
SIAM J. COMPUT. c© 2015 Society for Industrial and Applied Mathematics
Vol. 44, No. 4, pp. 975–995

CUTTING CORNERS CHEAPLY, OR HOW TO REMOVE STEINER
POINTS∗

LIOR KAMMA†, ROBERT KRAUTHGAMER†, AND HUY L. NGUY
˜̂
EN‡

Abstract. Our main result is that the Steiner point removal (SPR) problem can always be solved
with polylogarithmic distortion, which answers in the affirmative a question posed by Chan, Xia,
Konjevod, and Richa in 2006. Specifically, we prove that for every edge-weighted graph G = (V, E,w)
and a subset of terminals T ⊆ V , there is a graph G′ = (T, E′, w′) that is isomorphic to a minor of
G such that for every two terminals u, v ∈ T , the shortest-path distances between them in G and in
G′ satisfy dG,w(u, v) ≤ dG′,w′ (u, v) ≤ O(log5 |T |) · dG,w(u, v). Our existence proof actually gives a
randomized polynomial-time algorithm. Our proof features a new variant of metric decomposition.
It is well known that every finite metric space (X, d) admits a β-separating decomposition for β =
O(log|X|), which means that for every Δ > 0 there is a randomized partitioning of X into clusters of
diameter at most Δ, satisfying the following separation property: for every x, y ∈ X, the probability
that they lie in different clusters of the partition is at most β d(x, y)/Δ. We introduce an additional
requirement in the form of a tail bound: for every shortest-path P of length d(P) ≤ Δ/β, the number
of clusters of the partition that meet the path P , denoted by ZP , satisfies Pr[ZP > t] ≤ 2e−Ω(t) for
all t > 0.

Key words. Steiner point removal, approximate distances, metric spaces

AMS subject classifications. 05C12, 05C83, 05C85, 52C99, 05C85, 68W20

DOI. 10.1137/140951382

1. Introduction. Graph compression describes the transformation of a given
graph G into a small graph G′ that preserves certain features (quantities) of G, such
as distances or cut values. Notable examples for this genre include graph spanners,
distance oracles, cut sparsifiers, and spectral sparsifiers; see, e.g., [PS89, TZ05, BK96,
BSS09] and references therein. The algorithmic utility of such graph transformations
is clear—once the “compressed” graph G′ is computed as a preprocessing step, further
processing can be performed on G′ instead of on G, using fewer resources, like runtime
and memory, or achieving better accuracy (when the solution is approximate). See
section 1.3 for more details.

Within this context, we study vertex sparsification, where G has a designated
subset of vertices T , and the goal is to reduce the number of vertices in the graph
while maintaining certain properties of T . A prime example for this genre is vertex
sparsifiers that preserve terminal versions of (multicommodity) cut and flow problems,
a successful direction that was initiated by Moitra [Moi09] and extended in several
followups [LM10, CLLM10, MM10, EGK+10, Chu12]. Our focus here is different,
on preserving distances, a direction that was seeded by Gupta [Gup01] more than a
decade ago.

∗Received by the editors January 3, 2014; accepted for publication (in revised form) June 18, 2015;
published electronically August 4, 2015. A preliminary version of this paper appeared in Proceedings
of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, 2014.

http://www.siam.org/journals/sicomp/44-4/95138.html
†The Weizmann Institute, Rehovot 76100, Israel (lior.kamma@weizmann.ac.il, robert.

krauthgamer@weizmann.ac.il). The work of these authors was supported in part by the Israel Science
Foundation (grant 97/13), the US-Israel BSF (grant 2010418), and the Citi Foundation. Part of this
work was done while the second author was visiting Microsoft Research New England.

‡Princeton University, Princeton, NJ 08540 (hlnguyen@princeton.edu). This author’s work was
supported in part by NSF CCF 0832797, and a Gordon Wu Fellowship. Part of this work was done
while this author was interning at Microsoft Research New England.

975

http://www.siam.org/journals/sicomp/44-4/95138.html
mailto:lior.kamma@weizmann.ac.il
mailto:robert.krauthgamer@weizmann.ac.il
mailto:robert.krauthgamer@weizmann.ac.il
mailto:hlnguyen@princeton.edu

976 LIOR KAMMA, ROBERT KRAUTHGAMER, AND HUY L. NGUY
˜̂
EN

Throughout the paper, all graphs are undirected and all edge weights are positive.

Steiner point removal (SPR). Let G = (V,E,w) be an edge-weighted graph, and
let T = {t1, . . . , tk} ⊆ V be a designated set of k terminals. Here and throughout,
dG,w(·, ·) denotes the shortest-path metric between vertices of G according to the
weights w. The SPR problem asks one to construct on the terminals a new graph
G′ = (T,E′, w′) such that (i) distances between the terminals are distorted at most
by factor α ≥ 1, formally,

∀u, v ∈ T, dG,w(u, v) ≤ dG′,w′(u, v) ≤ α · dG,w(u, v);

and (ii) the graph G′ is (isomorphic to) a minor of G. This formulation of the SPR
problem was proposed by Chan et al. [CXKR06, section 5], who posed the problem
of bounding the distortion α (existentially and/or using an efficient algorithm). Our
main result is to answer their open question.

Requirement (ii) above expresses structural similarity between G and G′; for
instance, if G is planar, then so is G′. The SPR formulation above actually came
about as a generalization to a result of Gupta [Gup01], which asserts that if G is a
tree, then there exists a tree G′, which preserves terminal distances with distortion
α = 8. Later Chan et al. [CXKR06] observed that this same G′ is actually a minor of
the original tree G and proved the factor of 8 to be tight. The upper bound for trees
was later extended by Basu and Gupta [BG08], who achieved distortion α = O(1) for
the larger class of outerplanar graphs.

How to construct minors. We now describe a general methodology that is nat-
ural for the SPR problem. The first step constructs a minor G′ with vertex set T ,
but without any edge weights, and is prescribed by Definition 1.2. The second step
determines edge weights w′ such that dG′,w′ dominates dG,w on the terminals T and
is given in Definition 1.3. These steps are illustrated in Figure 1. Our definitions
are actually more general (anticipating the technical sections) and consider G′, whose
vertex set is sandwiched between T and V .

Definition 1.1. A partial partition of a set V is a collection V1, . . . , Vk of
pairwise disjoint subsets of V , referred to as clusters.

2

3

t1

t2

t3

t1

t2

t3

2

2

V1

V2

V3

G G′

Fig. 1. The graph G, a 9-cycle with unit edge weights, is depicted on the left with three terminals
and disjoint subsets V1, V2, V3. Its terminal-centered minor G′ and the standard-restriction edge
weights are shown on the right.

Definition 1.2 (terminal-centered minor). Let G = (V,E) be a graph with k
terminals T = {t1, . . . , tk}, and let V1, . . . , Vk be a partial partition of V , such that
each induced subgraph G[Vj] is connected and contains tj. The graph G′ = (V ′, E′)

CUTTING CORNERS, OR HOW TO REMOVE STEINER POINTS 977

obtained by contracting each G[Vj] into a single vertex that is identified with tj is
called the terminal-centered minor of G induced by V1, . . . , Vk.

By identifying the “contracted supernode” Vj with tj , we may think of the vertex
set V ′ as containing T and (possibly) some vertices from V \T , which implies V ′ ⊂ V .
A terminal-centered minor G′ of G can also be described by a mapping f : V →
T ∪ {⊥} such that f |T ≡ id and f−1({tj}) is connected in G for all j ∈ [k]. Indeed,
simply let Vj = f−1({tj}) for all j ∈ [k], and thus V \ (∪jVj) = f−1({⊥}).

Definition 1.3 (standard restriction). Let G = (V,E,w) be an edge-weighted
graph with terminal set T , and let G′ = (V ′, E′) be a terminal-centered minor of G.
(Recall that we view V ′ ⊂ V .) The standard restriction of w to G′ is the edge weight
w′ given by the respective distances in G, formally,

∀(x, y) ∈ E′, w′
xy := dG,w(x, y).

This edge weight w′ is optimal in the sense that dG′,w′ dominates dG,w (where it
is defined, i.e., on V ′), and the weight of each edge (x, y) ∈ E′ is minimal under this
domination condition.

1.1. Main result. Our main result below gives an efficient algorithm achieving
polylog(k) distortion for the SPR problem. Its proof spans sections 3 and 4, though
the former contains the heart of the matter.

Theorem 1.4. Let G = (V,E,w) be an edge-weighted graph with k terminals
T ⊆ V . Then there exists a terminal-centered minor G′ = (T,E′, w′) of G that
attains distance distortion O(log5 k), i.e.,

∀u, v ∈ T, 1 ≤ dG′,w′(u, v)

dG,w(u, v)
≤ O(log5 k).

Moreover, w′ is the standard restriction of w, and G′ is computable in randomized
polynomial time.

