
Navigating nets: Simple algorithms for proximity search

[Extended Abstract]

Robert Krauthgamer ∗ James R. Lee †

Abstract

We present a simple deterministic data structure for
maintaining a set S of points in a general metric space,
while supporting proximity search (nearest neighbor
and range queries) and updates to S (insertions and
deletions). Our data structure consists of a sequence of
progressively finer ε-nets of S, with pointers that allow
us to navigate easily from one scale to the next.

We analyze the worst-case complexity of this data
structure in terms of the “abstract dimensionality” of
the metric S. Our data structure is extremely efficient
for metrics of bounded dimension and is essentially
optimal in a certain model of distance computation.
Finally, as a special case, our approach improves over
one recently devised by Karger and Ruhl [KR02].

1 Introduction

Nearest-neighbor search (NNS) is the problem of pre-
processing a set S of n points lying in a huge (possi-
bly infinite) metric space (M,d) so that given a query
q ∈ M , one can efficiently locate the nearest point
to q among the points in S.1 Computing such near-
est neighbors efficiently is a classical and fundamental
problem with numerous practical applications. These
include data compression, database queries, machine
learning, computational biology, data mining, pattern
recognition, and ad-hoc networks. A common feature of
many of these examples is that comparing two elements
is costly, hence the number of distance computations
should be made as small as possible.

The general NNS problem has several flavors. For

∗IBM Almaden Research Center, 650 Harry Road, San Jose

CA 95120, USA. Part of this work was done while this au-

thor was with the International Computer Science Institute and
with the Computer Science Division of U.C. Berkeley. Email:

robi@almaden.ibm.com
†Computer Science Division, U.C. Berkeley, Berkeley, CA

94720, USA. Part of this work was done while the author was

at Microsoft Research (Redmond). Work partially supported

by NSF grant CCR-0121555 and an NSF Graduate Research

Fellowship. Email: jrl@cs.berkeley.edu
1The distance function d is assumed to be nonnegative and

symmetric, and to satisfy the triangle inequality.

instance, the host metric space (M,d) may be applica-
tion specific (for example, it could be the weighted edit
distance between strings in a spell-checker or in genomic
data), it may be infinite (e.g., Euclidean space), and it
may even be so unstructured that it is practically un-
known (as in a peer-to-peer network, representing the
internode latencies). The space and time of the prepro-
cessing stage may be constrained (e.g., to be polynomial
or linear in n). The application at hand may require the
data structure to be dynamic in the sense that it should
efficiently support the insertion and deletion of points
from S. Additionally, it may be desirable for the data
structure to be distributed among the data points, in
which case some other cost measures like communica-
tion and load could be highly important. Finally, it may
be the case that only approximate solutions are required.
Let q be the query and a ∈ S the closest point to q in
S. Then a (1+ ε)-NNS algorithm is one which, given q,
returns some s ∈ S such that d(q, s) ≤ (1 + ε) d(q, a).

Most previous research has focused on the impor-
tant special case when M = R

d and distances are com-
puted according to some `p norm. While many types of
data can be naturally represented in such a form, this
is certainly not true for a significant number of appli-
cations, and it is therefore desirable to address NNS in
general metric spaces. On the one hand, data structures
for general metrics might perform a nearest neighbor
query in time as poorly as Ω(n) which is unacceptable
in practice. Such a dependence is inherent even when
only approximate solutions are required. A well-known
example is where S forms a uniform metric, so that
the interpoint distances in S are all equal, providing
essentially no information. (See Section 3 for a specifi-
cation of the model and additional lower bounds.) On
the other hand, metrics arising in practice often have a
nicer structure which can be exploited algorithmically.

Given this state of affairs, an increasing amount
of recent attention has focused on understanding the
complexity of NNS in terms of a metric’s implicit
structure. In Euclidean spaces, a natural and common
measure for the metric’s complexity is the dimension
of the Euclidean host space. Indeed, the efficiency of
most algorithms depend on this dimension. In fact, the



running time of many algorithms grows exponentially
with the dimension, a phenomenon called the curse of
dimensionality (notable exceptions are those of [IM98,
KOR98]). It is thus only natural to try and define an
analogous notion of dimensionality for abstract metric
spaces.

Our first contribution is conceptual—we put for-
ward (in the context of NNS) a natural notion of ab-
stract dimension, which is based on one of Assouad
[Ass83] (from the theory of analysis on metric spaces).
This is corroborated by a technical contribution—we
provide an efficient and dynamic data structure for NNS
in general low-dimensional metrics. Other notions of di-
mensionality were suggested and studied in the context
of NNS in general metric spaces [Cla99, KR02], and
our scheme compares favorably with them. Further-
more, our scheme is comparable to the best one known
for low-dimensional Euclidean space (with linear pre-
processing space) [AMN+98], despite the fact that our
approach is general and, in particular, independent of
the Euclidean geometry! See Section 1.3 for a more de-
tailed account.

1.1 Abstract dimension. The doubling dimension
of a metric space (X, d), denoted in this paper by
dim(X), is the minimum value ρ such that every set in
X can be covered by 2ρ sets of half the diameter. (The
diameter of a set S ⊆ X is sup{d(x, y) : x, y ∈ S}.)
As usual, define the (closed) ball of radius r about x in
S ⊆ X to be BS(x, r) = {y ∈ S : d(x, y) ≤ r}; we may
omit the subscript S when it is clear from the context.
It is not difficult to see that the minimum value ρ such
that every ball in X can be covered by 2ρ balls of half the
radius is within a factor of two of the above definition—
this is the value we work with throughout.

A metric space is called doubling if its dimension is
O(1). For example, a uniform metric on k points has
dimension log k. An approximate converse also holds
(see Lemma 1.2 below), showing that small doubling
dimension quantifies the lack of a large nearly-uniform
metric. In other words, this notion of dimension
measures the “volume growth” of X. We note that
Clarkson [Cla99] used a similar notion (under a different
name) in the context of NNS, but his results do not
seem to unleash its full power. (See Section 1.3 for
further details.)

The doubling dimension has several natural and
appealing properties. Let (X, d) be an arbitrary metric
space; here are some of the more simple properties (see,
e.g. [Hei01]).

1. For X = R
k equipped with any norm, dim(X) =

Θ(k).

