
Cutting corners cheaply, or how to remove Steiner points∗

Lior Kamma†

The Weizmann Institute
Robert Krauthgamer†

The Weizmann Institute
Huy L. Nguy˜̂en‡

Princeton University

Abstract

Our main result is that the Steiner Point Removal (SPR)
problem can always be solved with polylogarithmic distor-
tion, which resolves in the affirmative a question posed by
Chan, Xia, Konjevod, and Richa (2006). Specifically, we
prove that for every edge-weighted graph G = (V,E,w) and
a subset of terminals T ⊆ V , there is a graphG′ = (T,E′, w′)
that is isomorphic to a minor of G, such that for every
two terminals u, v ∈ T , the shortest-path distances between
them in G and in G′ satisfy dG,w(u, v) ≤ dG′,w′(u, v) ≤
O(log6 |T |) · dG,w(u, v). Our existence proof actually gives a
randomized polynomial-time algorithm.

Our proof features a new variant of metric decomposi-

tion. It is well-known that every finite metric space (X, d)

admits a β-separating decomposition for β = O(log|X|),
which roughly means for every desired diameter bound ∆ >

0 there is a randomized partitioning of X, which satisfies

the following separation requirement: for every x, y ∈ X,

the probability they lie in different clusters of the partition

is at most β d(x, y)/∆. We introduce an additional require-

ment, which is the following tail bound: for every shortest-

path P of length d(P) ≤ ∆/β, the number of clusters of

the partition that meet the path P , denoted ZP , satisfies

Pr[ZP > t] ≤ 2e−Ω(t) for all t > 0.

1 Introduction

Graph compression describes the transformation of a
given graph G into a small graph G′ that preserves cer-
tain features (quantities) of G, such as distances or cut
values. Notable examples for this genre include graph
spanners, distance oracles, cut sparsifiers, and spectral
sparsifiers, see e.g. [PS89, TZ05, BK96, BSS09] and ref-
erences therein. The algorithmic utility of such graph
transformations is clear – once the “compressed” graph

∗A full version appears at http://arxiv.org/abs/1304.1449
†This work was supported in part by the Israel Sci-

ence Foundation (grant #897/13), the US-Israel BSF (grant
#2010418), and by the Citi Foundation. Part of this work was

done while visiting Microsoft Research New England. Email:

{lior.kamma,robert.krauthgamer}@weizmann.ac.il
‡This work was supported in part by NSF CCF 0832797,

and a Gordon Wu Fellowship. Part of this work was done

while interning at Microsoft Research New England. Email:
hlnguyen@princeton.edu

G′ is computed (as a preprocessing step), further pro-
cessing can be performed on G′ instead of on G, using
less resources like runtime and memory, or achieving
better accuracy (when the solution is approximate). See
more in Section 1.3.

Within this context, we study vertex-sparsification,
where G has a designated subset of vertices T , and the
goal is reduce the number of vertices in the graph while
maintaining certain properties of T . A prime example
for this genre is vertex-sparsifiers that preserve terminal
versions of (multicommodity) cut and flow problems, a
successful direction that was initiated by Moitra [Moi09]
and extended in several followups [LM10, CLLM10,
MM10, EGK+10, Chu12]. Our focus here is different,
on preserving distances, a direction that was seeded by
Gupta [Gup01] more than a decade ago.

Steiner Point Removal (SPR). Let G =
(V,E,w) be an edge-weighted graph1 and let T =
{t1, . . . , tk} ⊆ V be a designated set of k terminals.
Here and throughout, dG,w(·, ·) denotes the shortest-
path metric induced by w on the vertices of G. The
Steiner Point Removal problem asks to construct on
the terminals a new graph G′ = (T,E′, w′) such that (i)
distances between the terminals are distorted at most
by factor α ≥ 1, formally

∀u, v ∈ T, dG,w(u, v) ≤ dG′,w′(u, v) ≤ α ·dG,w(u, v);

and (ii) the graph G′ is (isomorphic to) a minor of G.
This formulation of the SPR problem was proposed by
Chan, Xia, Konjevod, and Richa [CXKR06, Section 5]
who posed the problem of bounding the distortion α
(existentially and/or using an efficient algorithm). Our
main result is to resolve their open question.

Requirement (ii) above expresses structural similar-
ity between G and G′; for instance, if G is planar then so
is G′. The SPR formulation above actually came about
as a generalization to a result of Gupta [Gup01], which
achieves α = 8 for the case where G is a tree,2 and this

1Throughout, all graphs are undirected and all edge weights
are positive.

2In fact, Gupta [Gup01] only argued that G′ is a tree. Chan
et al. [CXKR06] observed later that this same G′ is actually a
minor of G.

 http://arxiv.org/abs/1304.1449

factor of 8 was proved by [CXKR06] to be tight. The
upper bound for trees was later extended by Basu and
Gupta [BG08], who achieve distortion α = O(1) for the
larger class of outerplanar graphs.

How to construct minors. We now describe a
general methodology that is natural for the SPR prob-
lem. The first step constructs a minor G′ with vertex set
T , but without any edge weights, and is prescribed by
Definition 1.1. The second step determines edge weights
w′ such that dG′,w′ dominates dG,w on the terminals T ,
and is given in Definition 1.2. These steps are illus-
trated in Figure 1. Our definitions are actually more
general (anticipating the technical sections), and con-
sider G′ whose vertex set is sandwiched between T and
V . Define a partial partition of V to be a collection
V1, . . . , Vk of pairwise disjoint subsets of V .

2

3

t1

t2

t3

t1

t2

t3

2

2

V1

V2

V3

G G′

Figure 1: G is a 9-cycle with 3 terminals and unit edge
weights. Its terminal-centered minor and the standard
restriction edge weights are shown on the right.

Definition 1.1. (Terminal-Centered Minor) Let
G = (V,E) be a graph with k terminals T = {t1, . . . , tk},
and let V1, . . . , Vk be a partial partition of V , such that
each induced subgraph G[Vj] is connected and contains
tj. The graph G′ = (V ′, E′) obtained by contracting
each G[Vj] into a single vertex that is identified with
tj, is called the terminal-centered minor of G induced
by V1, . . . , Vk.

By identifying the “contracted super-node” Vj with
tj , we may think of the vertex-set V ′ as containing T
and (possibly) some vertices from V \ T . A terminal-
centered minor G′ of G can also be described by a
mapping f : V → T ∪ {⊥}, such that f |T ≡ id and
f−1({tj}) is connected in G for all j ∈ [k]. Indeed,
simply let Vj = f−1({tj}) for all j ∈ [k], and thus
V \ (∪jVj) = f−1({⊥}).

Definition 1.2. (Standard Restriction) Let G =
(V,E,w) be an edge-weighted graph with terminal set T ,

and let G′ = (V ′, E′) be a terminal-centered minor of G.
The standard restriction of w to G′ is the edge weight
w′ given by the respective distances in G, formally

∀(x, y) ∈ E′, w′xy := dG,w(x, y).

