability 1=2) on n

0

verti
es. Therefore, the adja
en
y

matrix of G

0

is a random symmetri
 matrix and we
an use results on the
on
entration of

its eigenvalues. In parti
ular, we have from Krivelevi
h and Vu [KV00℄ (whi
h improve the

on
entration shown by F�uredi and K�omlos [FK81℄, see also [AKV01℄) that

Pr [G

0

does not satisfy (i)℄ � 2

�Æ

2

n

0

(3.29)

for some Æ

2

> 0 that depends on �.

Sin
e G

0

is a random graph, the degree of a parti
ular vertex in G

0

has binomial distri-

bution B(n

0

� 1; 1=2). By Cherno� bound and the union bound on the n

0

verti
es we have

that

Pr [G

0

does not satisfy (ii)℄ � n

0

2

�Æ

3

n

0

(3.30)

for some �xed Æ

3

> 0 that depends on �.

Using the union bound on the events of (3.29) and (3.30) we
an bound the probability

that G

0

does not satisfy (i) or (ii). In order to obtain a bound in terms of n (rather than

n

0

), we add to the union bound also the event of (3.28) and have that for some �xed Æ > 0

that depends on �,

Pr [G

0

does not satisfy (i) or (ii)℄ � n2

�Æn=2

s

Taking the union bound on all possible sets S of size at most r, the probability that the

requirements of Lemma 3.36 do not hold is at most

r

X

s=0

n

s

!

n2

�Æn=2

s

� rn

r+1

2

�Æn=2

r

� n

r+2

2

�Æn=2

r

� 1

when r � �

0

logn for a suÆ
iently small �xed �

0

> 0 that depends on �, and hen
e these

requirements hold almost surely.

The proof of Theorem 3.7 follows from Lemma 3.36 and Lemma 3.37.

3.5.2 Upper bound on the value of N

r

+

(G

n;1=2

)

To prove Theorem 3.8 we �rst exhibit in Lemma 3.38
ertain
onditions that are suÆ
ient

for the inequality 1

T

x � 4

p

n=d

r+1

to be valid for N

r

+

(G). We then show in Lemma 3.39

that these
onditions are almost surely satis�ed by a random graph G

n;1=2

.

83

The Lov�asz theta fun
tion of a graph is de�ned as #(G) = maxf1

T

x : x 2 TH(G)g,

where TH(G) is the solution set of the nonnegativity
onstraints (3.8) and the so-
alled or-

thogonality
onstraints (see [Lov79, GLS93℄ for de�nition). Lov�asz and S
hrijver [LS91℄ show

that the orthogonality
onstraints have N

+

-rank at most 1, and hen
e N

+

(G) � TH(G).

Lemma 3.38. Let G be a graph on n verti
es, let d =

p

2(1� �) for 0 < � < 1 and let r � 1.

Assume that for every S � V with jSj � r, the graph G

0

= G � S � �(S) satis�es (let n

0

denote the number of verti
es in G

0

):

(i) #(G

0

) � 2(1 + �)

p

n

0

.

(ii) The degree of every vertex in G

0

is between

1

1+�

n

0

2

and (1 + �)

n

0

2

.

If d

r+1

� �

2

p

n then maxf1

T

x : x 2 N

r

+

(G)g � 4

p

n=d

r+1

.

Proof. Pro
eed by indu
tion on r. For the base
ase r = 1, we
an
hoose jSj = 0 and then

(i) and (ii) hold for the graph G itself. In parti
ular, we have that

maxf1

T

x : x 2 N

+

(G)g � #(G) � 2(1 + �)

p

n < 4

p

n=d

2

For the indu
tive step, assume it holds for r � 1 and let us show that it holds for r+1. In

other words, given a graph G with (i),(ii) holding for any jSj � r+1, we will prove that the

inequality 1

T

x � 4

p

n=d

r+2

is valid for N

r+1

+

(G). By Lemma 3.33 we know that it suÆ
es

to prove that for every vertex v, the inequality that arises from the
ontra
tion of v, i.e.

1

T

x � 4

p

n=d

r+2

� 1, is valid for N

r

+

(G� �(v)� v).