This theorem answers a question of Chan et al. [CXKR06]. The only distortion
lower bound known for general graphs is a factor of 8 (which actually holds for trees)
[CXKR06], and thus it remains a challenging open question whether O(1) distortion
can be achieved in general graphs.

Our proof of Theorem 1.4 begins similarly to the proof of Englert et al. [EGK+10],
by iterating over the “distance scales” 2i, going from the smallest distance dG,w(u, v)
among all terminals u, v ∈ T towards the largest such distance. Each iteration i first
employs a “stochastic decomposition,” which is basically a randomized procedure that
finds clusters of V whose diameter is at most 2i. Then, some clusters are contracted
to a nearby terminal, which must be “adjacent” to the cluster; this way, the current
graph is a minor of the previous iteration’s graph and thus also of the initial G. After
iteration i is executed, we roughly expect “neighborhoods” of radius proportional to
2i around the terminals to be contracted. As i increases, these neighborhoods get
larger until eventually all the vertices are contracted into terminals, at which point
the edge weights are set according to the standard restriction. To eventually get a
minor, it is imperative that every contracted region be connected. To guarantee this,
we perform the iteration i decomposition in the graph resulting from previous itera-
tions’ contractions (rather than the initial G), which introduces further dependencies
between the iterations.

The main challenge is to control the distortion, and this is where we crucially
deviate from [EGK+10] (and differ from all previous work). In their randomized con-
struction of a minor G′, for every two terminals u, v ∈ T it is shown that G′ contains

978 LIOR KAMMA, ROBERT KRAUTHGAMER, AND HUY L. NGUY
˜̂
EN

a uv-path of expected length at most O(log k)dG(u, v). Consequently, they design a
distribution D over minors G′ such that the stretch dG′(u, v)/dG(u, v) between any
u, v ∈ T has expectation at most O(log k). Note, however, that it is possible that no
G′ ∈ supp(D) achieves a low stretch simultaneously for all u, v ∈ T . In contrast, in
our randomized construction of G′, the stretch between u, v ∈ T is polylogarithmic
with high probability, say at least 1−1/k3. Applying a simple union bound over the

(
k
2

)
terminal pairs, we can then obtain a single graph G′ achieving a polylogarithmic dis-
tortion. Technically, these bounds follow by fixing in G a shortest-path P between two
terminals u, v ∈ T and then tracking the execution of the randomized algorithm to an-
alyze how the path P evolves into a uv-path P ′ in G′. In [EGK+10], the length of P ′ is
analyzed in expectation, which by linearity of expectation follows from analyzing the
case where P consists of a single edge; in contrast, we provide for P a high-probability
bound, which inevitably must consider (anti)correlations along the path.

The next section features a new tool that we developed in our quest for high-
probability bounds and which may be of independent interest. For the sake of clarity,
we provide below a vanilla version that excludes technical complications such as ter-
minals, strong diameter, and consistency between scales. The proof of Theorem 1.4
actually does require these complications and thus cannot use the generic form de-
scribed below.

1.2. A key technique: Metric decomposition with concentration.
Metric decomposition. Let (X, d) be a metric space, and let Π be a partition of

X . Every S ∈ Π is called a cluster, and for every x ∈ X we use Π(x) to denote the
unique cluster S ∈ Π such that x ∈ S. In general, a stochastic decomposition of the
metric (X, d) is a distribution μ over partitions of X , although we usually impose
additional requirements. The following definition is perhaps the most basic version,
often called a separating decomposition or a Lipschitz decomposition.

Definition 1.5. A metric space (X, d) is called β-decomposable if for every
Δ > 0 there is a probability distribution μ over partitions of X satisfying the following
requirements:

(a) Diameter bound: for all Π ∈ supp(μ) and all S ∈ Π, diam(S) ≤ Δ.

(b) Separation probability: for all x, y ∈ X, PrΠ∼μ[Π(x) �= Π(y)] ≤ βd(x,y)
Δ .

We note that the diameter bound holds with respect to distances in X ; in the
case of a shortest-path metric in a graph, this is known as a weak-diameter bound.

Bartal [Bar96] proved that every n-point metric is O(log n)-decomposable and
that this bound is tight. We remark that by now there is a rich literature on metric
decompositions, and different variants of this notion may involve terminals or (in
a graphical context) connectivity requirements inside each cluster; see, e.g., [LS93,
Bar96, CKR01, FRT04, Bar04, LN05, GNR10, EGK+10, MN07, AGMW10, KR11].

Degree of separation. Let P = (x0, x1, . . . , x�) be a shortest path, i.e., a sequence
of points inX such that

∑
i∈[�] d(xi−1, xi) = d(x0, x�).We denote its length by d(P) :=

d(x0, x�) and say that P meets a cluster S ⊆ X if S ∩ P �= ∅. Given a partition Π
of X , define the degree of separation ZP (Π) as the number of different clusters in the
partition Π that meet P . Formally,

(1.1) ZP (Π) :=
∑
S∈Π

1{P meets S}.

Throughout, we omit the partition Π when it is clear from the context. When
we consider a random partition Π ∼ μ, the corresponding ZP = ZP (Π) is actually

CUTTING CORNERS, OR HOW TO REMOVE STEINER POINTS 979

a random variable. If this distribution μ satisfies requirement (b) of Definition 1.5,
then

E
Π∼μ

[ZP] ≤ 1 +
∑
i∈[�]

Pr
Π∼μ

[Π(xi−1) �= Π(xi)] ≤ 1 +
∑
i∈[�]

βd(xi−1, xi)

Δ
= 1 +

βd(P)

Δ
.

(1.2)

But what about the concentration of ZP ? More precisely, can every finite metric be
decomposed such that every shortest path P admits a tail bound on its degree of
separation ZP ?

A tail bound. We answer this last question in the affirmative using the following
theorem. We prove it, or actually a stronger version that does involve terminals, in
section 2.

Theorem 1.6. For every n-point metric space (X, d) and every Δ > 0 there is a
probability distribution μ over partitions of X that satisfies, for β = O(log n), require-
ments (a)–(b) of Definition 1.5 and furthermore meets the following requirement:

(c) Degree of separation: For every shortest path P of length d(P) ≤ Δ
β ,

(1.3) ∀t ≥ 1, Pr
Π∼μ

[ZP > t] ≤ 2e−Ω(t).

The tail bound (1.3) can be compared to a naive estimate that holds for every
β-decomposition μ: using (1.2) we have E[ZP] ≤ 2, and then by Markov’s inequality
Pr[ZP ≥ t] ≤ 2/t.

We remark that for general metric spaces, it is known that β = O(log n) is tight
[Bar96]. However, for requirements (a)–(b) of Definition 1.5 several decompositions
are known to have better values of β for special families of metric spaces (e.g., metrics
induced by planar graphs [KPR93]). We leave it open whether for these families the
bounds of Theorem 1.6 can be improved, say to β = O(1).

1.3. Related work.
Applications. Vertex sparsification, and the “graph compression” approach in

general, is obviously beneficial when G′ can be computed from G very efficiently, say
in linear time, and then G′ may be computed on the fly rather than in advance. But
compression may also be valuable in scenarios that require the storage of many graphs,
like archiving and backups, or rely on low-throughput communication, like distributed
or remote processing. For instance, the succinct nature of G′ may be indispensable
for computations performed frequently, say on a smartphone, with preprocessing done
in advance on a powerful machine.

We do not have new theoretical applications that leverage our SPR result, al-
though we anticipate these will be found later. Either way, we believe this line of
work will prove technically productive and may influence, e.g., work on metric em-
beddings and on approximate min-cut/max-flow theorems.

Probabilistic SPR. Here, the objective is not to find a single graphG′ = (T,E′, w′),
but rather a distribution D over graphs G′ = (T,E′, w′), such that every graph
G′ ∈ supp(D) is isomorphic to a minor of G and its distances dG′,w′ dominate dG,w

(on T × T), and such that the distortion inequalities hold in expectation, that is,

∀u, v ∈ T, E
G′∼D

[dG′,w′(u, v)] ≤ α · dG,w(u, v).

This problem, first posed by Chan et al. in [CXKR06], was answered by Englert et al.
in [EGK+10] with α = O(log |T |).

980 LIOR KAMMA, ROBERT KRAUTHGAMER, AND HUY L. NGUY
˜̂
EN

Distance preserving minors. This problem is a relaxation of SPR in which the
minor G′ may contain a few nonterminals while preserving terminal distances ex-
actly. Formally, the objective is to find a small graph G′ = (V ′, E′, w′) such that (i)
G′ is isomorphic to a minor of G; (ii) T ⊆ V ′ ⊆ V ; and (iii) for every u, v ∈ T ,
dG′,w′(u, v) = dG,w(u, v). This problem was originally defined by Krauthgamer,

Nguy˜̂en, and Zondiner [KNZ14], who showed an upper bound |V ′| ≤ O(|T |4) for gen-
eral graphs and a lower bound of Ω(|T |2) that holds even for planar
graphs.