This edge weight w′ is optimal in the sense that
dG′,w′ dominates dG,w (where it is defined, i.e., on V ′),
and the weight of each edge (x, y) ∈ E′ is minimal under
this domination condition.

1.1 Main Result Our main result below gives an
efficient algorithm that achieves polylog(k) distortion
for the SPR problem. Its proof spans Sections 3 and 4,
though the former one contains the heart of the matter.

Theorem 1.1. Let G = (V,E,w) be an edge-weighted
graph with k terminals T ⊆ V . Then there exists a
terminal-centered minor G′ = (T,E′, w′) of G, such that
G′ has distortion O(log6 k), i.e.,

∀u, v ∈ T, 1 ≤ dG′,w′(u, v)

dG,w(u, v)
≤ O(log6 k).

Moreover, w′ is the standard restriction of w, and G′ is
computable in randomized polynomial time.

This theorem answers a question of [CXKR06].3

The only distortion lower bound known for general
graphs is a factor of 8 (which actually holds for trees)
[CXKR06], and thus it remains a challenging open
question whether O(1) distortion can be achieved in
general graphs.

Our proof of Theorem 1.1 begins similarly to
[EGK+10], by iterating over the “distance scales” 2i,
going from the smallest distance dG,w(u, v) among all
terminals u, v ∈ T , towards the largest such distance.
Each iteration i first employs a “stochastic decomposi-
tion”, which is basically a randomized procedure that
finds in V so-called “clusters” (disjoint subsets) whose
diameter is at most 2i. Then, some clusters are con-
tracted to a nearby terminal, which must be “adjacent”
to the cluster; this way, the current graph is a minor
of the previous iteration’s graph, and thus also of the
initial G. After iteration i is executed, we roughly ex-
pect “areas” of radius proportional to 2i around the
terminals to be contracted. As i increases, these areas
get larger until eventually all the vertices are contracted
into terminals, at which point the weights are set to be
standard restriction. To eventually get a minor, it is

3We remark that distortion k can be achieved relatively easily,
by considering a mapping f that sends every vertex into its nearest

terminal, and taking the minor corresponding to f with standard-
restriction edge weights.

imperative that every contracted region must be con-
nected. To guarantee this, we perform the iteration i
decomposition on the graph resulting from previous it-
erations’ contractions (rather than the initial G), which
introduces further dependencies between the iterations.

The main challenge is to control the distortion, and
this is where we crucially deviate from [EGK+10] (and
differ from all previous work). In their randomized
construction of a minor G′, for every two terminals
u, v ∈ T it is shown that G′ contains a u − v path of
expected length at most O(log k)dG(u, v). Consequently,
they design a distribution D over minors G′, such that
the stretch dG′(u, v)/dG(u, v) between any u, v ∈ T
has expectation at most O(log k).4 In contrast, in
our randomized construction of G′, the stretch between
u, v ∈ T is polylogarithmic with high probability, say at
least 1− 1/k3. Applying a simple union bound over the(
k
2

)
terminal pairs, we can then obtain a single graph

G′ achieving a polylogarithmic distortion. Technically,
these bounds follow by fixing in G a shortest-path P
between two terminals u, v ∈ T , and then tracking
the execution of the randomized algorithm to analyze
how the path P evolves into a u − v path P ′ in
G′. In [EGK+10], the length of P ′ is analyzed in
expectation, which by linearity of expectation, follows
from analyzing a single edge. In contrast, we provide
for it a high-probability bound, which inevitably must
consider (anti)correlations along the path.

The next section features a new tool that we de-
veloped in our quest for high-probability bounds, and
which may be of independent interest. For sake of clar-
ity, we provide below a vanilla version that excludes
technical complications such as terminals, strong diam-
eter, and consistency between scales. The proof of The-
orem 1.1 actually does require these complications, and
thus cannot use the generic form described below.

1.2 A Key Technique: Metric Decomposition
with Concentration

Metric decomposition. Let (X, d) be a metric
space, and let Π be a partition of X. Every S ∈ Π
is called a cluster, and for every x ∈ X, we use
Π(x) to denote the unique cluster S ∈ Π such that
x ∈ S. In general, a stochastic decomposition of the
metric (X, d) is a distribution µ over partitions of X,
although we usually impose additional requirements.
The following definition is perhaps the most basic
version, often called a separating decomposition or a
Lipschitz decomposition.

4But it is possible that no G′ ∈ supp(D) achieves a low stretch
simultaneously for all u, v ∈ T .

Definition 1.3. A metric space (X, d) is called β-
decomposable if for every ∆ > 0 there is a probability
distribution µ over partitions of X, satisfying the fol-
lowing requirements:

(a). Diameter bound: for all Π ∈ supp(µ) and all
S ∈ Π, diam(S) ≤ ∆.

(b). Separation probability: for all x, y ∈ X,

Pr
Π∼µ

[Π(x) 6= Π(y)] ≤ βd(x,y)
∆ .

Bartal [Bar96] proved that every n-point metric is
O(log n)-decomposable, and that this bound is tight.
We remark that by now there is a rich literature on
metric decompositions, and different variants of this
notion may involve terminals, or (in a graphical context)
connectivity requirements inside each cluster, see e.g.
[LS91, Bar96, CKR01, FRT04, Bar04, LN05, GNR10,
EGK+10, MN07, AGMW10, KR11].

Degree of separation. Let P = (x0, x1, . . . , x`)
be a shortest path between x0, x` ∈ X, i.e., a sequence
of points in X such that

∑
i∈[`] d(xi−1, xi) = d(x0, x`).

We denote its length by d(P) := d(x0, x`), and say that
P meets a cluster S ⊆ X if S∩P 6= ∅. Given a partition
Π of X, define the degree of separation ZP (Π) as the
number of different clusters in the partition Π that meet
P . Formally

(1.1) ZP (Π) :=
∑
S∈Π

1{P meets S}.

Throughout, we omit the partition Π when it is
clear from the context. When we consider a random
partition Π ∼ µ, the corresponding ZP = ZP (Π)
is actually a random variable. If this distribution µ
satisfies requirement (b) of Definition 1.3, then

E
Π∼µ

[ZP] ≤ 1 +
∑
i∈[`]

Pr
Π∼µ

[Π(xi−1) 6= Π(xi)](1.2)

≤ 1 +
∑
i∈[`]

βd(xi−1, xi)

∆
= 1 +

βd(P)

∆
.

But what about the concentration of ZP ? More pre-
cisely, can every finite metric be decomposed, such that
every shortest path P admits a tail bound on its degree
of separation ZP ?

A tail bound. We answer this last question in the
affirmative using the following theorem. We prove it, or
actually a stronger version that does involve terminals,
in Section 2.