2. If X is a subspace of Y , then dim(X) ≤ dim(Y ).

3. dim(X1 ∪ · · · ∪ Xm) ≤ maxi dim(Xi) + log m.

It has been noted in [KR02] that doubling metrics
(those of uniformly bounded dimension) occur naturally
in practical applications like peer-to-peer networks. In
feature recognition problems, the data set S is often
contained in the union of m low-dimensional manifolds
lying in some very high-dimensional space R

L and the
distance function used is a norm of R

L (usually the `1
or `2 norm). For instance, a manifold may represent the
feature vectors corresponding to different viewpoints of
a single object, thus m objects give rise to a union of
m manifolds. In this case, performing nearest neighbor
search using only the structure of the high-dimensional
host space would prove quite costly. The situation is
made even more complicated by the fact that noise and
errors arising in measurement actually yield a union
of m sets each of which is only close to a manifold.
Fortunately, the doubling dimension is fairly insensitive
to such small perturbations.

1.2 Our results. We provide a simple scheme for
(1 + ε)-NNS in general metrics. The data structure,
described in Section 2, is deterministic and thus guar-
anteed to answer (1 + ε)-NNS queries correctly. Our
data structure is dynamic; it supports insertions and
deletions to S. It also supports range queries: One is
given a query q ∈ M and a range t, and the goal is to
return all points s ∈ S such that d(q, s) ≤ t.

The complexity of these operations depends on the
dimension of S and the aspect ratio of (S, d), denoted
∆ = ∆S , which is defined as the ratio between the
largest and smallest interpoint distances in S. In most
applications, ∆ = poly(|S|), hence log ∆ = O(log n).

If S is doubling, the data structure uses O(n) space;
it answers (1 + ε)-NNS queries in time O(log ∆) +
(1/ε)O(1); and it implements insertions and deletions
in time O(log ∆ log log ∆). The running time depends
exponentially on dim(S) (see Section 2), but in a
distance-oracle model, where access to M is restricted
to queries to the distance function d, this dependence is
necessary, as we show in Section 3.

In [KR02], a different notion of dimension is defined
(implicitly) which we denote by dimKR(X). This is the
least value k such that |BX(x, 2r)| ≤ 2k|BX(x, r)| for
every point x ∈ X and every r > 0. The following
easy lemma is proved in [GKL03]; for completeness, we
repeat the proof in the Appendix.

Lemma 1.1. ([GKL03]) Every finite metric (X, d) sat-
isfies dim(X) ≤ 4 dimKR(X).

The converse direction (a bound on dimKR(X) in
terms of dim(X)) does not hold. In other words,



doubling metrics (those of bounded doubling dimension)
form a strictly larger class than those metrics of bounded
KR-dimension. The two notions are further compared
in the next section.

When the metric formed by the data set S together
with the query point q (namely, S ∪ {q}) happens to
belong to the more restricted class of metrics with
bounded KR-dimension, by a slight modification of our
querying procedure (but not the data structure), we are
able to return exact nearest-neighbors and to match or
improve the bounds of [KR02]; see Section 1.3.

1.3 Related work. Several works (e.g., [Bri95])
demonstrate that the (concentration of the) histogram
of distances between points in a metric space in-
dicates (heuristically) its dimensionality. Chávez
et al. [CNBYM01] suggest to define the dimension of
a metric as ρ = µ2/2σ2 where µ and σ2 are the his-
togram’s mean and variance, and show that it affects,
in a random instance, the efficiency of a certain nearest
neighbor search algorithm. Faloutsos and Kamel [FK97]
suggest to measure the fractal dimension of the data set,
but this notion only applies to Euclidean spaces.

Clarkson [Cla99] devised two NNS data structures
for metric spaces satisfying a certain sphere packing
property which is equivalent to having O(1) doubling
dimension. (See Table 1.) However, his data structures
are randomized, not dynamic, the query time is super-
logarithmic, and it is assumed that the data set S
and the query q are drawn from the same (unknown)
probability distribution. Our algorithms improve over
[Cla99] in these respects, although they only guarantee
(1 + ε)-NNS.

More recently, Karger and Ruhl [KR02] suggested
the notion of dimension discussed in the previous sec-
tion. One justification for this notion is that the k-
dimensional grid with the l1 metric has KR-dimension
Θ(k). Karger and Ruhl [KR02] show an efficient NNS
data structure for metric spaces with bounded KR-
dimension. (See Table 1.)

Lemma 1.1 shows that the doubling dimension of
every metric space is (essentially) not larger than its
KR-dimension. Therefore, all our results for doubling
metrics immediately hold for metrics with bounded KR-
dimension. In addition, we can show that when run
on the latter family of metrics, our algorithms can be
(slightly) modified so as to find exact NNS with running
time that is similar to [KR02], but with linear (instead
of near-linear) space. Our results improve over [KR02]
in several respects. Besides extending to a larger family
of metrics, they are deterministic and do not require any
parameter, while those of [KR02] are randomized (Las-
Vegas), and their performance depends on a correct

setting of the dimension parameter.
We take a moment to discuss the frailty of the no-

tion of KR-dimension. In particular, as was pointed out
in [KR02], subsets of metrics of bounded KR-dimension
do not always have bounded dimension themselves. In
particular, there are subsets of the real line which have
unbounded KR-dimension (while certainly every subset
of R has bounded doubling dimension). The reason for
this is quite simple; the algorithms of [KR02] use ran-
dom sampling in order to find nearest neighbors, and
thus impose a certain uniformity on the layout of points
in the metric space. Thus it is unclear whether their ap-
proach could be extended to the larger class of doubling
metrics. To see a simple example of this instability, con-
sider the discrete annulus S = {x ∈ Z : 2r > |x| > r}.
It is not difficult to see that dimKR(S) = O(1) (uni-
formly, for any value of r > 0). On the other hand,
dimKR(S∪{0}) = Ω(log r), thus the addition of a single
point to S can cause the KR-dimension to grow arbi-
trarily.

Perhaps most interestingly, our results are compa-
rable to those of [AMN+98] for bounded dimensional
Euclidean metrics (which, of course, also have bounded
doubling dimension); see Table 1. It is quite remarkable
that similar running times are achievable using only a
bound on the volume growth of point sets and not the
geometry of Euclidean space.