2. Metric decomposition with concentration. In this section we prove a
slightly stronger result than that of Theorem 1.6, stated as Theorem 2.2 below. Let
(X, d) be a metric space, and let {t1, . . . , tk} ⊆ X be a designated set of terminals.
Recall that a partial partition Π of X is a collection of pairwise disjoint subsets of
X . For a shortest path P in X , define ZP = ZP (Π) using (1.1), which is similar to
before, except that now Π is a partial partition. We first extend Definition 1.5.

Definition 2.1. We say that X is β-terminal-decomposable with concentration
if for every Δ > 0 there is a probability distribution μ over partial partitions of X
satisfying the following properties:

• Diameter bound: For all Π ∈ supp(μ) and all S ∈ Π, diam(S) ≤ Δ.
• Separation probability: For every x, y ∈ X,

Pr
Π∼μ

[∃S ∈ Π such that |S ∩ {x, y}| = 1] ≤ βd(x,y)
Δ .

• Terminal cover: For all Π ∈ supp(μ), we have T ⊆
⋃

S∈Π S.
• Degree of separation: For every shortest path P and every t ≥ 1,

Pr
Π∼μ

[
ZP > tmax{βd(P)

Δ , 1}
]

≤ O
(
min

{
kβ,

⌈
βd(P)

Δ

⌉})
e−Ω(t).

Theorem 2.2. Every finite metric space with k terminals is (4 log k)-terminal-
decomposable with concentration.

Define the truncated exponential with parameters λ,Δ > 0, denoted by Texp(λ,Δ),
to be distribution given by the probability density function gλ,Δ(x) =

1
λ(1−e−Δ/λ)

e−x/λ

for all x ∈ [0,Δ).
We are now ready to prove Theorem 2.2. For simplicity of notation, we prove the

result with cluster diameter at most 2Δ instead of Δ. Fix a desired Δ > 0, and set
for the rest of the proof λ := Δ

log k and g := gλ,Δ. For x ∈ X and r > 0, we use the

standard notation of a closed ball B(x, r) := {y ∈ X : d(x, y) ≤ r}. We define the
distribution μ via the following procedure that samples a partial partition Π of X .

1: for j = 1, 2, . . . , k do
2: choose Rj ∼ Texp(λ,Δ) independently at random, and let Bj = B(tj , Rj).

3: set Sj = Bj \
⋃j−1

m=1 Bm.
4: return Π = {S1, . . . , Sk} \ {∅}.

The diameter bound and terminal partition properties hold by construction. The
proof of the separation event property is identical to the one in [Bar96, section 3].
The following two lemmas prove the degree of separation property, which will conclude
the proof of Theorem 2.2. Fix a shortest path P in X , and let us assume that t/2

CUTTING CORNERS, OR HOW TO REMOVE STEINER POINTS 981

is a positive integer; a general t ≥ 1 can be reduced to this case up to a loss in the
unspecified constant.

Lemma 2.3. If d(P) < λ, then Pr[ZP > t] ≤ 2e−Ω(t).
Proof. Split the k terminals into Jfar := {j ∈ [k] : d(tj , P) > Δ − 2λ} and

Jnear := [k] \ Jfar. Define random variables Zfar := #{j ∈ Jfar : Bj ∩ P �= ∅} and
Znear := #{j ∈ Jnear : Sj ∩ P �= ∅}. Then ZP ≤ Zfar + Znear and

Pr[ZP > t] ≤ Pr[Zfar + Znear > t] ≤ Pr[Zfar > t/2] + Pr[Znear > t/2].

For every j ∈ Jfar,

Pr[Bj ∩ P �= ∅] ≤ Pr[Rj ≥ Δ− 2λ] =

∫ Δ

Δ−2λ

g(x)dx =
k

k − 1
(e−

Δ−2λ
λ − e−

Δ
λ) ≤ 8

k
,

and therefore E[Zfar] ≤ 8. Since Zfar is the sum of independent indicators, by the
Chernoff bound, Pr[Zfar > t/2] ≤ 2−t/2 for all t ≥ 32e. For smaller t, observe that
Pr[Zfar = 0] ≥ (1 − 8/k)k ≥ Ω(1), and thus for every t ≥ 1 we have Pr[Zfar > t/2] ≤
e−Ω(t).

Next, consider the balls among {Bj : j ∈ Jnear} that have nonempty intersection
with P . Let m denote the number of such balls, and let j1 < · · · < jm denote their
indices. In other words, we condition henceforth on an event E ∈ {0, 1}Jnear that
determines whether Rj ≥ d(tj , P) occurs or not for each j ∈ Jnear. The indices of
coordinates of E that are equal to 1 are exactly j1, . . . , jm. For a ∈ [m], let Ya be the
indicator variable for the event that the ball Bja does not contain P . Note that since
{Rj}j∈[k] are independent, then so are {Ya}a∈[m]. Then

Pr
[
Ya = 1 | E

]
= Pr

[
P �⊆ Bja | P ∩Bja �= ∅

]

≤ Pr
[
Rj < d(tja , P) + λ | Rj ≥ d(tja , P)

]
≤ 1− e−1

1− e−2
≤ 3

4
.

Having conditioned on E , the event {Znear > t/2} implies thatm > t/2 and, moreover,
Ya = 1 for all a ∈ [t/2], and since {Ya}a∈[m] are independent, Pr[Znear > t/2 | E] ≤
(3/4)t/2 ≤ e−Ct for an appropriate constant C > 0. The last inequality holds for
all such events E (with the same constant C > 0) and thus also without any such
conditioning.

Altogether, we conclude that Pr[ZP > t] ≤ 2e−Ω(t).
Lemma 2.4. If d(P) ≥ λ, then

Pr[ZP > td(P)/λ] ≤ O

(
min

{
k log k,

⌈
d(P)

λ

⌉})
e−Ω(t).

Proof. Treating P as a continuous path, subdivide it into r := �d(P)/λ� segments,
say segments of equal length that are (except for the last one) half open and half closed.
The induced subpaths P1, . . . , Pr of P are disjoint (as subsets of X) and have length
at most λ each, though some of subpaths may contain only one or even zero points of
X . Writing ZP =

∑
i∈[r] ZPi , we can apply a union bound and then Lemma 2.3 on

each Pi to obtain

Pr[ZP > td(P)/λ] ≤ Pr
[
∃i ∈ [r] such that ZPi > t/2

]
≤ O

(⌈
d(P)

λ

⌉)
· e−Ω(t).

982 LIOR KAMMA, ROBERT KRAUTHGAMER, AND HUY L. NGUY
˜̂
EN

Furthermore, for every j ∈ [k], let Aj := {i ∈ [r] : Pi ∩ B(tj ,Δ) �= ∅}, and since P is
a shortest path, let |Aj | ≤ 4Δ/λ = 4 log k. Observe that ZPi = 0 (with certainty) for
all i /∈ ∪jAj , and hence

Pr[ZP > td(P)/λ] ≤ Pr
[
∃i ∈ ∪j∈[k]Aj such that ZPi > t/2

]
≤ 4k log ke−Ω(t) .

By substituting β = 4 log k and λ = Δ/ log k, it is easy to verify that Lemmas 2.3
and 2.4 complete the proof of Theorem 2.2.

3. Terminal-centered minors: Main construction. This section proves The-

orem 1.4 when D :=
maxu,v∈T dG(u,v)
minu,v∈T dG(u,v) satisfies the following assumption (the extension

to the general case is proved in section 4).

Assumption 3.1. D ≤ 2k
3

.

By scaling all edge weights, we may assume that minu,v∈T dG(u, v) = 1.

Notation 3.2. Let V1, . . . , Vk ⊆ V . For S ⊆ [k], denote VS :=
⋃

j∈S Vj . In
addition, denote V⊥ := V \ V[k] and V⊥+j := V⊥ ∪ Vj for any j ∈ [k].

We now present a randomized algorithm that, given a graph G = (V,E,w) and
terminals T ⊂ V , constructs a terminal-centered minor G′ as stated in Theorem 1.4.
The algorithm maintains a partial partition {V1, V2, . . . , Vk} of V , starting with Vj =
{tj} for all j ∈ [k]. The sets grow monotonically during the execution of the algorithm.
We may also think of the algorithm as if it maintains a mapping f : V → T ∪ {⊥},
starting with f(tj) = tj for all j ∈ [k] and gradually assigning a value in T to additional
vertices, which correspond to the set V[k]. Thus, we will also refer to the vertices in
V[k] as assigned and to vertices in V⊥ as unassigned. The heart of the algorithm is
two nested loops (lines 4–9). During every iteration of the outer loop, the inner loop
performs k iterations, one for every terminal tj . Every inner-loop iteration picks a
random radius (from an exponential distribution) and “grows” Vj to that radius (but
without overlapping any other set), thus removing nodes from V⊥ and assigning them
to Vj . Every outer-loop iteration increases the expectation of the radius distribution.
Eventually, all nodes are assigned; i.e., {V1, V2, . . . , Vk} is a partition of V . Note that
the algorithm does not actually contract the clusters at the end of each iteration of
the outer loop. However, subsequent iterations grow each Vj only in the subgraph of
G induced by the respective V⊥+j , which is effectively the same as contracting clusters
to their respective terminals at the end of each outer-loop iteration.