By the indu
tion hypothesis forG

0

= G��(v)�v we have that maxf1

T

x : x 2 N

r

+

(G

0

)g �

4

p

n

0

=d

r+1

, i.e. the inequality 1

T

x � 4

p

n

0

=d

r+1

is valid for N

r

+

(G

0

). Sin
e (ii) holds also for

G itself, we have that n

0

� (1 + �)

n

2

, and hen
e

4

p

n

0

d

r+1

�

4

p

n

d

r+1

p

1 + �

p

2

=

4

p

n

d

r+2

p

1 + �(1� �) �

4

p

n(1� �

2

)

d

r+2

�

4

p

n

d

r+2

� 1

where the last inequality follows from d

r+2

� 4�

2

p

n. Therefore we have that for N

r

+

(G

0

)

the inequality 1

T

x � 4

p

n

0

=d

r+1

� 4

p

n=d

r+2

� 1 holds, whi
h
ompletes the proof of the

indu
tive step.

Lemma 3.39. Let � > 0 be �xed. Then there exists a �xed �

0

> 0 that depends on �, su
h

that for any r � �

0

logn, a random graph G

n;1=2

almost surely satis�es the requirements of

Lemma 3.38.

Proof. The proof is similar to the proof of Lemma 3.37, but with the di�erent requirement (i).

Juh�asz [Juh82℄ shows that #(G

0

) is at most (2+ o(1))

p

n

0

, almost surely, by using the result

of F�uredi and K�omlos [FK81℄ on the
on
entration of eigenvalues of random symmetri

matri
es. By using the stronger
on
entration result of Krivelevi
h and Vu [KV00℄ (see

also [AKV01℄), we have that (3.29) holds also here, and the proof follows.

The proof of Theorem 3.8 follows from Lemma 3.38 and Lemma 3.39.

84

Bibliography

[ABSS97℄ S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate

optima in latti
es,
odes, and systems of linear equations. J. Comput. System

S
i., 54(2, part 2):317{331, 1997.

[AKK99℄ S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation s
hemes

for dense instan
es of NP-hard problems. J. Comput. System S
i., 58(1):193{210,

1999.

[AKS98℄ N. Alon, M. Krivelevi
h, and B. Sudakov. Finding a large hidden
lique in a

random graph. Random Stru
tures Algorithms, 13(3-4):457{466, 1998.

[AKV01℄ N. Alon, M. Krivelevi
h, and V. H. Vu. On the
on
entration of eigenvalues of

random symmetri
 matri
es. Manus
ript, January 2001.

[Ali95℄ Farid Alizadeh. Interior point methods in semide�nite programming with appli-

ations to
ombinatorial optimization. SIAM J. Optim., 5(1):13{51, 1995.

[ALM

+

98℄ S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�
ation

and the hardness of approximation problems. J. ACM, 45(3):501{555, 1998.

[AR98℄ Y. Aumann and Y. Rabani. An O(log k) approximate min-
ut max-
ow theorem

and approximation algorithm. SIAM J. Comput., 27(1):291{301, 1998.

[Aro98℄ S. Arora. Polynomial time approximation s
hemes for Eu
lidean traveling sales-

man and other geometri
 problems. J. ACM, 45(5):753{782, 1998.

[AS92℄ N. Alon and J. H. Spen
er. The probabilisti
 method. John Wiley & Sons, In
.,

New York, 1992.

[AS98℄ S. Arora and S. Safra. Probabilisti

he
king of proofs: a new
hara
terization

of NP. J. ACM, 45(1):70{122, 1998.

[BCLS87℄ T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser. Graph bise
tion algo-

rithms with good average
ase behavior. Combinatori
a, 7(2):171{191, 1987.

[BH92℄ R. Boppana and M. M. Halld�orsson. Approximating maximum independent sets

by ex
luding subgraphs. BIT, 32:180{196, 1992.

85

[BJ92℄ T. N. Bui and C. Jones. Finding good approximate vertex and edge partitions is

NP-hard. Inform. Pro
ess. Lett., 42(3):153{159, 1992.

[Bop87℄ R. B. Boppana. Eigenvalues and graph bise
tion: An average-
ase analysis. In

28th Annual Symposium on Foundations of Computer S
ien
e, pages 280{285,

O
tober 1987.