1.4 Techniques. Let (X, d) be a metric space. We
say that a subset Y ⊆ X is an ε-net of X if it satisfies
(1) For every x, y ∈ Y , d(x, y) ≥ ε and (2) X ⊆⋃

y∈Y B(y, ε). Such nets always exist for any ε > 0.
For finite metrics, they can be constructed greedily.
For arbitrary metrics, proof of their existence is an
easy application of Zorn’s lemma. This classical notion
of an ε-net, which is a standard tool in the study of
metric spaces (see e.g. [Hei01]), should not be confused
with a more recent notion (under the same name) from
Computational Geometry.

The following lemma will be key to our analysis.

Lemma 1.2. Let (S, d) be a metric space, and let Y ⊆
S. If the aspect ratio of the metric induced on Y is at
most α and α ≥ 2, then |Y | ≤ αO(dim(S)).

Proof. Let dmin = inf{d(x, y) : x, y ∈ Y } and dmax =
sup{d(x, y) : x, y ∈ Y } be the minimum and maximum
interpoint distance in Y , respectively, and assume that
α = dmax

dmin

< ∞. Notice that Y is contained in a ball
of radius 2dmax ≤ 2αdmin in S (centered at any point
of Y ). Applying the definition of doubling dimension
iteratively several times we get that this ball, and in
particular Y , can be covered by 2dim(S)·O(log α) balls
of radius dmin/3. Each of these balls can cover at



Dimension Space NNS or (1 + ε)-NNS Insert/Delete

[Cla99] ∗ dim(S) = O(1) † O(n log ∆) O(log4 n · log ∆) –

[Cla99] ∗ dim(S) = O(1) ‡ n(log n)O(log log ∆) (log n)O(log log ∆) –

This paper dim(S) = O(1) O(n) O(log ∆) + (1/ε)O(1) O(log ∆ log log ∆)

[KR02] ∗ dimKR(S) = O(1) O(n log n) O(log n) O(log n log log n)
This paper dimKR(S) = O(1) O(n) O(log n) O(log n log log n)

[AMN+98] O(1) Euclidean O(n) (1/ε)O(1) log n O(log n)

∗ Randomized (Las Vegas) data structure
† Assuming there is a training set for the query.
‡ Assuming the query comes from the same (unknown) distribution as the data set.

Table 1: Comparison of NNS schemes for general metrics.

most one point of Y (by definition of dmin) and thus
|Y | ≤ 2dim(S)·O(log α) ≤ αO(dim(S)). �

A simplified 3-NNS algorithm. Here is a simplified
version of our data structure. Let (S, d) be the metric
space which is queried against, and for the sake of
this informal discussion, assume that the minimum
interpoint distance in S is min{d(x, y) : x, y ∈ S} = 1.
In this case, the aspect ratio ∆ is just the diameter of S.
In what follows, for a subset R ⊆ S and a point x ∈ M ,
we let d(x,R) = infy∈R d(x, y).

Let k = log ∆, and for i = 0, 1, . . . , k, let Yi be a
2i-net of S. Now, for every point y ∈ Yi, suppose we
have the set of points Ly,i = {z ∈ Yi−1 : d(y, z) ≤ γ2i},
for some constant γ to be specified later.

Notice that the set Ly,i has minimum distance
2i−1 (since this is the minimum distance in Yi−1) and
maximum distance γ2i+1, hence its aspect ratio is
bounded. When S is a doubling metric, Lemma 1.2
implies that |Ly,i| = O(1) where the constant depends
on the choice of γ. Also, Yk contains only one (arbitrary)
point which we denote by ytop.

Now, given a query point q ∈ M , we first set
y = ytop, and then iteratively for i = k, k − 1, . . . find
the point in Ly,i ⊆ Yi−1 that is closest to q, and set y to
be this point (for the next iteration). If, at some stage,
we reach a point where d(q, Ly,i) > 3 · 2i−1, then we
stop and output y. Otherwise, we output the last value
y ∈ Y0.

First, notice that the running time of this algorithm
is at most O(log ∆), since finding the closest point to q
among a list Ly,i takes constant time (the lists are of
size O(1)). Thus we need only argue that the output
point y is a 3-approximation to the nearest neighbor
a ∈ S, i.e. that d(q, y) ≤ 3 d(q, a).

To this end, let j be such that d(q, y) ≤ 3 · 2j , but
d(q, Ly,j) > 3 · 2j−1, i.e. the step in which the distance
does not decrease by a factor of 2. First, we argue that

d(a, Ly,j) ≤ 2j−1. In other words, the closest 2j−1-
net point to a is contained in Ly,j . Let y∗ ∈ Yj−1

be such that d(a, y∗) ≤ 2j−1. We need to argue that
d(y∗, y) ≤ γ2j ; in this case, we will have y∗ ∈ Ly,j .
Since d(q, y) ≤ 3 · 2j , we have

d(y∗, y) ≤ d(y∗, a) + d(a, y) ≤ 2j−1 + d(a, q) + d(q, y)

≤ 2j−1 + 2 · d(q, y) ≤ 7 · 2j ,

thus choosing γ = 7 suffices.
This shows that the descension process “tracks” the

closest net point to a. Now it is a simple matter to see
that

3·2j−1 < d(q, Ly,j) ≤ d(q, a)+d(a, Ly,j) ≤ d(q, a)+2j−1

so that d(q, a) > 2j . Since d(q, y) ≤ 3 · 2j , it follows
that y is a 3-approximate nearest neighbor. Similar
arguments show that if we end with y ∈ Y0 then
y is actually the closest point to q. Later, we will
see that, after obtaining an O(1)-approximate nearest
neighbor, the (1 + ε)-NNS problem can be solved in
time O(1/ε)O(1).

The preceding simple algorithm illustrates the
power of using nets at different scales to navigate
through a metric space, roughly halving the distance
from q to the closest point at each step. All the opera-
tions in our data structure are implemented inside this
simple framework.

To overcome some technical limitations of the above
scheme, the actual data structure presented in Section 2
is more involved. First, the above algorithm has to be
extended to (1 + ε)-NNS, for any ε > 0. This can
be achieved by roughly log(1/ε) more iterations of the
same decision procedure, but at each iteration we now
have to process more than just one point y. Secondly,
in the presence of insertions and deletions, we cannot
make the simplifying assumption that the minimum



interpoint distance in S is 1, and thus we must find
a way to keep track of the “relevant” scales. Finally,
for a technical reason, the above data structure does
not support efficient deletions and might require space
Ω(n log ∆). The main remedy for these latter problems
is to choose Yi to be a 2i-net in Yi−1 rather than in S.