Every cluster in the partial partition maintained by the algorithm needs to induce
a connected subgraph of G, and thus we cannot directly use the result of section 2
but rather apply more subtle arguments which use the same idea. In particular, the
algorithm has to grow the clusters so that they do not overlap. We therefore require
the following definition.

Definition 3.3. For U ⊆ V , let G[U] denote the subgraph of G induced by U ,
with induced edge lengths (i.e., w|E(G[U])). For a subgraph H of G with induced edge
lengths, a vertex v ∈ V (H), and r > 0, denote BH(v, r) := {u ∈ V (H) : dH(u,
v) ≤ r}, where dH is the shortest-path metric in H induced by w.

CUTTING CORNERS, OR HOW TO REMOVE STEINER POINTS 983

Input: G = (V,E,w), T = {t1, . . . , tk} ⊆ V .
Output: A partition {V1, V2, . . . , Vk} of V .
1: set b← 1 + 1/(45 logk).
2: for every j ∈ [k] set Vj ← {tj}, rj = 0.
3: set i← 0. // i is the iteration number of the outer loop.
4: while V[k] �= V do
5: i← i+ 1.
6: for all j ∈ [k] do
7: choose independently at random Ri

j ∼ exp(bi).

8: rj ← rj +Ri
j .

9: Vj ← Vj ∪BG[V⊥+j](tj , rj). // This is the same as Vj ← BG[V⊥+j](tj , rj).
10: return {V1, V2, . . . , Vk}.

Algorithm 1: Partitioning V .

Claim 3.4. The following properties hold throughout the execution of the algo-
rithm:

1. For all j ∈ [k], Vj is connected in G, and tj ∈ Vj.
2. For every j1, j2 ∈ [k], if j1 �= j2, then Vj1 ∩ Vj2 = ∅.
3. For every outer loop iteration i and every j ∈ [k], if V ′

j denotes the set Vj at
the beginning of the ith iteration (of the outer loop) and V ′′

j denotes the set
Vj at the end of that iteration, then V ′

j ⊆ V ′′
j .

In what follows, we analyze the stretch in distance between a fixed pair of termi-
nals. We show that with probability at least 1 − O(k−5) the distance between these
terminals in G′ is at most O(log5 k) times their distance in G. By a union bound
over all

(
k
2

)
pairs of terminals, we deduce Theorem 1.4. Let s, t ∈ T , and let P ∗

be a shortest st-path in G. Due to the triangle inequality, we may focus on pairs
which satisfy V (P ∗) ∩ T = {s, t}, where V (P ∗) is the node set of P ∗. We denote
� := w(P ∗) = dG,w(s, t).

3.1. High-level analysis. Following an execution of the algorithm, we maintain
a (dynamic) path P between s and t. In a sense, in every step of the algorithm, P
simulates an st-path in the terminal-centered minor induced by V1, V2, . . . , Vk. At the
beginning of the execution, set P to be simply P ∗. During the course of the execution,
update P to satisfy two invariants. At every step of the algorithm, the weight of P
is an upper bound on the distance between s and t in the terminal-centered minor
induced by V1, . . . , Vk (in that step). In addition, if I is a subpath of P whose inner
vertices are all unassigned, then I is a subpath of P ∗. Throughout the analysis, we
think of P as directed from s to t, thus inducing a linear ordering of the vertices in P .

Definition 3.5. A subpath of P will be called active if it is a maximal subpath
whose inner vertices are unassigned.

Note that a single edge whose endpoints are both assigned will not be considered
active.

We now describe how P is updated during the execution of the algorithm. Con-
sider line 9 of the algorithm for the ith iteration of the outer loop and some j ∈ [k].
We say that the ball B = BG[V⊥+j](tj , rj) punctures an active subpath A of P if there
is an inner node of A that belongs to the ball. If B does not puncture any active
subpath of P , we do not change P . Otherwise, denote by u, v the first and last unas-
signed nodes (possibly not in the same active subpath) in V (P) ∩ B, respectively.
Then we do the following.

984 LIOR KAMMA, ROBERT KRAUTHGAMER, AND HUY L. NGUY
˜̂
EN

We replace the entire subpath of P between u and v with a concatenation of a
shortest utj-path and a shortest tjv-path that lie in B; this is possible since G[B] is
connected, and u, tj , v ∈ B. This addition to P will be called a detour from u to v
through tj . The process is illustrated in Figures 2(a)–2(b). Beginning with P ∗, the
figure describes the update after the first four balls. Note that the detour might not
be a simple path. It is also worth noting that here u and v may belong to different
active subpaths of P . For example, in Figure 2(c), the new ball punctures two active
subpaths, and therefore in Figure 2(d) the detour goes from a node in one active
subpath to a node in another active subpath. Note that in this case, we remove from
P portions which are not active.

It is worth noting that this update process implies that at any given time, there
is at most one detour that goes through tj . If, for some iteration i′ < i of the outer
loop and for some u′, v′ ∈ V (P), we add a detour from u′ to v′ through tj in iteration
i′, we keep only one detour through tj , from the first node between u, u′ and to the
last between v, v′. For example, in Figure 2(e), the ball centered in t3 punctures an
active subpath. Only one detour is kept in Figure 2(f).

The total weight of all detours during the execution will be called the additional
weight to P (ignoring portions of P that are deleted from P). Denote the set of active
subpaths of P at the beginning of the ith iteration of the outer loop by Ai.

Let V fin
1 , . . . , V fin

k be the partition returned by the algorithm, let G′ be the
terminal-centered minor induced by that partition, and let w′ be the standard re-
striction of w to G′. Denote by P fin the path obtained at the end of the execution.

Claim 3.6. At every step of the algorithm the following hold:

1. The weight of P is an upper bound on the distance between s and t in
the terminal-centered minor induced by V1, . . . , Vk. Moreover, once Ai = ∅
(namely, P has no active subpaths), the weight of P is an upper bound
on the distance between s and t in the terminal-centered minor induced by
V fin
1 , . . . , V fin

k (actually, from this point on, P = Pfin).
2. If A is a subpath of P whose inner points are all in V⊥, then A is a subpath

of P ∗.
3. If A1, A2 are two different active subpaths of P , they are internally disjoint.
4. |Ai| ≤ k for all i.

Proof. The proof follows easily by induction on i, j.

Corollary 3.7. dG′,w′(s, t) ≤ w(Pfin).

Let A ∈ Ai. During the execution of the inner loop, either A is removed from
P entirely, or some subpaths of A remain active (perhaps A remains active entirely).
Therefore, for every A′ ∈ Ai+1, either A

′ is a nontrivial subpath of A (by nontrivial we
mean |V (A′)| ≥ 3), or A′ and A are internally disjoint. Therefore there is a laminar
structure on

⋃
iAi.

We describe this structure using a tree T , whose node set is {〈i, A〉| A ∈ Ai}.
The root of T is 〈1, P ∗〉, and for every i and every A ∈ Ai the children of 〈i, A〉,
if any, are all pairs 〈i + 1, A′〉, where A′ ∈ Ai+1 is a subpath of A. Whenever we
update P , we log the weight of the detour by charging it to one of the nodes of T
as follows. Consider a detour from u to v in the ith iteration of the outer loop for
some i. Before adding this detour, u and v are unassigned nodes in P . Because u
is unassigned, u is an inner vertex of some active subpath. In either case, there is
exactly one active subpath containing u. The weight of the detour is charged to the
unique active subpath A ∈ Ai such that u ∈ A. For every i and A ∈ Ai, let wi,A

CUTTING CORNERS, OR HOW TO REMOVE STEINER POINTS 985

s = t1
t = t2

t4

t3

t5

P ∗

(a) We begin with P = P ∗

t = t2

t4

t3

t5

B(t1, r1)

B(t3, r3)

B(t4, r4)

B(t2, r2)

s = t1

(b) Every inner-loop iteration grows
a terminal-centered ball. Here balls
around t1, t2, t3, t4 are grown with
detours added. Since P ∗ is a short-
est path, the detours for t1 and t2
are, in fact, subpaths of P ∗.

t = t2

t4

t3

V1

V3

V4

V2

s = t1

B(t5, r5)

t5

(c) Endpoints of a detour can be-
long to different active subpaths.
Here a ball around t5 is grown.

t = t2

t4

t3

t5

V1

V3

V4

V2

s = t1

B(t5, r5)

(d) Update detour for V5.

t = t2

t4

t3

t5

V1

B(t3, r
′
3)

V4

V2

s = t1

V5

(e) The ball around t3 is further
grown.

t = t2

t4

t3

t5

V1

B(t3, r3)

V4

V2

s = t1

V5

(f) Update detour for V3.