[BS95℄ A. Blum and J. Spen
er. Coloring random and semi-random k-
olorable graphs.

J. Algorithms, 19(2):204{234, September 1995.

[CD00℄ W. Cook and S. Dash. On the matrix-
ut rank of polyhedra. Manus
ript, August

2000.

[CK95℄ P. Cres
enzi and V. Kann. A
ompendium of NP optimization problems. Te
hni-

al Report SI/RR-95/02, Dipartimento di S
ienze dell'Informazione, Universit�a

di Roma La Sapienza, 1995. This list is updated
ontinuously and
an be found

at http://www.nada.kth.se/~viggo/problemlist.

[CK99℄ A. Condon and R. M. Karp. Algorithms for graph partitioning on the planted

partition model. In Randomization, approximation, and
ombinatorial optimiza-

tion, pages 221{232. Springer, Berlin, 1999.

[CLR90℄ T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introdu
tion to Algorithms.

MIT Press/M
Graw-Hill, Cambridge, Massa
husetts, 1990.

[DF89℄ M. E. Dyer and A. M. Frieze. The solution of some random NP-hard problems

in polynomial expe
ted time. J. Algorithms, 10(4):451{489, 1989.

[DF99℄ R. G. Downey and M. R. Fellows. Parameterized
omplexity. Springer-Verlag,

New York, 1999.

[DKRS99℄ I. Dinur, G. Kindler, R. Raz, and S. Safra. An improved lower bound for approx-

imating CVP. Manus
ript, 1999.

[DS99℄ I. Dinur and S. Safra. On the hardness of approximating label
over. Te
hni
al

Report TR99-015, ECCC, 1999.

[ENRS97℄ G. Even, J. Naor, S. Rao, and B. S
hieber. Fast approximate graph partitioning

algorithms. In Pro
eedings of the 8th Annual ACM-SIAM Symposium on Dis
rete

Algorithms, pages 639{648. ACM, New York, 1997.

[ENRS99℄ G. Even, J. Naor, S. Rao, and B. S
hieber. Fast approximate graph partitioning

algorithms. SIAM J. Comput., 28(6):2187{2214, 1999.

[EP00℄ M. Elkin and D. Peleg. Strong inapproximability of the basi
 k-spanner problem.

In 27th International Colloquium on Automata, Languages and Programming,

pages 636{647. Springer, 2000.

86

[FdlVL81℄ W. Fernandez de la Vega and G. S. Lueker. Bin pa
king
an be solved within

1 + " in linear time. Combinatori
a, 1(4):349{355, 1981.

[Fei97℄ U. Feige. Randomized graph produ
ts,
hromati
 numbers, and the Lov�asz #-

fun
tion. Combinatori
a, 17(1):79{90, 1997.

[Fei98℄ U. Feige. A threshold of lnn for approximating set
over. J. ACM, 45(4):634{652,

1998.

[Fei00℄ U. Feige. Approximating the bandwidth via volume respe
ting embeddings. J.

Comput. System S
i., 60(3):510{539, 2000.

[FGL

+

96℄ U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. Intera
tive proofs

and the hardness of approximating
liques. J. ACM, 43(2):268{292, Mar
h 1996.

[FK81℄ Z. F�uredi and J. Koml�os. The eigenvalues of random symmetri
 matri
es. Com-

binatori
a, 1(3):233{241, 1981.

[FK98℄ U. Feige and J. Kilian. Zero knowledge and the
hromati
 number. J. Comput.

System S
i., 57(2):187{199, 1998.

[FK00a℄ U. Feige and R. Krauthgamer. Finding and
ertifying a large hidden
lique in a

semirandom graph. Random Stru
tures Algorithms, 16(2):195{208, 2000.

[FK00b℄ U. Feige and R. Krauthgamer. A polylogarithmi
 approximation of the minimum

bise
tion. In 41st Annual IEEE Symposium on Foundations of Computer S
ien
e,

pages 105{115, November 2000.

[FK01a℄ U. Feige and J. Kilian. Heuristi
s for semirandom graph problems. A preliminary

version appeared in FOCS'98, pp. 674{683. To appear in J. Comput. System S
i.,

2001.

[FK01b℄ U. Feige and R. Krauthgamer. The probable value of the Lov�asz-S
hrijver relax-

ations for maximum independent set. Manus
ript, April 2001.