2 Navigating nets

In this section we present a data structure that main-
tains a set S of points in a metric space, so as to support
proximity queries and updates to S. The performance
guarantees of this data structure (in terms of time and
space) depend on the dimensionality of the data set S,
as defined in Section 1. However, the data structure is
deterministic, and is guaranteed to be correct for any
metric space unconditionally. Neither the dimension of
S nor ε (for (1+ε)-NNS) needs to be known in advance.

We start by describing the data structure in Sec-
tion 2.1, and analyzing its space requirement in Sec-
tion 2.2. We then present the procedures for computing
proximity queries in Sections 2.3 and 2.4, and those for
updating S in Sections 2.5 and 2.6. Finally, we give
improved bounds for KR metrics in Section 2.7.

We shall use the notation of Section 1, where (M,d)
is the host metric space, S is the set of points to be
maintained by the data structure, and n = |S|. Let
dmax := sup{d(x, y) : x, y ∈ S} and dmin := inf{d(x, y) :
x, y ∈ S} denote the maximum and minimum interpoint
distance in S, respectively so that ∆ := dmax/dmin is the
aspect ratio of S.

2.1 The data structure. Let Γ = {2i : i ∈ Z}, and
let us call every value r ∈ Γ a scale. To simplify the
exposition, we consider infinitely many scales, but it will
be apparent that only O(log ∆) of them are “relevant”
and the remaining scales will be trivial.

For every r ∈ Γ, let Yr be an r-net of Yr/2. As the
base case, we define Yr := S for all scales r ≤ dmin. For
every r ∈ Γ and every y ∈ Yr, the data structure stores
a list of the nearby points to y among the r/2-net Yr/2.
This scale r navigation list of y is defined by

(2.1) Ly,r := {z ∈ Yr/2 : d(z, y) ≤ γ · r},

where γ > 0 is a universal constant. We will see later
that γ ≥ 4 suffices for all the operations. While Yr need
not be an r-net of S, the following lemma shows that
Yr is a relaxed variant of an r-net of S.

Lemma 2.1. For every scale r, we have:
1. Covering: d(z, Yr) < 2r for every z ∈ S.
2. Packing: d(x, y) ≥ r for every x, y ∈ Yr.

Proof. The covering property follows by induction. The
base case is r < dmin, for which Yr = S and the desired

property is trivial. For the inductive step, assume the
property holds for scale r, i.e., there exists y ∈ Yr such
that d(z, y) < 2r. Since Y2r is a 2r-net of Yr, we get
that d(z, Y2r) ≤ d(z, y) + d(y, Y2r) < 4r.

The packing property follows directly from the fact
that Yr is an r-net of Yr/2. �

The next lemma upper bounds the size of any
navigation list. Its proof follows by observing that all
the points in a list Ly,r are points of Yr/2 ⊆ S, so the
distance between every two of them is at least r/2, while
they all lie in a ball of radius γr. Applying Lemma 1.2
yields the following.

Lemma 2.2. The size of every navigation list is at most
2O(dim(S)).

Implementation. We now discuss the implementation
of this data structure. First, the nets Yr are not
maintained explicitly, but rather follow implicitly from
the lists Ly,r, i.e., Yr is the set of all points y ∈ S for
which Ly,r exists. Second, if S is nonempty, we have
by Lemma 2.1 that for every scale r > dmax, the net
Yr consists of the same single point, which we denote
ytop. The data structure maintains this point ytop and
the cutoff scale rmax := min{r ∈ Γ : ∀r′ ≥ r, |Yr′ | = 1}
for the sake of bootstrapping most of the operations.
Third, for all scales r ≤ dmin the net Yr is equal to S,
so for scales r ≤ dmin/2, every point x ∈ S has a trivial
list Lx,r = {x}. These trivial lists can be represented
succinctly by storing, for every x ∈ S, a scale rx ∈ Γ
below which all lists of x are trivial. For the sake of
analysis, define rmin := min{rx : x ∈ S}.

We can now upper bound the number of navigation
lists that need to be stored for any point x ∈ S.

Lemma 2.3. rmax = Θ(dmax) and rmin = Θ(dmin), so
every point has O(log ∆) non-trivial navigation lists.

Proof. Using Lemma 2.1 it is easy to see that rmax =
Θ(dmax). It is straightforward from the definition (2.1)
that rx ≥ Ω(dmin) for every x ∈ S. In addition,
Yrmin/2 = S so by Lemma 2.1 dmin ≥ rmin/2. We
conclude that a list for scale r needs to be stored only
if Ω(dmin) ≤ rx ≤ r ≤ rmax ≤ O(dmax). The lemma
follows. �

Combining Lemmas 2.2 and 2.3 yields an upper
bound on the total space required for the data struc-
ture of n · 2O(dim(X)) log ∆. We improve over this in
Section 2.2, abolishing the log ∆ factor via a more care-
ful analysis.

When analyzing the performance of the data struc-
ture, we assume that the navigation lists are stored as



follows. For each point x ∈ S, the non-trivial naviga-
tion lists of x are stored using, say, a balanced search
tree, which requires linear space and implements find,
insert and delete in logarithmic time. It then follows
from Lemma 2.3 that, say, inserting a new navigation
list for a point can be done in time O(log log ∆).

Remark. It is possible to speed up the (1 + ε)-NNS
procedure by letting each navigation list Lx,r contain
not only pointers to points y ∈ Yr/2, but also pointers
to their corresponding navigation lists Ly,r/2. Since the
latter navigation list might be trivial (and not stored
explicitly), we shall actually store a pointer to the
navigation list Ly,r′ , where r′ is the largest scale for
which r′ ≤ r/2 and Ly,r′ is non-trivial. In order to
update these pointers in the presence of insertions and
deletions, they must be implemented as bidirectional
pointers.

2.2 Space requirement. We now show that for
doubling metrics S, the total space used by our data
structure is O(n).

Theorem 2.1. The size of the data structure is
2O(dim(S)) · n words.