Theorem 1.2. For every n-point metric space (X, d)
and every ∆ > 0 there is a probability distribution µ
over partitions of X that satisfies, for β = O(log n),
requirements (a)-(b) of Definition 1.3, and furthermore

(c). Degree of separation: For every shortest path P of
length d(P) ≤ ∆

β ,

(1.3) ∀t ≥ 1, Pr
Π∼µ

[ZP > t] ≤ 2e−Ω(t).

The tail bound (1.3) can be compared to a naive
estimate that holds for every β-decomposition µ: using
(1.2) we have E[ZP] ≤ 2, and then by Markov’s
inequality Pr[ZP ≥ t] ≤ 2/t.

1.3 Related Work
Applications. Vertex-sparsification, and the

“graph compression” approach in general, is obviously
beneficial when G′ can be computed from G very
efficiently, say in linear time, and then G′ may be
computed on the fly rather than in advance. But
compression may be valuable also in scenarios that
require the storage of many graphs, like archiving and
backups, or rely on low-throughput communication,
like distributed or remote processing. For instance, the
succinct nature of G′ may be indispensable for com-
putations performed frequently, say on a smartphone,
with preprocessing done in advance on a powerful
machine.

We do not have new theoretical applications that
leverage our SPR result, although we anticipate these
will be found later. Either way, we believe this line
of work will prove technically productive, and may
influence, e.g., work on metric embeddings and on
approximate min-cut/max-flow theorems.

Probabilistic SPR. Here, the objective is not
to find a single graph G′ = (T,E′, w′), but rather a
distribution D over graphs G′ = (T,E′, w′), such that
every graph G′ ∈ supp(D) is isomorphic to a minor of G
and its distances dG′,w′ dominate dG,w (on T × T), and
such that the distortion inequalities hold in expectation,
that is,

∀u, v ∈ T, E
G′∼D

[dG′,w′(u, v)] ≤ α · dG,w(u, v).

This problem, first posed in [CXKR06], was answered
in [EGK+10] with α = O(log |T |).

Distance Preserving Minors. This problem dif-
fers from SPR in G′ may contain a few non-terminals,
but all terminal distances should be preserved exactly.
Formally, the objective is to find a small graph G′ =
(V ′, E′, w′) such that (i) G′ is isomorphic to a minor
of G; (ii) T ⊆ V ′ ⊆ V ; and (iii) for every u, v ∈ T ,
dG′,w′(u, v) = dG,w(u, v). This problem was origi-
nally defined by Krauthgamer and Zondiner [KZ12],
who showed an upper bound |V ′| ≤ O(|T |4) for gen-
eral graphs, and a lower bound of Ω(|T |2) that holds
even for planar graphs.

2 Metric Decomposition with Concentration

We now prove a slightly stronger result than that of
Theorem 1.2, stated as Theorem 2.1. Let (X, d) be a
metric space, and let {t1, . . . , tk} ⊆ X be a designated
set of terminals. Recall that a partial partition Π of X
is a collection of pairwise disjoint subsets of X. For
a shortest path P in X, define ZP = ZP (Π) using
Eqn. (1.1), which is similar to before, except that now
Π is a partial partition. We first extend Definition 1.3.

Definition 2.1. We say that X is β-terminal-
decomposable with concentration if for every ∆ > 0
there is a probability distribution µ over partial parti-
tions of X, satisfying the following properties.

• Diameter Bound: For all Π ∈ supp(µ) and all
S ∈ Π, diam(S) ≤ ∆.

• Separation Probability: For every x, y ∈ X,

Pr
Π∼µ

[∃S ∈ Π such that |S ∩ {x, y}| = 1] ≤ βd(x,y)
∆ .

• Terminal Cover: For every Π ∈ supp(µ), we have
T ⊆ ⋃S∈Π S.

• Degree of Separation: For every shortest path P
and for every t ≥ 1,

Pr
Π∼µ

[
ZP >

tβ
∆ max{d(P),∆/β}

]
≤ O

(
min

{
kβ,

⌈
d(P)β

∆

⌉})
e−Ω(t).

Theorem 2.1. Every finite metric space with k termi-
nals is (4 log k)-terminal-decomposable with concentra-
tion.

Define the truncated exponential with parameters
λ,∆ > 0, denoted Texp(λ,∆), to be distribution
given by the probability density function gλ,∆(x) =

1
λ(1−e−∆/λ)

e−x/λ for all x ∈ [0,∆).

We are now ready to prove Theorem 2.1. For
simplicity of notation, we prove the result with cluster
diameter at most 2∆ instead of ∆. Fix a desired
diameter bound ∆ > 0, and set for the rest of the
proof λ := ∆

log k and g := gλ,∆. For x ∈ X and
r > 0, we use the standard notation of a closed ball
B(x, r) := {y ∈ X : d(x, y) ≤ r}. We define the
distribution µ via the following procedure that samples
a partial partition Π of X.

1: for j = 1, 2, . . . , k do
2: choose Rj ∼ Texp(λ,∆) independently at ran-

dom, and let Bj = B(tj , Rj).

3: set Sj = Bj \
⋃j−1
m=1Bm.

4: return Π = {S1, . . . , Sk} \ {∅}.

The diameter bound and terminal partition proper-
ties hold by construction. The proof of the separation
event property is identical to the one in [Bar96, Sec-
tion 3]. The following two lemmas prove the degree of
separation property, which will conclude the proof of
Theorem 2.1. Fix a shortest path P in X, and let us
assume that t/2 is a positive integer; a general t ≥ 1 can
be reduced to this case up to a loss in the unspecified
constant.

Lemma 2.1. If d(P) < λ, then Pr[ZP > t] ≤ 2e−Ω(t).

Proof. Split the k terminals into Jfar := {j ∈ [k] :
d(tj , P) > ∆ − 2λ} and Jnear := [k] \ Jfar. Define
random variables Zfar := #{j ∈ Jfar : Bj ∩ P 6= ∅}
and Znear := #{j ∈ Jnear : Sj ∩ P 6= ∅}. Then
ZP ≤ Zfar + Znear and

Pr[ZP > t] ≤ Pr[Zfar + Znear > t]

≤ Pr[Zfar > t/2] + Pr[Znear > t/2].

For every j ∈ Jfar,

Pr[Bj ∩ P 6= ∅] ≤ Pr[Rj ≥ ∆− 2λ]

=

∫ ∆

∆−2λ

g(x)dx

=
k

k − 1
(e−

∆−2λ
λ − e−∆

λ) ≤ 8

k
,

and therefore E[Zfar] ≤ 8. Since Zfar is the sum of in-
dependent indicators, by the Chernoff bound, Pr[Zfar >
t/2] ≤ 2−t/2 for all t ≥ 32e. For smaller t, observe that
Pr[Zfar = 0] ≥ (1 − 8/k)k ≥ Ω(1), and thus for every
t ≥ 1 we have Pr[Zfar > t/2] ≤ e−Ω(t).