[FKN00℄ U. Feige, R. Krauthgamer, and K. Nissim. Approximating the minimum bise
tion

size. In 32nd Annual ACM Symposium on Theory of Computing, pages 530{536,

May 2000.

[FM97℄ A. Frieze and C. M
Diarmid. Algorithmi
 theory of random graphs. Random

Stru
tures Algorithms, 10(1-2):5{42, 1997.

[GJ79℄ M. R. Garey and D. S. Johnson. Computers and Intra
tability: A Guide to the

Theory of NP-
ompleteness. W.H. Freeman and Company, 1979.

[GJS76℄ M. R. Garey, D. S. Johnson, and L. Sto
kmeyer. Some simpli�ed NP-
omplete

graph problems. Theoret. Comput. S
i., 1(3):237{267, 1976.

87

[GKR

+

99℄ V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yannakakis.

Near-optimal hardness results and approximation algorithms for edge-disjoint

paths and related problems. In 31st Annual ACM Symposium on Theory of

Computing, pages 19{28. ACM, 1999.

[GLS93℄ M. Gr�ots
hel, L. Lov�asz, and A. S
hrijver. Geometri
 algorithms and
ombina-

torial optimization. Springer-Verlag, Berlin, se
ond edition, 1993.

[GSV99℄ N. Garg, H. Saran, and V. V. Vazirani. Finding separator
uts in planar graphs

within twi
e the optimal. SIAM J. Comput., 29(1):159{179, 1999.

[GT00℄ M. X. Goemans and L. Tun�
el. When does the positive semide�niteness
on-

straint help in lifting pro
edures. Manus
ript, January 2000.

[Hal93℄ M. M. Halld�orsson. A still better performan
e guarantee for approximate graph

oloring. Inform. Pro
ess. Lett., 45(1):19{23, 1993.

[H�as97℄ J. H�astad. Some optimal inapproximability results. In 29th Annual ACM Sym-

posium on Theory of Computing, pages 1{10, El Paso, Texas, 4{6 May 1997.

[H�as99℄ J. H�astad. Clique is hard to approximate within n

1��

. A
ta Math., 182(1):105{

142, 1999.

[HJ85℄ R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press,

Cambridge-New York, 1985.

[Ho
97℄ D. Ho
hbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS

Publishing Company, 1997.

[IK75℄ O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsa
k

and sum of subset problems. Journal of the ACM, 22(4):463{468, 1975.

[Jer92℄ M. Jerrum. Large
liques elude the Metropolis pro
ess. Random Stru
tures

Algorithms, 3(4):347{359, 1992.

[Joh74℄ D. S. Johnson. Approximation algorithms for
ombinatorial problems. J. Comput.

System S
i., 9:256{278, 1974.

[JP00℄ A. Juels and M. Peinado. Hiding
liques for
ryptographi
 se
urity. Des. Codes

Cryptogr., 20(3):269{280, 2000.

[JS98℄ M. Jerrum and G. B. Sorkin. The Metropolis algorithm for graph bise
tion.

Dis
rete Appl. Math., 82(1-3):155{175, 1998.

[JT96℄ D. S. Johnson and M. A. Tri
k, editors. Cliques, Coloring, and Satis�ability:

Se
ond DIMACS Implementation Challenge, 1993, volume 26 of DIMACS Series

in Dis
rete Mathemati
s and Theoreti
al Computer S
ien
e. Ameri
an Mathe-

mati
al So
iety, 1996.

88

[Juh82℄ F. Juh�asz. The asymptoti
 behaviour of Lov�asz' � fun
tion for random graphs.

Combinatori
a, 2(2):153{155, 1982.

[Kar72℄ R. M. Karp. Redu
ibility among
ombinatorial problems. In R. E. Miller and

J. W. That
her, editors, Complexity of Computer Computations (Pro
. Sympos.),

pages 85{103. Plenum Press, 1972.

[Kar76℄ R. M. Karp. The probabilisti
 analysis of some
ombinatorial sear
h algorithms.

In Algorithms and
omplexity (Pro
. Sympos.), pages 1{19. A
ademi
 Press, 1976.