Fig. 2. Updating P .

be the total weight charged to 〈i, A〉. If the node is never charged, the weight of the
node is set to 0. Therefore,

(3.1) w(P fin) ≤ w(P ∗) +
∑

〈i,A〉∈T
wi,A.

Equation (3.1) together with Corollary 3.7 implies that if we show that with high
probability the total weight charged to the tree is at most O(log5 k) · �, we can deduce
Theorem 1.4. For the rest of this section, we therefore prove the following lemma.

Lemma 3.8. With probability at least 1−O(k−5), the total weight charged to the
tree is at most O(log5 k)�.

Consider an iteration i ≥ 1 and an active subpath A ∈ Ai. Informally, since
the distortion is measured relatively to � = w(P ∗), if the expected radius bi is small
compared to w(A), then with high probability a detour will not add “much” to the

986 LIOR KAMMA, ROBERT KRAUTHGAMER, AND HUY L. NGUY
˜̂
EN

distortion, and thus we are more concerned with the opposite case, where w(A) is
small relative to the current expected radius.

Formally, let p = 1/100. An active subpath A ∈ Ai will be called short if w(A) ≤
pbi. Otherwise, A will be called long. Notice that P ∗ ∈ A1 is long, and for i ≥
logb(�/p), every A ∈ Ai is short.

Definition 3.9. Let i > 1, and let A ∈ Ai be a short subpath. Denote by Ti,A
the subtree of T rooted in 〈i, A〉. Denote the parent of 〈i, A〉 in T by 〈i − 1, A′〉 for
A′ ∈ Ai−1. If A′ is long, Ti,A will be called a short subtree of T .

Once an active subpath becomes short (during the course of the iterations), we
want all its vertices to be assigned quickly and by a few detours. For this reason, the
height and weight of short subtrees will play an important role in the analysis of the
height and weight of T .

To bound the total weight of the tree T , we analyze separately the weights charged
to long active subpaths at each level and the weights of short subtrees rooted at each
level. More formally, for every i ≤ logb(�/p), denote by li the total weight charged to
nodes of the form 〈i, A〉, where A ∈ Ai is a long active subpath. Denote by si the
total weight charged to short subtrees rooted at the level i of T . For i ≥ logb(�/p),
every A ∈ Ai is short, and thus 〈i, A〉 belongs to some short subtree rooted at level
at most logb(�/p). Therefore,

(3.2)
∑

〈i,A〉∈T
wi,A =

logb(�/p)∑
i=1

(li + si) .

Similarly to the proof of Theorem 2.2, we will first analyze the behavior of short
subpaths of active paths and then use it to bound si. To bound the weight of long
active paths, we will divide them into short segments, similarly to the proof of Lemma
2.4, and then sum everything up to bound li.

3.1.1. The effect of a single ball on a short segment. Let i0 ≥ 1, and
let I be a subpath of P such that all the inner nodes of I are unassigned in the
beginning of the i0th iteration of the outer loop, and w(I) ≤ pbi0 . Note that I is
not necessarily maximal with that property and therefore is not necessarily an active
subpath. However, I is a subpath of some (unique) active subpath A ∈ Ai0 . We first
consider the effect of a single ball over I in some iteration i ≥ i0.

Fix some i ≥ i0 and some j ∈ [k]. Let X denote the number of active subpaths
A′ such that V (A′) ∩ V (I) �= ∅ at the beginning of the jth iteration of the inner
loop (during the ith iteration of the outer loop). Note that every such subpath A′

is necessarily a subpath of A, due to the laminar structure of active subpaths. Since
every such active subpath will add at least one detour before it is completely assigned,
we want to show that X is rapidly decreasing. Let X ′ denote the number of active
subpaths A′ such that V (A′) ∩ V (I) �= ∅ at the end of the jth iteration. Denote by
B the ball considered in this iteration, namely B := BG[V⊥+j](tj , rj).

Proposition 3.10. With certainty, X ′ ≤ X + 1.
Proof. Let A1, A2, . . . , AX be all active subpaths of A which intersect I and are

active in the beginning of the jth iteration ordered by their location on P . For α ∈ [X],
denote by uα, vα the first and last unassigned nodes in Aα, respectively. If B does not
puncture any of these subpaths, then X ′ ≤ X < X + 1 (note that subpaths of A can
still be removed if B punctures active subpaths of P not contained in A). So assume
B punctures Aα. Assume first that Aα is the only subpath of P which is active and is
punctured by B. Then there are three options: If both uα, vα ∈ B, then Aα is replaced

CUTTING CORNERS, OR HOW TO REMOVE STEINER POINTS 987

and removed entirely from P when adding the detour, and X ′ ≤ X − 1 < X + 1. If
uα ∈ B and vα /∈ B, let v′ be the last node in V (Aα) ∩ B; then the uαv

′ segment of
Aα is replaced, and the segment v′vα remains active. Therefore, X ′ ≤ X < X + 1.
The argument is similar if uα /∈ B and vα ∈ B. Otherwise, some of the inner portion
of Aα is replaced by a nonactive path, and both end segments of Aα remain active,
and therefore X ′ = X + 1. Next, assume the ball punctures several active subpaths
of A and maybe more subpaths of P . Denote by Iα, Iβ the first and last subpaths of
A punctured by B. Denote by u the first node in V (Iα) ∩ B and v the last node in
V (Iβ) ∩B. When updating P , the entire subpath of P between u and v is removed.
Thus X ′ ≤ X − (β − α+ 1) ≤ X < X + 1.

We now want to show that if some unassigned vertex v ∈ V (I) gets assigned due
to a ball B, i.e., B punctures some active subpath intersecting I, then X is likely to
decrease. Recalling that unassigned nodes in P must be in P ∗, this goal is stated
formally as

Pr[X ′ ≥ X | B ∩ V (I) ∩ V (P ∗) �= ∅] ≤ p .

However, this statement is not sufficient for our needs, as it does not imply that with
high probability a short active subpath is assigned quickly. Indeed, let I be a short
active subpath, and suppose no ball punctures any subpath of I for many iterations
following i0; then the detour that will eventually be added to replace a subpath of I
might be too long relative to I (as expected radii increase exponentially). Therefore,
when arguing that with reasonable probability X decreases, we shall condition on
a more refined event, which generalizes the notion of a ball puncturing an active
subpath. Loosely speaking, we consider events in which the ball B includes a vertex
v /∈ P ∗ (i.e., v is already assigned), and assume there is an unassigned u ∈ V (I), such
that uv is an edge in G (since P ∗ is a shortest path, this edge uv must be part of P ∗),
which means there is an active subpath intersecting I adjacent to v (in particular, v
is one of its endpoints). By the memoryless property of the exponential distribution,
conditioned on v ∈ B, with reasonable probability B covers that subpath. The formal
definition follows.

Definition 3.11. Let I be a subpath of P . We say that a ball B reaches I if
there is v ∈ V (I)∩B such that either v ∈ V (P ∗) is unassigned, or v has an unassigned
neighbor which is in V (I).

Consider again the case where I is active. Then both its endpoints are assigned.
Note that the endpoints of I cannot both be assigned to the same terminal (otherwise
I would have been removed entirely). By the definition of the balls in the algorithm,
B ⊆ G[V⊥+j], and therefore B may reach I and not puncture it if and only if I has
exactly one endpoint in Vj . Note that all active subpaths are reached at least twice
in every iteration of the outer loop (by the clusters which contain their endpoints).
Therefore, in every iteration of the outer loop at least two balls reach I with certainty,
even though it could be the case that no ball punctures I.

Proposition 3.12. Pr[X ′ ≥ X | B reaches I] ≤ p .
Proof. Assume that B reaches I. Then there exists a node v ∈ V (I) ∩ B such

that either v is unassigned, or v has an unassigned neighbor u ∈ V (I). Let d =
dG[V⊥+j](tj , v). Assume first that v ∈ V (P ∗) is unassigned. Let A′ be the active
subpath such that v ∈ V (A′). Following the analysis of the previous proof, if X ′ ≥ X ,
then B punctures exactly one active subpath (namely A′) that intersects I and does
not cover the part of A′ contained in I, or B punctures exactly two such active
subpaths and covers neither of them. In either case, B punctures A′ and does not

988 LIOR KAMMA, ROBERT KRAUTHGAMER, AND HUY L. NGUY
˜̂
EN

cover the part of A′ contained in I. Since w(I) ≤ pbi0 ≤ pbi, the length of A′ is
at most pbi. We conclude that rj + Ri

j ≥ d, and rj + Ri
j < d + pbi. If v has an

unassigned neighbor u ∈ V (I), we get the same conclusion since this again means
rj +Ri

j ≥ rj ≥ d. By the memoryless property,

Pr[X ′ ≥ X | B reaches I] ≤ Pr[Ri
j < d− rj + pbi | Ri

j ≥ d− rj] ≤ 1− e−p ≤ p .