Proof. Recall that trivial navigation lists Lx,r = {x} are
represented implicitly. Hence, the total space used by
our implementation of the data structure is linear in the
space required to represent all the non-trivial navigation
lists. The size of each such list is at most 2O(dim(S)) by
Lemma 2.2, and thus it suffices to show that the number
of non-trivial navigation lists is O(n). For simplicity in
what follows, we shall assume that γ is a power of 2.

We bound the number of non-trivial navigation lists
by a charging argument against the points of S. Each
such list is charged against a point in S as follows.
A non-trivial list Lx,r must contain at least one point
y 6= x. By definition, x, y ∈ Yr/2 and thus d(x, y) ≥
r/2. Furthermore, d(x, y) ≤ γr, and thus Y2γr cannot
contain both x and y. We charge the list Lx,r to the
point z ∈ {x, y} which is not contained in Y2γr.

It remains to bound the number of navigation lists
that are charged to any single point z ∈ S. Consider a
non-trivial scale r list that is charged against z. This
list must contain z and also another point z′, such
that the list is either Lz,r or Lz′,r. Let r∗ = r∗(z)
be the largest scale for which z ∈ Yr∗ . The charging
scheme is such that r∗ ∈ {r/2, r, . . . , γr}. It follows
that once z is fixed, r can have only O(1) distinct
values. Furthermore, z, z′ belong to the same scale r
list, and thus r/2 ≤ d(z, z′) ≤ γr. It follows that
once z and r are fixed, there are only 2O(dim(S)) possible
points z′ (Lemma 1.2). As mentioned before, once the

triple z, z′, r is fixed, there are only two navigation lists
(Lz,r and Lz′,r). We conclude that the number of lists
charged to any single point z is 2O(dim(S)), and the total
number of non-trivial lists is indeed 2O(dim(S))n. �

2.3 Approximate nearest neighbor query. We
now present a procedure that uses the above data
structure to find a (1+ε)-approximate nearest neighbor
for a query point. That is, given a point q ∈ M and
a value ε > 0, the procedure finds a point p ∈ S with
d(q, p) < (1 + ε) d(q, S). We stress that ε is arbitrary,
both in the sense that the data structure is oblivious
to ε, and in the sense that ε need not be small; for
instance, setting ε = 1 we can find a 2-approximate
nearest neighbor extremely fast. Choosing smaller ε
trades speed for accuracy; the precise result is as follows.

Theorem 2.2. A (1 + ε)-approximate nearest neighbor
among S can be computed using the data structure in
time 2O(dim(S)) log ∆ + (1/ε)O(dim(S)). This bounds, in
particular, the number of distance computations.

To prove this theorem we next present Procedure
Approx-NNS. We prove its correctness in Lemma 2.5
and analyze the running time in Lemma 2.6. We shall
make use of the following definition.

Definition. Zr ⊆ Yr is called non-proper if it contains
only one point, x, and rx > r. Otherwise, Zr is proper.

The algorithm. We now outline Procedure Approx-
NNS; the full description is given in Figure 2.3. The
procedure iterates over the nets Yr, starting with the
largest (non-trivial) scale r = rmax (line 1), and itera-
tively decreasing r by a factor of 2 (lines 2-4). At each
iteration, the goal is to construct a subset Zr/2 ⊆ Yr/2

containing the points of Yr/2 that are nearby q, as for-
malized in Lemma 2.4. This is done efficiently by ex-
ploiting Zr from the previous iteration and the naviga-
tion lists of the corresponding points (line 3). The crux
is that Zr then contains a point of S whose distance
from q is at most d(q, S) + r. The iterations continue
roughly until r ≤ ε ·d(q, S) (line 2), and then we simply
report the closest point to q among Zr (line 5).

The analysis. By induction, Zr ⊆ Yr for every set Zr

computed by this procedure, and thus Lz,r in line 3 is
well-defined.

Lemma 2.4. Let a be a closest point to q among S.
Then every set Zr computed by Procedure Approx-
NNS contains a point zr with d(a, zr) ≤ 2r.

Proof. Proceed by induction on r. For the base case
r = rmax, line 1 sets Zrmax

= {ytop} = Yrmax
, and thus



Procedure Approx-NNS (Input: q ∈ X and ε > 0).
1. set r = rmax and Zr = {ytop}.
2. while 2r(1 + 1/ε) > d(q, Zr) and Zr is proper do

3. set Zr/2 = {y ∈
⋃

z∈Zr
Lz,r : d(q, y) ≤ d(q, Zr) + r}.

4. set r = r/2.
5. return z ∈ Zr for which d(q, z) is minimal.

Figure 1: Approximate nearest neighbor procedure.

for a point a that is closest to q among S we indeed have
by Lemma 2.1 that d(a, Zrmax

) ≤ 2rmax.
For the inductive step, consider the construction of

Zr/2 in line 3 assuming that Zr satisfies the induction
hypothesis. It follows that Zr contains a point z with
d(z, a) ≤ 2r. By Lemma 2.1, Yr/2 contains a point
y with d(a, y) ≤ r, so d(z, y) ≤ d(z, a) + d(a, y) ≤
2r + r = 3r, and thus y ∈ Lz,r (y appears in the
navigation list of z since γ ≥ 6). To complete the
proof, it suffices to show that y is included in Zr/2.
Indeed, observe that when Zr/2 is constructed in line 3,
d(q, y) ≤ d(q, a) + d(a, y) ≤ d(q, Zr) + r, so Zr/2 will
include y. �

Lemma 2.5. Procedure Approx-NNS outputs a point
whose distance from q is at most (1 + ε) d(q, S).

Proof. Let r∗ be the value of r at the end of the
procedure. It suffices to prove that d(q, Zr∗) ≤ (1 +
ε) d(q, S), because then the proof of the lemma follows
from the choice made in line 5. There are two conditions
in line 2 that may cause the while-loop to stop; consider
first the case when 2r∗(1 + 1/ε) ≤ d(q, Zr∗). By
Lemma 2.4 we know that d(q, Zr∗) ≤ d(q, S) + 2r∗.
Combining the last two inequalities we get 2r∗/ε ≤
d(q, S). Plugging this back into the second inequality,
we get d(q, Zr∗) ≤ d(q, S) + 2r∗ ≤ (1 + ε) d(q, S), as
desired.