Next, consider the balls among {Bj : j ∈ Jnear}
that have non-empty intersection with P . Let m denote
the number of such balls, and let j1 < . . . < jm denote
their indices. In other words, we place a conditioning
henceforth on an event E ∈ {0, 1}Jnear that determines
whether Rj ≥ d(tj , P) occurs or not for each j ∈ Jnear.
The indices of coordinates of E that are equal to 1 are
exactly j1, . . . jm. For a ∈ [m], let Ya be the indicator
variable for the event that the ball Bja does not contain
P . Note that since {Rj}j∈[k] are independent, then so
are {Ya}a∈[m]. Then

Pr
[
Ya = 1 |E

]
= Pr

[
P 6⊆ Bja | P ∩Bja 6= ∅

]
≤ Pr

[
Rj < d(tja , P) + λ | Rj ≥ d(tja , P)

]
≤ 1− e−1

1− e−2
≤ 3

4
.

Having conditioned on E , the event {Znear > t/2}
implies that m > t/2 and moreover, Ya = 1 for all a ∈

[t/2], and since {Ya}a∈[m] are independent, Pr[Znear >

t/2 | E] ≤ (3/4)t/2 ≤ e−Ct for an appropriate constant
C > 0. The last inequality holds for all such events E
(with the same constant C > 0), and thus also without
any such conditioning.

Altogether, we conclude that Pr[ZP > t] ≤ 2e−Ω(t).

Lemma 2.2. If d(P) ≥ λ, then Pr[ZP > td(P)/λ] ≤
O
(

min
{
k log k,

⌈
d(P)
λ

⌉})
e−Ω(t).

Proof. Treating P as a continuous path, subdivide it
into r := dd(P)/λe segments, say segments of equal
length that are (except for the last one) half open and
half closed. The induced subpaths P1, . . . , Pr of P are
disjoint (as subsets of X) and have length at most λ
each, though some of subpaths may contain only one or
even zero points of X. Writing ZP =

∑
i∈[r] ZPi , we

can apply a union bound and then Lemma 2.1 on each
Pi, to obtain

Pr[ZP > td(P)/λ] ≤ Pr
[
∃i ∈ [r] such that ZPi > t/2

]
≤ O

(⌈
d(P)

λ

⌉)
· e−Ω(t).

Furthermore, for every j ∈ [k], let Aj := {i ∈ [r] :
Pi ∩ B(tj ,∆) 6= ∅}, and since P is a shortest path,
|Aj | ≤ 4∆/λ = 4 log k. Observe that ZPi = 0 (with
certainty) for all i /∈ ∪jAj , hence

Pr[ZP > td(P)/λ]

≤ Pr
[
∃i ∈ ∪j∈[k]Aj such that ZPi > t/2

]
≤ 4k log ke−Ω(t) .

3 Terminal-Centered Minors: Main
Construction

This section proves Theorem 1.1 when D :=
maxu,v∈T dG(u,v)
minu,v∈T dG(u,v) satisfies the following assumption (The

proof for the general case is in Section 4).

Assumption 3.1. D ≤ 2k
3

.

By scaling all edge weights, we may further assume that
minu,v∈T dG(u, v) = 1.

Notation 3.2. Let V1, . . . , Vk ⊆ V . For S ⊆ [k],
denote VS :=

⋃
j∈S Vj. In addition, denote V⊥ :=

V \ V[k] and V⊥+j := V⊥ ∪ Vj for all j ∈ [k].

We now present a randomized algorithm that, given
a graph G = (V,E,w) and terminals T ⊂ V , con-
structs a terminal-centered minor G′ as stated in The-
orem 1.1. This algorithm maintains a partial partition

{V1, V2, . . . , Vk} of V , starting with Vj = {tj} for all
j ∈ [k]. The sets grow monotonically during the execu-
tion of the algorithm. We may also think of the algo-
rithm as if it maintains a mapping f : V → T ∪ {⊥},
starting with f |T = id and gradually assigning a value
in T to additional vertices, which correspond to the set
V[k]. Thus, we will also refer to the vertices in V[k] as
assigned, and to vertices in V⊥ as unassigned. The heart
of the algorithm is two nested loops (lines 4-9). During
every iteration of the outer loop, the inner loop performs
k iterations, one for every terminal tj . Every inner-loop
iteration picks a random radius (from an exponential
distribution) and “grows” Vj to that radius (but with-
out overlapping any other set). Every outer-loop itera-
tion increases the expectation of the radius distribution.
Eventually, all nodes are assigned, i.e. {V1, V2, . . . , Vk}
is a partition of V . Note that the algorithm does not ac-
tually contract the clusters at the end of each iteration
of the outer loop. However, in the following iteration
Vj is allowed to grow only in the graph induced in G by
V⊥+j for every j ∈ [k]. Therefore, essentially, it is the
same as contracting each cluster to its respective ter-
minal at the end of the previous iteration of the outer
loop.

Definition 3.3. For U ⊆ V , let G[U] denote the
subgraph of G induced by U , with induced edge lengths
(i.e. w|E(G[U])). For a subgraph H of G with induced
edge lengths, a vertex v ∈ V (H) and r > 0, denote
BH(v, r) := {u ∈ V (H) : dH(u, v) ≤ r}, where dH is
the shortest path metric in H induced by w.

Input: G = (V,E,w), T = {t1, . . . , tk} ⊆ V
Output: A partition {V1, V2, . . . , Vk} of V .

1: set b← 1 + 1/(35 log k)
2: for every j ∈ [k] set Vj ← {tj}, rj = 0.
3: set i ← 0. // i is the iteration number of the outer

loop.
4: while V[k] 6= V do
5: i← i+ 1.
6: for all j ∈ [k] do
7: choose independently at randomRij ∼ exp(bi).

8: rj ← rj +Rij .
9: Vj ← Vj ∪ BG[V⊥+j](tj , rj). // Actually, this is

the same as Vj ← BG[V⊥+j](tj , rj).
10: return {V1, V2, . . . , Vk}.

Algorithm 1: Partitioning V

Claim 3.1. The following properties hold throughout
the execution of the algorithm.

1. For all j ∈ [k], Vj is connected in G, and tj ∈ Vj.

2. For every j1, j2 ∈ [k], if j1 6= j2, then Vj1 ∩Vj2 = ∅.
3. For every outer loop iteration i and every j ∈ [k],

if V ′j denotes the set Vj in the beginning of the ith
iteration (of the outer loop), and V ′′j denotes the
set Vj at the end of that iteration, then V ′j ⊆ V ′′j .

In what follows, we analyze the stretch in distance
between a fixed pair of terminals. We show that with
probability at least 1 − 1/k3, the distance between
these terminals in G′ is at most O(log6 k) times their
distance in G. By a union bound over all

(
k
2

)
pairs

of terminals, we deduce Theorem 1.1. Let s, t ∈ T ,
and let P ∗ be a shortest st-path in G. Due to the
triangle inequality, we may focus on pairs which satisfy
V (P ∗)∩ T = {s, t}, where V (P ∗) is the node set of P ∗.
We denote ` := w(P ∗) = dG,w(s, t).