3.1.2. The effect of a sequence of balls on a short segment. Consider now
the first N balls that reach I, starting from the beginning of iteration i0 of the outer
loop and perhaps during several iterations of that loop. For every a ∈ [N], let Ya be
the indicator random variable for the event that the ath ball reaching I decreased the
number of active subpaths intersecting I. In these notations, Proposition 3.12 stated
that

∀a ∈ [N], Pr[Ya+1 = 1 | Y1, . . . , Ya] ≥ 1− p .

Let Y =
∑

a∈[N] Ya, and let Z ∼ Bin(N, 1 − p). Simple induction on N implies the
following claim.

Claim 3.13. For all k, Pr [Y > k] ≥ Pr[Z > k].

Lemma 3.14. With probability at least 1− 1/k10, after 90 log k balls have reached
I, there are no active subpaths intersecting I.

Proof. Assume N = 70 log k. Since whenever Ya = 0 the number of active
subpaths increases by at most 1 and whenever Ya = 1 the number of active subpaths
decreases by at least 1, if Y > N/2, then there are no active subpaths intersecting I.
Therefore, by the Chernoff bound,

Pr[there are no active subpaths intersecting I after N balls reach I]

≥ Pr[Y > N/2] ≥ Pr[Z > N/2] ≥ 1− 1/k10 .

3.2. The behavior of short subtrees. As stated before, the most crucial part
of the proof is to bound the weight and height of short subtrees of T . Let i0 > 1,
and let A ∈ Ai0 be a short subpath such that Ti0,A is a short subtree of T . Clearly,
A′ is short for every node 〈i′, A′〉 of Ti0,A. In order to bound the height of Ti0,A we
combine the fact that not too many balls may reach A with the fact that at least two
balls reach A during each iteration of the outer loop.

Claim 3.15. With probability at least 1 − 1/k10, the height of Ti0,A is at most
45 log k.

Proof. In the notations of Lemma 3.14, consider some i ≥ i0. If A has an active
subpath at the end of the ith iteration of the outer loop, then at least two times during
the ith iteration an active subpath of A is reached by a ball. After 45 log k iterations
of the outer loop, if A has an active subpath, then N ≥ 90 log k. By arguments similar
to Lemma 3.14,

Pr[The height of Ti0,A is at most N/2] ≥ Pr[Y > N/2] ≥ Pr[Z > N/2]

≥ 1− 1/k10 .

We denote by E1 the event that for every i and every A ∈ Ai, if Ti,A is a short
subtree, then after at most 90 log k balls reach an active subpath of A, A has no more
active subpaths and, in addition, the height of Ti,A is at most 45 log k.

CUTTING CORNERS, OR HOW TO REMOVE STEINER POINTS 989

Lemma 3.16. Pr[E1] ≥ 1− 1/k5.
Proof. Fix some i and A ∈ Ai. Assume that Ti,A is a short subtree. By definition,

〈i, A〉 has no short ancestor. For i′ = logb(�/p) ≤ logb(D/p), P ∗ itself is short, since
bi

′
= �/p, and thus all tree nodes in level i′ (and lower) are short. Therefore, i ≤ i′.

Since there are at most k nodes in every level of the tree, the number of short subtrees
of T is at most k · logb(D/p) = k · (logbD + logb 100) ≤ k4 log k + O(k log k) ≤
O(k4 log k). By the previous lemma and a union bound over all short subtrees, the
result follows.

Since every node in level logb(�/p) of the tree belongs to some short subtree, we
get the following corollary.

Corollary 3.17. With probability at least 1 − 2/k5, the height of T is at most
logb(�/p) + O(log k) ≤ 10 logbD.

We denote by E2 the event that for all i ≤ 10 logbD and j ∈ [k] the radius of the
jth ball of the ith iteration of the outer loop is at most O(bi log k). We wish to prove
that E2 holds with high probability. We will need the following lemma, which gives
a concentration bound on the sum of independent exponential random variables.

Lemma 3.18. Let X1, . . . , Xn be independent random variables such that each
Xj ∼ exp(λj) for λj > 0, and denote λ = maxj λj . Then X =

∑
j Xj has expectation

μ = E[X] =
∑

j λj and satisfies

∀δ > 1, Pr[X > (1 + δ)μ] ≤ e(1−δ) μ
2λ .

Proof. We proceed by applying Markov’s inequality to the moment generating
function (similarly to proving Chernoff bounds). Let j ∈ [n], and consider 0 ≤ t ≤
1

2λj
. Then the moment generating function of Xj is known and can be written as

E
[
etXj

]
= 1

1−tλj
≤ 1 + 2tλj ≤ e2tλj . Now set t = 1

2λ and use Markov’s inequality to
get

Pr[X > (1 + δ)μ] = Pr[etX > et(1+δ)μ] ≤
E
[
etX

]
et(1+δ)μ

=

∏
j∈[n] E

[
etXj

]
et(1+δ)μ

≤ e2tμ

et(1+δ)μ
= e(1−δ) μ

2λ .

Lemma 3.19. Pr[E2] ≥ 1− 1/k5.
Proof. Fix i ≤ 10 logbD and j ∈ [k]. In the notations of Algorithm 1, let rj be

the radius of the jth ball in the ith iteration of the outer loop. Then rj =
∑

i′≤iR
i′
j is

the sum of independent exponential random variables. E[rj] =
∑

i′≤i b
i′ = b · bi−1

b−1 ≥
20bi log k. Applying Lemma 3.18 we get that

Pr[rj > 40bi log k] = Pr[rj > 2E[rj]] ≤ e
−E[rj]

bi ≤ k−10.

By Assumption 3.1, 10 logbD = O(logD log k) = O(k3 log k). Thus by a union bound
over all values of i and j in question,

Pr[∀i, j. rj ≤ 40bi log k in the ith iteration of the outer loop] ≥ 1− k · 10 logbD
k10

≥ 1− 1

k5
.

Summing everything up, we can now bound with high probability the weights of
all short subtrees of T .

990 LIOR KAMMA, ROBERT KRAUTHGAMER, AND HUY L. NGUY
˜̂
EN

Claim 3.20. Conditioned on the events E1 and E2, for every i0 > 1 and A ∈ Ai0 ,
if Ti0,A is a short subtree of T , then the total weight charged to nodes of Ti0,A is at
most O(bi0 log2 k) with certainty.

Proof. Conditioned on E1, at most 90 log k detours are charged to nodes of every
short subtree and for i = i0+45 logk there are no more active subpaths of A. Condi-
tioned on E2, the most expensive detour being of weight at most O(bi0+45 log k log k),
we get that the total weight charged to nodes of the subtree is 90 log k ·O(bi0 ·b45 log k ·
log k) ≤ O(bi0 log2 k) since b45 log k = O(1).

3.3. Bounding the weight of T . We are now ready to bound the total weight
charged to the tree. Recall that for every i ≤ logb(�/p) we denoted by li the total
weight charged to nodes of the form 〈i, A〉, where A ∈ Ai is a long active subpath,
and by si the total weight charged to short subtrees rooted in the ith level of T . Since
� ≥ 1, P ∗ ∈ A1 is long. Therefore, s1 = 0. We can therefore rearrange (3.2) to get

(3.3)
∑

〈i,A〉∈T
wi,A =

logb(�/p)∑
i=1

(li + si+1) .

Let i ≤ logb(�/p). Let A ∈ Ai be a long active subpath. That is, w(A) ≥ pbi.
Thinking of A as a continuous path, divide A into w(A)/(pbi) segments of length
pbi. Some segments may contain no nodes. Let I be a segment of A, and assume
I contains nodes (otherwise, no cost is charged to A on account of detours from I).
Following Lemma 3.14, we get the following.

Lemma 3.21. With probability at least 1 − 1/k10, no more than 90 log k balls
reach I.

Denote by E3 the event that for every i ≥ logb(�/k
2) and for every long active

subpath A ∈ Ai, in the division of A to segments of length pbi, every such subsegment
is reached by at most 90 log k balls.

Lemma 3.22. Pr[E3] ≥ 1− 1/k5.
Proof. Since for every i ≥ logb(�/p) every A ∈ Ai is short, the number of rele-

vant iterations (of the outer loop) is at most logb(�/p) − logb(�/k
2) = logb(k

2/p) ≤
O(log2 k). For every i ≥ logb(�/k

2) and every long path A ∈ Ai, the number of seg-
ments of A is at most w(A)/(pbi) ≤ w(A)/(p�/k2) ≤ k2/p. Therefore the number of
relevant segments for all i ≥ logb(�/k

2) and for all long A ∈ Ai is at most O(k2 log2 k).
Applying a union bound over all relevant segments, the result follows.