Consider next the case when Zr∗ is non-proper. We
may also assume that d(q, Zr∗) > 0, as otherwise we
are done. For the sake of analysis, suppose that we
were to continue iterating (i.e., ignore the requirement
of line 2 that Zr is proper). Notice that this process
cannot go forever, because d(q, Zr) ≥ d(q, S) > 0 while
2r(1 + 1/ε) → 0. Furthermore, the point that would
have been returned by the modified procedure is exactly
the one returned by the actual procedure, because the
sets Zr that would have been constructed further (i.e.,
for r < r∗) would all contain the same single point
as Zr∗ . Finally, it is easy to see that our analysis
above for the case d(q, Zr∗) ≤ (1 + ε) d(q, S) (including
Lemma 2.4) is applicable also to the modified procedure,
and we obtain that in both the modified and actual

procedure, d(q, Zr∗) ≤ (1+ε) d(q, S) as desired. In fact,
if the iteration stops with Zr being non-proper, then the
procedure outputs the optimal (unique) closest point to
q among S, because we can apply the same “modified
procedure” argument with an arbitrarily small ε > 0. �

Lemma 2.6. Procedure Approx-NNS runs in time
2O(dim(S)) log ∆ + (1/ε)O(dim(S)).

Proof. We first bound the size of a set Zr computed
by Procedure Approx-NNS. The set Zr of line 1 is
trivial, so consider a set Zr/2 constructed in line 3.
For all y ∈ Zr/2, the conditions in lines 2 and 3 imply
d(q, y) ≤ d(q, Zr)+r < 2r(1+1/ε)+r = r(3+2/ε). Since
the distance between any two points of Zr/2 ⊆ Yr/2

is at least r/2, we have by Lemma 1.2 that |Zr/2| ≤

(2 + 1/ε)O(dim(S)).
A cruder time bound of (2 + 1/ε)O(dim(S)) log ∆

follows by bounding separately the number of iterations
that the procedure performs and the running time of
a single iteration. For the first bound (number of
iterations), observe that once r becomes smaller than
dmin/(6 + 6/ε), the diameter of Zr/2 is (by lines 2 and
3) at most 2[d(q, Zr) + r] < 2[2r(1 + 1/ε) + r] < dmin,
and thus Zr ⊆ S contains at most one point. If, in
addition, r < dmin/γ, then Zr must be non-proper, and
the second condition in line 2 does not hold. Hence,
the scales r iterated over are between rmax = O(dmax)
and Ω(dmin/[γ + 1 + 1/ε]), and thus the number of
iterations is at most log ∆ + log(1 + 1/ε) + O(1). We
now show the second bound (running time of a single
iteration). An iteration scans |Zr| lists Lz,r of length
|Lz,r| ≤ 2O(dim(S)) each, and computes their union
(which requires the removal of duplicates and can be
done by sorting). It follows that the running time of
a single iteration is at most O(|Zr| · |Lz,r| log(|Zr| ·
|Lz,r|)) ≤ (2+1/ε)O(dim(S)). A similar scan is performed
in line 5, with running time O(|Zr|). Altogether, the
total running time of the procedure is indeed at most
(2 + 1/ε)O(dim(S)) log ∆.

Employing a more careful analysis, we shall now
improve the upper bound to that stated in the lemma.
We may assume ε < 1, as otherwise it’s the same as



the cruder bound. For iterations in which r ≥ d(q, S),
we can bound the diameter of Zr (using line 3 and
Lemma 2.4) by 2[d(q, Z2r)+2r] ≤ 2[d(q, S)+4r +2r] ≤
14r, and using Lemma 1.2 we get that |Zr| ≤ 2O(dim(S)),
regardless of ε. The number of such iterations is
bounded, as above, by log ∆ + log(1/ε) + O(1). For
iterations in which r < d(q, S), we use the weaker bound
from above |Zr| ≤ (2 + 1/ε)O(dim(S)), However, the
number of these iterations is at most log(1/ε) + O(1),
because in every iteration, the condition in line 2
guarantees that d(q, Zr) < 4r/ε, i.e., r > ε d(q, Zr)/4 ≥
ε d(q, S)/4. We conclude that the total running time is
at most 2O(dim(S)) log ∆ + (1/ε)O(dim(S)).

Notice that we analyzed above only the number of
operations performed by Procedure Approx-NNS ex-
plicitly. In general, locating a particular navigation list
for a given point requires time O(log log ∆). However,
we can reduce this cost as per the remark in Section 2.1.
Since all the accesses to navigation lists are via other
navigation lists, we can access each list in O(1) by main-
taining, for each scale r navigation list, direct pointers
to the scale r/2 lists. �

2.4 Range queries and exact nearest neighbor.

We can use the data structure to implement a range
query operation: Given a point q ∈ X and a distance
t > 0, this operation returns the set of points B(q, t).
Our upper bound on the running time of this operation
depends linearly on |B(q,O(t))|. In many cases it is
plausible that this quantity is not much larger than the
output length |B(q, t)|, although the ratio between the
two can be arbitrarily large in the worst-case, even in
doubling metrics. It is then straightforward to combine
the range query operation with the 2-NNS algorithm of
Section 2.3 to arrive at an exact nearest neighbor search
procedure.

Theorem 2.3. A range query within distance t around
a point q can be computed using the data structure in
time 2O(dim(S))(log ∆ + |B(q,O(t))|).

Proof (Sketch). By rounding, we may assume that t ∈
Γ. The range query procedure iterates over the scales
r = rmax, . . . , rmin, and constructs a set Zr ⊆ Yr for
each such value of r. The first phase corresponds to
scales r = rmax, . . . , 2t and is similar to Section 2.3—
the set Zr ⊆ Yr contains the points of Yr nearby
q. In the second phase, which corresponds to scales
r = t, . . . , rmin, the set Zr contains all the points that
can be found by scanning the scale 2r navigation lists
of all the points in Z2r. The procedure reports all the
points that are found in the second phase whose distance
from q is at most t.

Let us show that the procedure indeed reports any

point s ∈ B(q, t). By Lemma 2.1, there is a point y ∈ Yt

such that d(s, y) ≤ 2t. For the sake of analysis, let
a be a closest point to q among those in S. Then
d(q, a) ≤ d(q, s) ≤ t. By Lemma 2.4, there is a
point z ∈ Z2t such that d(a, z) ≤ 4t. Altogether, we
have d(z, y) ≤ d(z, a) + d(a, q) + d(q, s) + d(s, y) ≤
4t + t + t + 2t ≤ γ · 2t, and hence y ∈ Yt must appear in
the list Lz,2t. Now it is easy to see that the second phase
of the algorithm, which recursively scans all navigation
lists reachable from Z2t, must find s along the way, due
to the same argument as in Lemma 2.1.