3.1 High-Level Analysis Following an execution of
the algorithm, we maintain a (dynamic) path P between
s and t. In a sense, in every step of the algorithm,
P simulates an st-path in the terminal-centered minor
induced by V1, V2, . . . , Vk. In the beginning of the
execution, set P to be simply P ∗. During the course
of the execution update P to satisfy two invariants: At
every step of the algorithm, the weight of P is an upper
bound on the distance between s and t in the terminal
centered minor induced by V1, . . . , Vk (in that step). In
addition, if I is a subpath of P , whose inner vertices are
all unassigned, then I is a subpath of P ∗. Throughout
the analysis, we think of P as directed from s to t, thus
inducing a linear ordering of the vertices in P .

Definition 3.4. A subpath of P will be called active
if it is a maximal subpath whose inner vertices are
unassigned.

We now describe how P is updated during the
execution of the algorithm. Consider line 9 of the
algorithm for the ith iteration of the outer loop, and
some j ∈ [k]. We say that the ball B = BG[V⊥+j](tj , rj)
punctures an active subpath A of P , if there is an inner
node of A that belongs to the ball. If B does not
puncture any active subpath of P , we do not change P .
Otherwise, denote by u, v the first and last unassigned
nodes (possibly not in the same active subpath) in
V (P) ∩B respectively. Then we do the following:

1. We replace the entire subpath of P between u and
v with a concatenation of a shortest utj-path and a
shortest tjv-path that lie in B; this is possible, since
G[B] is connected, and u, tj , v ∈ B. This addition
to P will be called a detour from u to v through
tj . The process is illustrated in figures 2(a)-2(c).
Beginning with P ∗, the figure describes the update

after the first four balls. Note that the detour
might not be a simple path. It is also worth noting
that here u and v may belong to different active
subpaths of P . For example, in figure 2(c), the new
ball punctures two active subpaths, and therefore
in figure 2(d), the detour goes from a node in one
active subpath to a node in another active subpath.
Note that in this case, we remove from P portions
which are not active.

2. If, for some iteration i′ < i of the outer loop, and for
some u′, v′ ∈ V (P), we added a detour from u′ to v′

through tj in iteration i′, we keep only one detour
through tj , from the first node between u, u′ and to
the last between v, v′. For example, in figure 2(d),
the ball centered in t3 punctures an active subpath.
Only one detour is kept in figure 2(e).

The total weight of all detours during the execution will
be called the additional weight to P (ignoring portions
of P that are deleted from P). Denote the set of active
subpaths of P in the beginning of the ith iteration of
the outer loop by Ai.

Let V fin
1 , . . . , V fin

k be the partition returned by the
algorithm, let G′ the terminal-centered minor induced
by that partition, and let w′ be the standard restriction
of w to G′. Denote by P fin the path obtained at the end
of the execution.

Claim 3.2. At every step of the algorithm the following
holds:

1. The weight of P is an upper bound on the distance
between s and t in the terminal centered minor
induced by V1, . . . , Vk. Moreover, once Ai = ∅
(namely, P has no active subpaths), the additional
weight of P is an upper bound on the distance
between s and t in the terminal centered minor
induced by V fin

1 , . . . , V fin
k (actually, from this point

on, P = Pfin.

2. If A is a subpath of P , whose inner points are all
in V⊥, then A is a subpath of P ∗.

3. If A1, A2 are two different active subpaths of P ,
they are internally disjoint.

4. |Ai| ≤ k for all i.

Proof. Follows easily by induction on i, j.

Corollary 3.1. dG′,w′(s, t) ≤ w(Pfin).

Let A ∈ Ai. During the execution of the inner loop,
A is either removed from P entirely, or some subpaths
of A remain active (perhaps A remains active entirely).

Therefore, for every A′ ∈ Ai+1, either A′ is a non-trivial
subpath of A (by non-trivial we mean |V (A′)| ≥ 3), or
A′ and A are internally disjoint. Therefore there is a
laminar structure on

⋃
iAi.

We describe this structure using a tree T , whose
node set is {〈i, A〉| A ∈ Ai}. The root of T is 〈1, P ∗〉,
and for every i and everyA ∈ Ai, the children of 〈i, A〉, if
any, are all pairs 〈i+1, A′〉, whereA′ ∈ Ai+1 is a subpath
of A. Whenever we update P we log the weight of the
detour by charging it to one of the nodes of T as follows.
Consider a detour from u to v in the ith iteration of the
outer loop for some i. Before adding this detour, u and
v are unassigned nodes in P . Because u is unassigned,
u is an inner vertex of some active subpath. In either
case, there is exactly one active subpath containing u.
The weight of the detour is charged to the unique active
subpath A ∈ Ai such that u ∈ A. For every i and
A ∈ Ai, denote the total weight charged to 〈i, A〉 by
wi,A (If the node is never charged, the weight of the
node is set to 0). Therefore,

(3.4) w(P fin) ≤ w(P ∗) +
∑
〈i,A〉∈T

wi,A

Equation (3.4) together with Corollary 3.1 imply that
if we show that with high probability, the total weight
charged to the tree is at most O(log6 k)·`, we can deduce
Theorem 1.1. For the rest of this section, we therefore
prove the following lemma.

Lemma 3.3. With probability at least 1 − O(k−3), the
total weight charged to the tree is at most O(log6 k)`.

Let p = 1/100. An active subpath A ∈ Ai will be
called short if w(A) ≤ pbi. Otherwise, A will be called
long (Note that P ∗ ∈ A1 is long).

Definition 3.5. Let i > 1. Let A ∈ Ai be a short
subpath. Denote by Ti,A the subtree of T rooted in 〈i, A〉.
If, in addition, the parent of 〈i, A〉 in T consists of a
long subpath, Ti,A will be called a short subtree of T .

3.2 The Behavior of Short Subtrees Clearly, ev-
ery node of a short subtree of T consists of a short active
subpath. The height and weight of short subtrees will
play an important role in the analysis of the height and
weight of T , and therefore we begin by analyzing short
subtrees. Let i0 > 1. Let A ∈ Ai0 be a short subpath,
and assume in addition that Ti0,A is a short subtree of
T .

3.2.1 The Effect of a Single Ball Fix some i ≥ i0,
and some j ∈ [k]. Let X denote the number of active
subpaths of A in the beginning of the jth iteration of the
inner loop (during the ith iteration of the outer loop).

s = t1
t = t2

t5

t3

t4

P ∗

(a) We begin with P = P ∗

t = t2

t5

t3

t4

P ∗
B(t1, r1)

B(t3, r3)

B(t5, r5)

B(t2, r2)

s = t1

(b) In every iteration of the inner loop, we

grow a terminal-centered ball

t = t2

t5

t3

t4

P ∗
B(t1, r1)

B(t3, r3)

B(t5, r5)

B(t2, r2)

s = t1

(c) Replacing a portion of P with a detour.

t = t2

t5

t3

t4

P ∗
V1

B(t3, r3)

V5

V2

s = t1

V4

(d) Endpoints of a detour can belong to

different active subpaths.

t = t2

t5

t3

t4

P ∗
V1

B(t3, r3)

V5

V2

s = t1

V4

(e) Joining detours.