Since Pr[E1] ≥ 1− 1/k5 and Pr[E2] ≥ 1− 1/k5, we get the following corollary.
Corollary 3.23. Pr[E1 ∧E2 ∧E3] ≥ 1−O(k−5).
It follows that it is enough for us to prove that conditioned on E1, E2, and E3,

with probability 1 the total weight charged to the tree is at most O(log5 k)�.
Lemma 3.24. Conditioned on E2 and E3, li ≤ O(bik log k). In addition, if

i ≥ logb(�/k
2), then li ≤ O(log2 k) · � with probability 1.

Proof. To see the first bound, observe that by the update process of P at most
k detours are added to P during the ith iteration. Conditioned on E2, each one of
them is of weight at most O(bi log k). To see the second bound, let A ∈ Ai be a long
active subpath. The additional weight resulting from detours from vertices of A is at
most the number of segments of A of length pbi times the additional weight to each
segment. Therefore, the additional weight is at most

wi,A ≤ w(A)/pbi ·O(log k) ·O(bi log k) = O(log2 k) · w(A) .

CUTTING CORNERS, OR HOW TO REMOVE STEINER POINTS 991

Since all paths in Ai are internally disjoint subpaths of P ∗, we get

li =
∑

long A∈Ai

wi,A ≤
∑

long A∈Ai

O(log2 k) · w(A) ≤ O(log2 k) · � .

Lemma 3.25. Conditioned on events E1, E2, and E3, si+1 ≤ O(bi+1k log2 k).
In addition, if i ≥ logb(�/k

2), then si+1 ≤ O(log3 k) · �.
Proof. Conditioned on E1 and E2, we proved in Claim 3.20 that the total weight

charged to a short subtree rooted in level i+1 is at most O(bi+1 log2 k) with certainty.
Since there are at most k such subtrees, the first bound follows. To get the second
bound, note that by the definition of a short subtree, for every short subtree T ′ rooted
at level i+ 1, the parent of the root of T ′ consists of a long active subpath A of level
i. Conditioned on E3, every segment of A is intersected by at most 90 log k balls.
Therefore, 〈i, A〉 can have at most (w(A)/pbi) ·90 log k children, in particular children
consisting of short active subpaths. The cost of a short subtree rooted in the i + 1
level of T is at most O(bi log2 k). Thus the total cost of all short subtrees rooted in
children of A is bounded by

(w(A)/pbi) · 90 log k · O(bi log2 k) ≤ O(log3 k) · w(A) .

Summing over all (internally disjoint) long subpaths of level i, the result follows.
We now turn to prove Lemma 3.8.
Proof of Lemma 3.8. Since Pr[E1 ∧ E2 ∧ E3] ≥ 1 − O(k−5), it is enough to

show that conditioned on E1, E2, and E3, the total weight charged to the tree is

at most O(log5 k)� with certainty. Recall that
∑

〈i,A〉∈T wi,A =
∑logb(�/p)

i=1 (li + si+1).
Following Lemmas 3.24 and 3.25 we get that

logb(�/k
2)∑

i=1

(li + si+1) ≤
logb(�/k

2)∑
i=1

O(bik log k + bi+1k log2 k)

≤ O(k log2 k)

logb(�/k
2)∑

i=1

bi = O(k log2 k)
b

b− 1
· �

k2
= o(1) · � .

In addition,

logb(�/p)∑
i=logb(�/k

2)+1

(li + si+1) ≤
logb(�/p)∑

i=logb(�/k
2)+1

O(log2 k)�+O(log3 k)�

≤ O(log3 k)� · (logb(�/p)− logb(�/k
2))

≤ O(log3 k)� ·O(log2 k) = O(log5 k) · � .

4. Terminal-centered minors: Extension to general case. In this section
we complete the proof of Theorem 1.4 by reducing it to the special case where As-
sumption 3.1 holds (which we proved in section 3). We first outline the reduction,
which is implemented using a recursive algorithm, as follows. The algorithm initially
rescales edge weights of the graph so that minimal terminal distance is 1. If D < 2k

3

,
then we apply Algorithm 1 and we are done. Otherwise, we construct a set of at
most k − 1 low-diameter balls which are mutually far apart and whose union con-
tains all terminals. Then, for each of the balls, we apply Algorithm 1 on the graph
induced by that ball. Each ball is then contracted into a “superterminal.” We apply

992 LIOR KAMMA, ROBERT KRAUTHGAMER, AND HUY L. NGUY
˜̂
EN

the algorithm recursively on the resulting graph G̃ with the set of superterminals as
the terminal set. Going back from the recursion, we “stitch” together the output of
Algorithm 1 on the balls in the original graph with the output of the recursive call
on G̃ to construct a partition of V as required. The detailed algorithm and proof of
correctness are described in section 4.1. Before that, we need a few definitions.

Assume that the edge weights are already so that the minimum interterminal
distance is 1. Denote by D the set of all distances between terminals, rounded down
to the nearest powers of 2. Note that |D| < k2. Consider the case D > 2k

3

. There
must exist 0 ≤ m0 ≤ k3 − k such that D ∩ {2m0 , 2m0+1, . . . , 2m0+k} = ∅. Define
R := {(x, y) ∈ T 2 : dG(x, y) < 2m0}.

Claim 4.1. R is an equivalence relation.
Proof. Reflexivity and symmetry of R follow directly from the definition of a

metric. To see that R is transitive, let x, y, z ∈ T , and assume (x, y), (y, z) ∈ R.
Therefore, dG(x, y) < 2m0 and dG(y, z) < 2m0 . By the triangle inequality, dG(x, z) <
2m0+1. Since D ∩ {2m0, . . . , 2m0+k} = ∅, dG(x, z) < 2m0 , and therefore (x, z) ∈
R.

For every equivalence class U ∈ T /R, we pick an arbitrary u ∈ U and define

Û = BG(u, 2
m0).

Claim 4.2. U := {Û}U∈T/R
is a partial partition of V . Moreover, for every

U ∈ T/R, U ⊆ Û , G[Û] is connected and of diameter at most 2m0+1 < 2k
3

.

Proof. Let U ∈ T /R. Let u ∈ U be such that Û = BG(u, 2
m0). For every x ∈ U ,

by the definition of R, d(x, u) < 2m0 , and thus x ∈ Û . Therefore, U ⊆ Û . By the

definition of a ball, G[Û] is connected and of diameter at most 2m0+1 < 2k
3

. To
see that U is a partial partition of V , take U ′ ∈ T /R such that U �= U ′, and let

u′ ∈ U ′ be such that Û ′ = BG(u
′, 2m0). Since (u, u′) /∈ R, dG(u, u

′) ≥ 2m0 , and since
D ∩ {2m0 , . . . , 2m0+k} = ∅, dG(u, u′) ≥ 2m0+k+1, thus Û ∩ Û ′ = ∅.

4.1. Detailed algorithm. Our algorithm for the general case of Theorem 1.4 is
given as Algorithm 2 (which makes calls to Algorithm 1). It is clear that this algorithm
returns a partition of V . In addition, since every level of recursion decreases the
number of terminals in the graph, the depth of the recursion is at most k. During each
level of the recursion, Algorithm 1 is invoked at most k times. Therefore, Algorithm 1
is invoked at most k2 times, each time on a set of at most k terminals. Note that
the result of Lemma 3.8 still applies if k is only an upper bound on the number of
terminals, and not the exact number of terminals. Therefore, we get that there exists
C0 > 0 such that all O(k2) times that the algorithm is invoked, it achieves a weight
stretch factor of at most C0 log

5 k, with probability at least 1 − O(k−3). Applying
a union bound, we get that with high probability the stretch bound is obtained in
all invocations of the algorithm. It remains to show that this suffices to achieve the
desired stretch factor in G.

Lemma 4.3. With probability at least 1 − 1/k, on a graph with τ ≤ k terminals,
Algorithm 2 obtains a stretch factor of at most C0 log

5 k+ log5 k · 2−k
∑

k′≤τ 2(k
′)2 ≤

2C0 log
5 k.

Proof. It is enough to show that conditioned on the event that every invocation of
Algorithm 1 achieves a stretch factor of at most C0 log

5 k, the generalized algorithm
achieves the desired stretch factor. We prove this by induction on k. For the case
k = 2, rescaling the weights ensures that D = 1 ≤ 2k

3

, and therefore Algorithm 1 is
applied on G. The result follows from the proof of section 3. Assuming correctness
for every k̃ < k, we prove correctness for k. Let s, t ∈ T . If (s, t) ∈ R, then s

CUTTING CORNERS, OR HOW TO REMOVE STEINER POINTS 993

Input: G = (V,E,w), T = {t1, . . . , tk} ⊆ V.
Output: A partition {V1, V2, . . . , Vk} of V .
1: rescale the edge weights so that the minimal terminal distance is 1.
2: if D := maxu,v∈T dG(u, v) ≤ 2k

3

then
3: run Algorithm 1, and return its output.
4: else
5: define R and U as above.
6: for all Û ∈ U do
7: run Algorithm 1 independently on G[Û].
8: contract Û to a single “superterminal,” maintaining edge weights of all re-

maining edges.
9: denote the resulting graph G̃.