To analyze the running time, observe that Z2t is
contained, because of its construction together with
Lemma 2.4, in a ball of radius d(q, Z4t) + 2t = O(t)
around q. It follows that any point found in the second
phase is within distance γ(2t+ t+ t/2+ · · · ) ≤ 4γt from
Z2t, and hence within distance O(t) from q. We can then
use an adaptation of Theorem 2.1 to bound the running
time of the second stage by 2O(dim(S))|B(q,O(t))|. In
order to bound the running time of the first phase we
need to modify it so that the iterations are stopped and
the empty set is reported, whenever d(q, Zr) > 3r. This
implies that the diameter of Zr is at most 2 d(q, Zr)+r =
O(r), and thus |Zr| ≤ 2O(dim(S)) (by Lemma 1.2).
Hence, the first phase runs in time 2O(dim(S)) log ∆.
Observe that if there is a point s ∈ B(q, t), the first
phase would not stop before reaching scale 2t, because
by Lemma 2.4, d(q, Zr) ≤ d(q, s) + 2r ≤ 3r for every
r ≥ 2t. �

Theorem 2.4. An exact nearest neighbor search for a
query q can be computed using the data structure in time
2O(dim(S))(log ∆ + |B(q,O(d(q, S))|).

Proof. Given a query q, we first apply Theorem 2.2 to
compute a 2-NNS for q, i.e., find a point sq ∈ S such
that d(q, sq) ≤ 2 d(q, S). Now we apply Theorem 2.3 to
find all the points within distance t = d(q, sq) from q,
and report the one or more points among them that are
closest to q. It is immediate that this algorithm indeed
finds all the closest points to q and that the running
time bound is as claimed. �

2.5 Inserting a point. We now show a procedure
that updates the data structure when a new point
q ∈ M is inserted to S.

Theorem 2.5. The data structure can be up-
dated with an insertion of a point to S in time
2O(dim(S)) log ∆ log log ∆. This includes 2O(dim(S)) log ∆
distance computations.

Proof (Sketch). The main idea is that regardless of how
the nets were constructed, it is possible to update each



r-net Yr by either adding q to it or leaving it unchanged.
Indeed, this can be seen by induction on r. The base
case is a sufficiently small scale r, for which Yr contains,
by definition, all the points, and thus q must be added
to this net. For the inductive step, assume first that the
update to Yr/2 leaves it unchanged; then it is clear that
Yr need not be changed. Assume next that a net Yr/2 is
updated by adding q to it; then we update Yr by adding
q to Yr if and only if d(q, Yr) ≥ r. This guarantees that
Yr remains an r-net of Yr/2 (although there may be
other ways to update Yr). Deciding whether d(q, Yr) ≥ r
will be done by using a set Zr that contains (similar to
Section 2.3) all points of Yr that are nearby q. Recall
that the net Yr is only maintained through its navigation
lists, so adding q to Yr actually requires us to construct
a scale r navigation list for q and to update the scale
2r lists of nearby points. Again, this task is carried out
using the aforementioned sets Zr. �

2.6 Deleting a point. Our data structure can also
support deletion of points. The procedure for deleting
a point is generally similar to that of inserting a point
(Section 2.5). The main technical difference occurs
when a point q is deleted from a net Yr. In this case,
Yr \ {q} need not not be an r-net of Yr/2 \ {q}, in which
case it is necessary to promote (i.e., add) to Yr one
or more points of Yr/2. However, this decision (and
the corresponding updates to various lists) can be done
using the relatively small sets Zr that contain all the
points of Yr that are nearby q. Details are omitted from
this version of the paper.

2.7 Improved bounds for KR metrics. Clearly,
by Lemma 1.1, one may replace dim(S) by dimKR(S)
in all the aforementioned complexity bounds. We now
show that, using essentially the same data structure, we
can achieve improved performance under the additional
assumption that dimKR(S∪{q}) is small, where q is the
query point. First, in the time complexity of the various
operations, we are able to replace ∆ with n = |S|.
Secondly, we show that an exact nearest neighbor can
be found (rather than only a (1 + ε)-approximation).
In fact, the k closest points can be found in time
O(log n + k). These bounds match the guarantees of
Karger and Ruhl [KR02], but our data structure is
deterministic, dimension oblivious, and requires smaller
space. (And, of course, extends to metrics with bounded
doubling dimension.)

Theorem 2.6. The (1 + ε)-approximate nearest neigh-
bor algorithm from Theorem 2.2 runs in time
2O(dimKR(S∪{q})) log n+(1/ε)O(dimKR(S∪{q})). Similarly,
the insertion and deletion procedures of Theorem 2.5
run in time 2O(dimKR(S∪{q})) log n log log n.

The proof of Theorem 2.6 follows from Lemma 2.8
below; details are omitted from this version.

Lemma 2.7. Let x, y be points in a metric (X, d) and
set r = 1

3d(x, y); then |B(x, r)| ≥ 2−2 dimKR(X)|B(y, r)|.

Proof. Observe that B(y, r) ⊆ B(x, 3r + r) and thus
|B(y, r)| ≤ |B(x, 4r)| ≤ 22 dimKR(X)|B(x, r)|. �

Lemma 2.8. Every point x ∈ S has at most
2O(dimKR(S)) log n non-trivial navigation lists Lx,r.

Proof. Suppose that x has non-trivial navigation lists
for scales r0 < r1 < . . . < rt. By definition, each such
navigation list Lx,ri

contains a point yi ∈ Yri/2 that is
different from x, and with d(x, yi) ≤ γri. By definition,
x ∈ Yri

⊆ Yri/2 and thus d(x, yi) ≥ ri/2.
We now claim that if c = c(γ) is a suitable constant,

then |B(x, ri+c)| ≥ (1+2−2 dimKR(X))|B(x, ri)| for every
i ≥ 0. Given this claim, the lemma follows easily; by
induction, |B(x, r4i)| ≥ (1 + 2−2 dimKR(X))i (the base
case i = 0 is obvious), and since |S| = n we get that the
number of distinct scales ri is t+1 ≤ 2O(dimKR(X) log n.