[KMR97℄ D. Karger, R. Motwani, and G. D. S. Ramkumar. On approximating the longest

path in a graph. Algorithmi
a, 18(1):82{98, 1997.

[Knu94℄ D. E. Knuth. The sandwi
h theorem. Ele
tron. J. Combin., 1:Arti
le 1, approx.

48 pp. (ele
troni
), 1994.

[KPR93℄ P. Klein, S. A. Plotkin, and S. Rao. Ex
luded minors, network de
omposition, and

multi
ommodity
ow. In 25th Annual ACM Symposium on Theory of Computing,

pages 682{690, May 1993.

[KS96℄ D. R. Karger and C. Stein. A new approa
h to the minimum
ut problem. J.

ACM, 43(4):601{640, 1996.

[Ku�
95℄ L. Ku�
era. Expe
ted
omplexity of graph partitioning problems. Dis
rete Appl.

Math., 57(2-3):193{212, 1995.

[KV00℄ M. Krivelevi
h and V. H. Vu. Approximating the independen
e number and the

hromati
 number in expe
ted polynomial time. In 27th International Colloquium

on Automata, Languages and Programming, pages 13{24. Springer, 2000.

[Lev86℄ L. A. Levin. Average
ase
omplete problems. SIAM J. Comput., 15(1):285{286,

1986.

[LLKS85℄ E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D . B. Shmoys, editors.

The Traveling Salesman Problem. Wiley-Inters
ien
e series in dis
rete mathe-

mati
s, 1985.

[LLR95℄ N. Linial, E. London, and Y. Rabinovi
h. The geometry of graphs and some of

its algorithmi
 appli
ations. Combinatori
a, 15(2):215{245, 1995.

[Lov79℄ L. Lov�asz. On the Shannon
apa
ity of a graph. IEEE Trans. Inform. Theory,

25(1):1{7, 1979.

[Lov94℄ L. Lov�asz. Stable sets and polynomials. Dis
rete Math., 124(1-3):137{153, 1994.

[LR88℄ F. T. Leighton and S. Rao. An approximate max-
ow min-
ut theorem for uni-

form multi
ommodity
ow problems with appli
ations to approximation algo-

rithms. In 29th Annual Symposium on Foundations of Computer S
ien
e, pages

422{431, O
tober 1988.

89

[LR99℄ T. Leighton and S. Rao. Multi
ommodity max-
ow min-
ut theorems and their

use in designing approximation algorithms. J. ACM, 46(6):787{832, 1999.

[LS91℄ L. Lov�asz and A. S
hrijver. Cones of matri
es and set-fun
tions and 0-1 opti-

mization. SIAM J. Optim., 1(2):166{190, 1991.

[MR95℄ R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University

Press, 1995.

[PY91℄ C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and

omplexity
lasses. J. Comput. System S
i., 43(3):425{440, De
ember 1991.

[Rei94℄ G. Reinelt. The Traveling Salesman, volume 840 of Le
ture Notes in Computer

S
ien
e. Springer-Verlag, Berlin, 1994.

[SFVM98℄ C. R. Subramanian, M. F�urer, and C. E. Veni Madhavan. Algorithms for
oloring

semi-random graphs. Random Stru
tures Algorithms, 13(2):125{158, 1998.

[Shm97℄ D.B. Shmoys. Cut problems and their appli
ations to divide-and-
onquer. In

D. Ho
hbaum, editor, Approximation Algorithms for NP-Hard Problems. PWS

Publishing Company, 1997.

[ST97℄ H. D. Simon and S. Teng. How good is re
ursive bise
tion? SIAM J. S
i.

Comput., 18(5):1436{1445, 1997.

[ST99℄ T. Stephen and L. Tun�
el. On a representation of the mat
hing polytope via

semide�nite liftings. Math. Oper. Res., 24(1):1{7, 1999.

[Sub99℄ C. R. Subramanian. Minimum
oloring k-
olorable graphs in polynomial average

time. J. Algorithms, 33(1):112{123, 1999.

[SV95℄ H. Saran and V. V. Vazirani. Finding k
uts within twi
e the optimal. SIAM J.

Comput., 24(1):101{108, 1995.

[Vaz01℄ V. Vazirani. Approximation algorithms. Springer Verlag, 2001. To appear.

90