10: run Algorithm 2 recursively on G̃ with the set of superterminals.
11: for all superterminals u ∈ G̃ do
12: let u1, . . . , ur be the terminals contracted to u in line 8 in an arbitrary order.

13: for all vertices v assigned to u in the recursive call do
14: assign v to its nearest terminal among u1, . . . , ur.

Break ties by the ordering of u1, . . . , ur. // Making sure we construct a
minor.

15: return the resulting partition of V .

Algorithm 2: Partitioning V—The General Case.

and t are in the same set in U , and by the conditioning, the stretch factor of the
distance between s and t is at most C0 log

5 k. This does not change in steps 4−7
of the algorithm. Otherwise, let s̃, t̃ be the terminals (or superterminals) associated
with s and t in G̃, respectively. Denote d = dG,w(s, t) and d̃ = dG̃,w̃(s̃, t̃). Denote by
G′ = (V ′, E′, w′) the terminal-centered minor induced by the partition returned by
the recursive call and by G′′ = (V ′′, E′′, w′′) the terminal-centered minor induced by
the partition returned in the final step of the algorithm. Denote d′ = dG′,w′(s̃, t̃) and
d′′ = dG′′,w′′(s, t). Let u be a superterminal on a shortest path P ′ between s̃ and t̃ in
G′. Let P ′′ be the path obtained from P ′ in G′′ in the following manner. In the place
of every superterminal u in P ′, originating in some node set Û , we add a path between
the corresponding terminals in Û (based on the terminal-centered minor constructed
for G[Û] in step 3). The edges of P ′ are also replaced with corresponding edges
in G′′.

Recall that in G′ the weight of every edge is the distance between its endpoints
in G̃ (by the definition of a terminal-centered minor). In G′′ the weight of every
edge is the distance between its endpoints in G. Therefore, the weight P ′ con-
tained at most k − 1 edges. In G′′ the weight of each such edge increases by at
most k2m0. In addition, every expansion of a superterminal adds at most k2m0 to
the path. Therefore, w′′(P ′′) ≤ w′(P ′) + 2k22m0 ≤ d′ + d · 2k22−k. By the induction
hypothesis,

d′ ≤

⎛
⎝C0 log

5 k + log5 k · 2−k
∑

k′≤k−1

(k′)2

⎞
⎠ d̃.

994 LIOR KAMMA, ROBERT KRAUTHGAMER, AND HUY L. NGUY
˜̂
EN

Since d̃ ≤ d, we get that

d′′ ≤

⎛
⎝C0 log

5 k + log5 k · 2−k
∑

k′≤k−1

2(k′)2

⎞
⎠ d+ d · 2k22−k

≤

⎛
⎝C0 log

5 k + log5 k · 2−k
∑
k′≤k

2(k′)2

⎞
⎠ d.

This completes the proof of Lemma 4.3 (and in fact also of Theorem 1.4).

Acknowledgments. We thank the anonymous reviewers for useful comments,
and particularly for suggesting to improve the proof of Lemma 3.19 using a tail bound
for sum of exponential random variables, which saves a factor of log k in our main
result, Theorem 1.4.

REFERENCES

[AGMW10] I. Abraham, C. Gavoille, D. Malkhi, and U. Wieder, Strong-diameter decompo-
sitions of minor free graphs, Theory Comput. Syst., 47 (2010), pp. 837–855.

[Bar96] Y. Bartal, Probabilistic approximation of metric spaces and its algorithmic appli-
cations, in Proceedings of the 37th Annual IEEE Symposium on Foundations of
Computer Science, 1996, pp. 184–193.

[Bar04] Y. Bartal, Graph decomposition lemmas and their role in metric embedding methods,
in Proceedings of the 12th Annual European Symposium on Algorithms, Lecture
Notes in Comput. Sci. 3221, Springer, Berlin, 2004, pp. 89–97.

[BG08] A. Basu and A. Gupta. Steiner Point Removal in Graph Metrics, unpub-
lished manuscript; available online from http://www.math.ucdavis.edu/∼abasu/
papers/SPR.pdf, 2008.

[BK96] A. A. Benczúr and D. R. Karger, Approximating s-t minimum cuts in Õ(n2) time,
in Proceedings of the 28th Annual ACM Symposium on Theory of Computing,
1996, pp. 47–55.

[BSS09] J. D. Batson, D. A. Spielman, and N. Srivastava, Twice-Ramanujan sparsifiers,
in Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
2009, pp. 255–262.

[Chu12] J. Chuzhoy, On vertex sparsifiers with Steiner nodes, in Proceedings of the 44th
Annual ACM Symposium on Theory of Computing, 2012, pp. 673–688.

[CKR01] G. Calinescu, H. Karloff, and Y. Rabani, Approximation algorithms for the 0-
extension problem, in Proceedings of the Twelfth Annual ACM-SIAM Symposium
on Discrete Algorithms, 2001, pp. 8–16.

[CLLM10] M. Charikar, T. Leighton, S. Li, and A. Moitra, Vertex sparsifiers and abstract
rounding algorithms, in Proceedings of the 51st Annual IEEE Symposium on
Foundations of Computer Science, 2010, pp. 265–274.

[CXKR06] T. Chan, D. Xia, G. Konjevod, and A. Richa, A tight lower bound for the Steiner
point removal problem on trees, in Proceedings of the 9th International Work-
shop on Approximation, Randomization, and Combinatorial Optimization, Lec-
ture Notes in Comput. Sci. 4110, Springer, Berlin, 2006, pp. 70–81.

[EGK+10] M. Englert, A. Gupta, R. Krauthgamer, H. Räcke, I. Talgam-Cohen, and

K. Talwar, Vertex sparsifiers: New results from old techniques, in Proceedings
of the 13th International Workshop on Approximation, Randomization, and Com-
binatorial Optimization, Lecture Notes in Comput. Sci. 6302, Springer, Berlin,
2010, pp. 152–165.

[FRT04] J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating ar-
bitrary metrics by tree metrics, J. Comput. System Sci., 69 (2004), pp. 485–497.

[GNR10] A. Gupta, V. Nagarajan, and R. Ravi, Improved approximation algorithms for
requirement cut, Oper. Res. Lett., 38 (2010), pp. 322–325.

[Gup01] A. Gupta, Steiner points in tree metrics don’t (really) help, in Proceedings of
the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, 2001,
pp. 220–227.

http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf
http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf

CUTTING CORNERS, OR HOW TO REMOVE STEINER POINTS 995

[KNZ14] R. Krauthgamer, H. L.
˜̂
Nguyen, and T. Zondiner, Preserving terminal distances

using minors, SIAM J. Discrete Math., 28 (2014), pp. 127–141.
[KPR93] P. Klein, S. A. Plotkin, and S. Rao, Excluded minors, network decomposition,

and multicommodity flow, in Proceedings of the 25th Annual ACM Symposium
on Theory of Computing, 1993, pp. 682–690.

[KR11] R. Krauthgamer and T. Roughgarden, Metric clustering via consistent labeling,
Theory Comput., 7 (2011), pp. 49–74.

[LM10] F. T. Leighton and A. Moitra, Extensions and limits to vertex sparsification, in
Proceedings of the 42nd Annual ACM Symposium on Theory of Computing, 2010,
pp. 47–56.

[LN05] J. R. Lee and A. Naor, Extending Lipschitz functions via random metric partitions,
Invent. Math., 1 (2005), pp. 59–95.

[LS93] N. Linial and M. Saks, Low diameter graph decompositions, Combinatorica, 13
(1993), pp. 441–454.

[MM10] K. Makarychev and Y. Makarychev, Metric extension operators, vertex sparsifiers
and Lipschitz extendability, in Proceedings of the 51st Annual IEEE Symposium
on Foundations of Computer Science, 2010, pp. 255–264.

[MN07] M. Mendel and A. Naor, Ramsey partitions and proximity data structures, J. Eur.
Math. Soc. (JEMS), 9 (2007), pp. 253–275.

[Moi09] A. Moitra, Approximation algorithms for multicommodity-type problems with guar-
antees independent of the graph size, in Proceedings of the 50th Annual IEEE
Symposium on Foundations of Computer Science, 2009, pp. 3–12.

[PS89] D. Peleg and A. A. Schäffer, Graph spanners, J. Graph Theory, 13 (1989),
pp. 99–116.

[TZ05] M. Thorup and U. Zwick, Approximate distance oracles, J. ACM, 52 (2005),
pp. 1–24.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