Figure 2: Updating P

Let X ′ denote the number of active subpaths of A in the
end of the jth iteration. Denote byB the ball considered
in this iteration, namely B := BG[V⊥+j](tj , rj).

Proposition 3.1. With certainty, X ′ ≤ X + 1.

Proof. Let A1, A2, . . . , AX be the subpaths of A which
are active in the beginning of the jth iteration ordered
by their location on P . For α ∈ [X] denote by uα, vα the
first and last unassigned nodes in Aα, respectively. If
B does not puncture any of these subpaths, then X ′ ≤
X < X+1 (Note that subpaths of A can still be removed
if B punctures active subpaths of P not contained in A).
So assume B punctures Aα. Assume first that Aα is the
only subpath of P which is active and is punctured by
B. Then there are three options: If both uα, vα ∈ B,
then Aα is replaced and removed entirely from P when
adding the detour, and X ′ ≤ X − 1 < X + 1. If uα ∈ B
and vα /∈ B, let v′ be the last node in V (Aα) ∩ B then
the uαv

′ segment of Aα is replaced, and the segment
v′vα remains active. Therefore X ′ ≤ X < X + 1. The
argument is similar, if uα /∈ B and vα ∈ B. Otherwise,
some of the inner portion of A is replaced by a non
active path, and both end segments of Aα remain active,
therefore X ′ = X + 1. Next, assume the ball punctures
several active subpaths of A, and maybe more subpaths
of P . Denote by Iα, Iβ the first and last subpaths of
A punctured by B. Denote by u the first node in

V (Iα) ∩ B, and v the last node in V (Iβ) ∩ B. When
updating P , the entire subpath of P between u and v is
removed. Thus X ′ ≤ X − (β − α+ 1) ≤ X < X + 1.

For the next proposition, we need the following defini-
tion, which is a generalization of the notion of a ball
puncturing an active subpath. Recall that a ball B is
said to puncture an active subpath A′ if there is an inner
node in A′ that belongs to the ball.

Definition 3.6. Let A′ be an active subpath of P . We
say that a ball B reaches A′ if V (A′) ∩B 6= ∅.
By the definition of the balls in the algorithm, B may
reach A′ and not puncture if and only if A′ has one
endpoint in Vj .

Proposition 3.2.

Pr[X ′ ≥ X | B reaches an active subpath of A] ≤ p .

Proof. Let A′ be an active subpath of A closest to
tj . Let d = dG[V⊥+j](tj , A

′) = dG[V⊥+j](tj , A) be the
distance in G[V⊥+j] between tj and a nearest node in
A′. Assume that the ball B punctures an active subpath
of A. Following the analysis of the previous proof, if
X ′ ≥ X, then B punctures exactly one active subpath
of A and does not cover it, or B punctures exactly two
active such subpaths and does not cover both of them.

In either case, B punctures A′ and does not cover it,
implying that rj +Rij ≥ d, and rj +Rij < d+ pbi (recall
that A is short, and therefore, so is A′). If B reaches an
active subpath of A, and does not puncture it, we get
the same conclusion, since this means rj +Rij ≥ rj ≥ d.
By the memoryless property,

Pr[X ′ ≥ X | B reaches an active subpath of A]

≤ Pr[Rij < d− rj + pbi | Rij ≥ d− rj]
≤ 1− e−p ≤ p .

3.2.2 The Effect of a Sequence of Balls Consider
the first N balls that reach some active subpath of A,
starting from the beginning of iteration i0 of the outer
loop, and perhaps during several iterations of that loop.
For every a ∈ [N], let Ya be the indicator random
variable for the event that the ath ball reaching an active
subpath of A decreased the number of active subpaths.
In these notations, Proposition 3.2 stated that

∀a ∈ [N]. Pr[Ya+1 = 1 | Y1, . . . , Ya] ≥ 1− p .

Let Y =
∑
a∈[N] Ya and let Z ∼ Bin(N, 1− p). Simple

induction on N implies the following claim.

Claim 3.4. ∀k. Pr [Y > k] ≥ Pr[Z > k].

Lemma 3.5. With probability at least 1 − 1/k8, after
70 log k balls reach some active subpath of A, A has no
active subpaths. In addition, the height of Ti0,A is at
most 35 log k.

Proof. Assume N = 70 log k. Since whenever Ya = 0,
the number of active subpaths increases by at most 1,
and whenever Ya = 1, the number of active subpaths
decreases by at least 1, if Y > N/2, then A has no
active subpaths. Therefore by the Chernoff bound,

Pr[A has no active subpath after N balls reach A]

≥ Pr[Y > N/2] ≥ Pr[Z > N/2] ≥ 1− 1/k8 .

Next, consider some i ≥ i0. If A has an active subpath
at the end of the ith iteration of the outer loop, then
at least two times during the ith iteration an active
subpath of A is reached by a ball. After 35 log k
iterations of the outer loop, if A has an active subpath,
then N ≥ 70 log k. By the same arguments as the first
part of the proof,

Pr[The height of Ti0,A is at most N/2] ≥ Pr[Y > N/2]

≥ Pr[Z > N/2]

≥ 1− 1/k8 .

We denote by E1 the event that for every i, and every
A ∈ Ai, if Ti,A is a short subtree then after at most
70 log k balls reach an active subpath of A, A has no
more active subpaths and in addition, the height of Ti,A
is at most 35 log k.

Lemma 3.6. Pr[E1] ≥ 1− 1/k3.

Proof. Fix some i, and A ∈ Ai. Assume that Ti,A
is a short subtree. By definition, 〈i, A〉 has no short
ancestor. For i′ = logb(`/p) ≤ logb(D/p), P ∗ itself is
short, since bi

′
= `/p, and thus all tree nodes in level i′

(and lower) are short. Therefore, i ≤ i′. Since there are
at most k nodes in every level of the tree, the number
of short subtrees of T is at most k · logb(D/p) = k ·
(logbD+ logb 100) ≤ k4 log k+O(k log k) ≤ O(k4 log k).
By the previous lemma, and a union bound over all
short subtrees, the result follows.

Since every node in level logb(`/p) of the tree
belongs to some short subtree, we get the following
corollary.

Corollary 3.2. With probability at least 1−2/k3, the
height of T is at most logb(`/p) + 30 log k ≤ 10 logbD.

We denote by E2 the event that for all i ≤ 10 logbD
and j ∈ [k], the radius of the jth ball of the ith
iteration of the outer loop is at most 280bi+1 log2 k.
From assumption 3.1 we deduce the following.