It remains to prove the above claim. By apply-
ing Lemma 2.7 for the points x and yi+3 with ra-
dius r = d(x, yi+3)/3, we get that |B(yi+3, r)| ≥
2−2 dimKR(X)|B(x, r)|. By definition, these two balls are
disjoint, and they are both contained in a radius 4r
ball centered at x. Thus, |B(x, 4r)| ≥ |B(yi+3, r)| +
|B(x, r)| ≥ (1 + 2−2 dimKR(X))|B(x, r)|. The claimed in-
equality now follows by plugging in the upper bound
4r = 4

3d(x, yi+3) ≤ 4
3γri+3 ≤ ri+c (assuming 2c−3 ≥

4
3γ) and the lower bound r = d(x, yi+3)/3 ≥ ri+3/6 >
ri. �

Theorem 2.7. The k nearest neighbors of a query
q can be computed using the data structure in time
2O(dimKR(S∪{q}))(k + log n). In particular, exact NNS
can be computed in time O(log n) whenver dimKR(S ∪
{q}) = O(1).

The proof of this theorem is based on applying
Theorem 2.3, and bounding the running time using
arguments like in Lemma 2.8. Details aomitted from
this version of the paper.

3 Lower bounds

This section shows that the complexity of our data
structure is nearly optimal, by lower bounding the
number of distance computations that are necessary
(information theoretically) to answer NNS and (1 + ε)-
NNS queries. The two lower bounds presented below
assume that computing the distance between two points
is the only costly operation, and that no information



about the distances can be deduced by other means,
such as hashing points’ identifiers.2

Formally, suppose that the distance between every
two points in S is known, and that the distance between
the query point q and any point in S requires an access
to an oracle. We consider an adversarial oracle, i.e.,
we examine the worst-case complexity of answering a
(1 + ε)-NNS query (over all possible oracles). For
simplicity, we state the lower bound for ε ≤ 2, although
the proof immediately extends to larger ε. These results
hold even for randomized algorithms (both Las-Vegas
and Monte-Carlo).

Lemma 3.1. There is an input data set S for the dis-
tance oracle model, such that even though S is doubling
and dimKR(S) = O(1), any exact NNS algorithm must
access the oracle Ω(n) times (for a worst-case query).

Proof (Sketch). Let (S, d) be the metric on the integer
points 1, . . . , n on the real line. Clearly, dim(S) = O(1).
Let the query point q be at distance n− 1 from a single
point i ∈ S and at distance n from all the other points
of S. Obviously, any deterministic NNS algorithm must
report the point i. It follows that if the value of i
is chosen adversarially, then the NNS algorithm must
compute n distances, in the worst-case, in order to find
i. The proof for randomized algorithms is similar, using
Yao’s minimax principle. �

Lemma 3.2. There is an input data set S such that any
(1+ε)-NNS algorithm (for a fixed 0 ≤ ε ≤ 1) that works
in the distance oracle model, must access the oracle at
least 2Ω(dim(S)) log n times (for a worst-case query).

We omit the proof from this version. It is based on
a data set S which is the shortest path metric between
the leaves of a complete λ-ary tree metric, in which
the length of edges at depth i is 1/2i. It shows that
any algorithm essentially has to perform a linear search
among the children of the root (the vertex at depth 0),
then a linear search among the children of a vertex at
depth 1, and so forth.

References

[AMN+98] S. Arya, D. M. Mount, N. S. Netanyahu, R. Sil-
verman, and A. Y. Wu. An optimal algorithm for ap-
proximate nearest neighbor searching in fixed dimen-
sions. J. ACM, 45(6):891–923, 1998.

[Ass83] P. Assouad. Plongements lipschitziens dans R
n.

Bull. Soc. Math. France, 111(4):429–448, 1983.

2This is similar in spirit to lower bounds on the number of

comparisons in sorting.

[Bri95] S. Brin. Near neighbor search in large metric spaces.
In 21st International Conference on Very Large Data

Bases, pages 574–584, 1995.
[Cla99] K. L. Clarkson. Nearest neighbor queries in metric

spaces. Discrete Comput. Geom., 22(1):63–93, 1999.
[CNBYM01] E. Chávez, G. Navarro, R. Baeza-Yates, and

J. L. Marroqúın. Proximity searching in metric spaces.
ACM Computing Surveys, 33(3):273–321, September
2001.

[FK97] C. Faloutsos and I. Kamel. Relaxing the uniformity
and independence assumptions using the concept of
fractal dimension. J. Comput. System Sci., 55(2):229–
240, 1997.

[GKL03] A. Gupta, R. Krauthgamer, and J. R. Lee.
Bounded geometries, fractals, and low–distortion em-
beddings. Accepted to 43rd Symposium on Founda-
tions of Computer Science, 2003.

[Hei01] J. Heinonen. Lectures on analysis on metric spaces.
Universitext. Springer-Verlag, New York, 2001.

[IM98] P. Indyk and R. Motwani. Approximate nearest
neighbors: towards removing the curse of dimension-
ality. In 30th Annual ACM Symposium on Theory of

Computing, pages 604–613, May 1998.
[KOR98] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Ef-

ficient search for approximate nearest neighbor in high-
dimensional spaces. In 30th Annual ACM Symposium

on Theory of Computing, pages 614–623. ACM, 1998.
[KR02] D. Karger and M. Ruhl. Finding nearest neighbors

in growth-restricted metrics. In 34th Annual ACM

Symposium on the Theory of Computing, pages 63–66,
2002.

A Appendix

Proof. [Lemma 1.1] Let K be the KR-constant of X and
fix some ball B(x, 2r). We will show that B(x, 2r) can
be covered by K4 balls of radius r. It will follow that
dim(X) ≤ 4 log2 K = 4 · dimKR(X).

Let Y be an r-net of B(x, 2r), then

B(x, 2r) ⊂
⋃

y∈Y

B(y, r) ⊂ B(x, 4r).

Also, for every y ∈ Y , |B(x, 4r)| ≤ |B(y, 8r)| ≤
K4 |B(y, r

2 )|. Since B(y, r
2 ) and B(y′, r

2 ) are disjoint for
y 6= y′ ∈ Y , it follows that |Y | ≤ K4. We conclude that
the K4 balls {B(y, r) : y ∈ Y } cover B(x, 2r).