Lemma 3.7. Pr[E2] ≥ 1− 1/k3.

Proof. Fix i ≤ 10 logbD and j ∈ [k]. Then Pr[Rij >

8bi log k] ≤ 1/k8. By assumption 3.1, 10 logbD =
O(logD log k) = O(k3 log k). Thus by a union bound
over all values of i and j in question,

Pr[∀i, j. Rij ≤ 8bi log k] ≥ 1− k · 10 logbD
k8

≥ 1− 1

k3
.

It follows that, with probability at least 1 − 1/k3, the
radius of the jth ball of the ith iteration of the outer
loop is at most

∑
i′≤i 8bi log k ≤ 280bi+1 log2 k.

Summing everything up, we can now bound with high
probability the weights of all short subtrees of T .

Claim 3.8. Conditioned on the events E1 and E2, for
every i0 > 1 and A ∈ Ai0 . If Ti0,A is a short subtree of
T , then the total weight charged to nodes of Ti0,A is at
most 39200ebi0+1 log3 k with certainty.

Proof. Conditioned on E1, at most 70 log k detours
are charged to nodes of every short subtree and for
i = i0 + 35 log k, there are no more active subpaths
of A. Conditioned on E2, the most expensive detour is
of weight at most 560bi0+35 log k+1 log2 k, we get that
the total weight charged to nodes of the subtree is
70 log k · 560bi0+1 · b35 log k · log2 k ≤ 39200ebi0+1 log3 k.

3.3 Bounding The Weight Of T We are now ready
to bound the total weight charged to the tree. We sum
the weights in each level of the tree from the root down.
In each level we sum the weights charged to long active
subpaths, and the weights of short subtrees rooted in
that level. More formally, for every i ≤ logb(`/p),
denote by li the total weight charged to nodes of the
form 〈i, A〉, where A ∈ Ai is a long active subpath.
Denote by si the total weight charged to short subtrees
rooted in the ith level of T . For every i ≥ logb(`/p), and
every A ∈ Ai, A is short and therefore 〈i, A〉 belongs to
some short subtree rooted in level at most logb(`/p).
Therefore,

(3.5)
∑
〈i,A〉∈T

wi,A =

logb(`/p)∑
i=1

(li + si) .

Since ` ≥ 1, then the root of T , namely 〈1, P ∗〉, consists
of a long path. Therefore, s1 = 0. We can therefore
rearrange Equation (3.5) to get the following.

(3.6)
∑
〈i,A〉∈T

wi,A =

logb(`/p)∑
i=1

(li + si+1) .

Let i ≤ logb(`/p). Let A ∈ Ai be a long active
subpath. That is w(A) ≥ pbi. Thinking of A as a
continuous path, divide A into w(A)/(pbi) segments
of length pbi. Some segments may contain no nodes.
Let I be a segment of A, and assume I contains
nodes (otherwise, no cost is charged to A on account
of detours from I). Following the same arguments of
propositions 3.1 and 3.2, we get the following result.

Lemma 3.9. With probability at least 1−1/k8, no more
than 70 log k balls puncture I.

Denote by E3 the event that for every i ≥ logb(`/k
2),

and for every long active subpath A ∈ Ai, in the division
of A to segments of length pbi, every such subsegment
is reached by at most 70 log k balls.

Lemma 3.10. Pr[E3] ≥ 1− 1/k3.

Proof. Since for every i ≥ logb(`/p), every A ∈ Ai is
short, the number of relevant iterations (of the outer
loop) is at most logb(`/p) − logb(`/k

2) = logb(k
2/p) ≤

O(log2 k). For every i ≥ logb(`/k
2) and every long

path A ∈ Ai, the number of segments of A is at most
w(A)/(pbi) ≤ w(A)/(p`/k2) ≤ k2/p. Therefore the
number of relevant segments for all i ≥ logb(`/k

2) and
for all long A ∈ Ai is at most O(k2 log2 k) Applying
a union bound over all relevant segments the result
follows.

Since Pr[E1] ≥ 1− 1/k3 and Pr[E2] ≥ 1− 1/k3, we get
the following corollary.

Corollary 3.3. Pr[E1 ∧E2 ∧E3] ≥ 1−O(k−3)

It follows that it is enough for us to prove that condi-
tioned on E1, E2 and E3, with probability 1 the total
weight charged to the tree is at most O(log6 k)`.

Lemma 3.11. Conditioned on E2 and E3, li ≤
560bi+1k log2 k. In addition, if i ≥ logb(`/k

2), li ≤
O(log3 k) · ` with probability 1.

Proof. To see the first bound, observe that by the
update process of P , at most k detours are added to P
during the ith iteration. Conditioned on E2, each one
of them is of weight at most 560bi+1 log2 k. To see the
second bound, let A ∈ Ai be a long active subpath. The
additional weight resulting from detours from vertices of
A is at most the number of segments of A of length pbi,
times the additional weight to each segment. Therefore,
the additional weight is at most

wi,A ≤ w(A)/pbi · 70 log k · 560bi+1 log2 k

= 39200b/p · log3 k · w(A) .

Since all paths in Ai are internally disjoint subpaths of
P ∗, we get:

li =
∑

long A∈Ai

wi,A

≤
∑

long A∈Ai

O(log3 k) · w(A) ≤ O(log3 k) · ` .

Lemma 3.12. Conditioned on events E1, E2 and E3,
si+1 ≤ 39200ebi+2k log3 k. In addition, if i ≥
logb(`/k

2), si+1 ≤ O(log4 k) · `.
Proof. Conditioned on E1 and E2, we proved in
Claim 3.8 that the total weight charged to a short sub-
tree rooted in level i + 1 is at most 39200ebi+2 log3 k
with certainty. Since there are at most k such sub-
trees, the first bound follows. To get the second bound,
note that by the definition of a short subtree, for every
short subtree T ′ rooted at level i+ 1, the parent of the
root of T ′ consists of a long active subpath A of level
i. Conditioned on E3, every segment of A is intersected
by at most 70 log k balls. Therefore, 〈i, A〉 can have at
most (w(A)/pbi) · 70 log k children, and in particular,
children consisting of short active subpaths. The cost
of a short subtree rooted in the i + 1 level of T is at
most 39200ebi+1 log3 k. Thus the total cost of all short
subtrees rooted in children of A is bounded by

(w(A)/pbi)·70 log k·39200ebi+1 log3 k ≤ O(log4 k)·w(A) .

Summing over all (internally disjoint) long subpaths of
level i, the result follows.

We now turn to prove Lemma 3.3.

Proof. [of Lemma 3.3] Since Pr[E1 ∧ E2 ∧ E3] ≥
1 − O(k−3), it is enough to show that conditioned
on E1, E2 and E3, the total weight charged to the
tree is at most O(log6 k)` with certainty. Recall that∑
〈i,A〉∈T wi,A =

∑logb(`/p)
i=1 (li + si+1). Following Lem-

mas 3.11 and 3.12 we get that

logb(`/k
2)∑

i=1

(li + si+1) ≤ o(1) · ` .

In addition,

logb(`/p)∑
i=logb(`/k

2)+1

(li + si+1) ≤ O(log6 k) · ` .

4 Terminal-Centered Minors: Extension to
General Case

In this section, we complete the proof of Theorem 1.1
by reducing it to the special case where Assumption 3.1
holds (which is proven in Section 3). Let us outline
the reduction, which is implemented using a recursive
algorithm. The algorithm first rescales edge weights of
the graph so that minimal terminal distance is 1. If
D < 2k

3

then we apply Algorithm 1 and we are done.
Otherwise, we construct a set of at most k − 1 well-
separated and low diameter balls whose union contains
all terminals. Then, for each of the balls, we apply
Algorithm 1 on the graph induced by that ball. Each
ball is then contracted into a “super-terminal”. We
apply the algorithm recursively on the resulting graph
G̃ with the set of super-terminals as the terminal set.
Going back from the recursion, we “stitch” together the
output of Algorithm 1 on the balls in the original graph
with the output of the recursive call on G̃, to construct
a partition of V as required. The detailed algorithm and
proof of correctness appear in the full version [KKN13].

References

[AGMW10] I. Abraham, C. Gavoille, D. Malkhi, and
U. Wieder. Strong-diameter decompositions of mi-
nor free graphs. Theor. Comp. Sys., 47(4):837–855,
November 2010.

[Bar96] Y. Bartal. Probabilistic approximation of metric
spaces and its algorithmic applications. In 37th An-
nual Symposium on Foundations of Computer Science,
pages 184–193. IEEE, 1996.

[Bar04] Y. Bartal. Graph decomposition lemmas and their
role in metric embedding methods. In 12th Annual
European Symposium on Algorithms, volume 3221 of
LNCS, pages 89–97. Springer, 2004.

[BG08] A. Basu and A. Gupta. Steiner point removal
in graph metrics. Unpublished Manuscript, available
from http://www.math.ucdavis.edu/~abasu/papers/

SPR.pdf, 2008.
[BK96] A. A. Benczúr and D. R. Karger. Approximating

s-t minimum cuts in Õ(n2) time. In 28th Annual
ACM Symposium on Theory of Computing, pages 47–
55. ACM, 1996.

[BSS09] J. D. Batson, D. A. Spielman, and N. Srivastava.
Twice-ramanujan sparsifiers. In 41st Annual ACM
symposium on Theory of computing, pages 255–262.
ACM, 2009.

[Chu12] J. Chuzhoy. On vertex sparsifiers with Steiner
nodes. In 44th symposium on Theory of Computing,
pages 673–688. ACM, 2012.

[CKR01] G. Calinescu, H. Karloff, and Y. Rabani. Approx-
imation algorithms for the 0-extension problem. In
12th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 8–16. SIAM, 2001.

[CLLM10] M. Charikar, T. Leighton, S. Li, and A. Moitra.
Vertex sparsifiers and abstract rounding algorithms. In
51st Annual Symposium on Foundations of Computer
Science, pages 265–274. IEEE Computer Society, 2010.

[CXKR06] T. Chan, D. Xia, G. Konjevod, and A. Richa. A
tight lower bound for the Steiner point removal prob-
lem on trees. In 9th International Workshop on Ap-
proximation, Randomization, and Combinatorial Opti-
mization, volume 4110 of Lecture Notes in Computer
Science, pages 70–81. Springer, 2006.

[EGK+10] M. Englert, A. Gupta, R. Krauthgamer,
H. Räcke, I. Talgam-Cohen, and K. Talwar. Vertex
sparsifiers: New results from old techniques. In 13th
International Workshop on Approximation, Random-
ization, and Combinatorial Optimization, volume 6302
of Lecture Notes in Computer Science, pages 152–165.
Springer, 2010.

[FRT04] J. Fakcharoenphol, S. Rao, and K. Talwar. A
tight bound on approximating arbitrary metrics by tree
metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004.

[GNR10] A. Gupta, V. Nagarajan, and R. Ravi. Improved
approximation algorithms for requirement cut. Opera-
tions Research Letters, 38(4):322–325, 2010.

[Gup01] A. Gupta. Steiner points in tree metrics don’t
(really) help. In 12th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 220–227. SIAM, 2001.

[KKN13] L. Kamma, R. Krauthgamer, and H. L. Nguyen.
Cutting corners cheaply, or how to remove Steiner
points. CoRR, abs/1304.1449, 2013.

[KR11] R. Krauthgamer and T. Roughgarden. Metric clus-
tering via consistent labeling. Theory of Computing,
7(5):49–74, 2011.

[KZ12] R. Krauthgamer and T. Zondiner. Preserving termi-
nal distances using minors. In 39th International Col-
loquium on Automata, Languages, and Programming,
volume 7391 of Lecture Notes in Computer Science,
pages 594–605. Springer, 2012.

[LM10] F. T. Leighton and A. Moitra. Extensions and limits
to vertex sparsification. In 42nd ACM symposium on

http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf
http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf

Theory of computing, STOC, pages 47–56. ACM, 2010.
[LN05] J. R. Lee and A. Naor. Extending lipschitz functions

via random metric partitions. Inventiones Mathemati-
cae, 1:59–95, 2005.

[LS91] N. Linial and M. Saks. Decomposing graphs into
regions of small diameter. In Proceedings of the second
annual ACM-SIAM symposium on Discrete algorithms,
SODA ’91, pages 320–330. SIAM, 1991.

[MM10] K. Makarychev and Y. Makarychev. Metric exten-
sion operators, vertex sparsifiers and lipschitz extend-
ability. In 51st Annual Symposium on Foundations of
Computer Science, pages 255–264. IEEE, 2010.

[MN07] M. Mendel and A. Naor. Ramsey partitions
and proximity data structures. J. Eur. Math. Soc.,
9(2):253–275, 2007.

[Moi09] A. Moitra. Approximation algorithms for
multicommodity-type problems with guarantees inde-
pendent of the graph size. In 50th Annual Symposium
on Foundations of Computer Science, FOCS, pages 3–
12. IEEE, 2009.

[PS89] D. Peleg and A. A. Schäffer. Graph spanners. J.
Graph Theory, 13(1):99–116, 1989.

[TZ05] M. Thorup and U. Zwick. Approximate distance
oracles. J. ACM, 52(1):1–24, 2005.

	Introduction
	Main Result
	A Key Technique: Metric Decomposition with Concentration
	Related Work

	Metric Decomposition with Concentration
	Terminal-Centered Minors: Main Construction
	High-Level Analysis
	The Behavior of Short Subtrees
	The Effect of a Single Ball
	The Effect of a Sequence of Balls

	Bounding The Weight Of T

	Terminal-Centered Minors: Extension to General Case

