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ABSTRACT
We resolve the following conjecture raised by Levin together
with Linial, London, and Rabinovich [16]. Let Zd

∞ be the
infinite graph whose vertex set is Zd and which has an edge
(u, v) whenever ||u−v||∞ = 1. Let dim(G) be the smallest d
such that G occurs as a (not necessarily induced) subgraph
of Zd

∞. The growth rate of G, denoted ρG, is the minimum
ρ such that every ball of radius r > 1 in G contains at most
rρ vertices. By simple volume arguments, dim(G) = Ω(ρG).
Levin conjectured that this lower bound is tight, i.e., that
dim(G) = O(ρG) for every graph G.

Previously, it was not known whether dim(G) could be
upper bounded by any function of ρG, even in the special
case of trees. We show that a weaker form of Levin’s con-
jecture holds by proving that, for every graph G, dim(G) =
O(ρG log ρG). We disprove, however, the specific bound of
the conjecture and show that our upper bound is tight by ex-
hibiting graphs for which dim(G) = Ω(ρG log ρG). For fam-
ilies of graphs which exclude a fixed minor, we salvage the
strong form, showing that dim(G) = O(ρG). This holds also
for graphs without long induced simple cycles. Our results
extend to a variant of the conjecture for finite-dimensional
Euclidean spaces due to Linial [15].

1. INTRODUCTION
The geometry of graphs, a fascinating area of combina-

torics dealing with the geometric representation of graphs,
has found many algorithmic applications in recent years.
Embedding the metric of a weighted graph into some finite-
dimensional real-normed space (see, for instance, the sur-
veys [12, 19]) is a very fruitful and actively studied line
of research. In their breakthrough paper [16], Linial, Lon-
don, and Rabinovich were the first to realize the algorithmic
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importance of low-distortion metric embeddings. However,
their primary motivation was to understand the relationship
between the dimensionality of a graph and its combinatorial
properties.

A notion of dimensionality is usually based on a particular
way of embedding a graph into some space that possesses
an intrinsic dimension (e.g., a finite-dimensional Euclidean
space). One then defines the dimension of a graph to be the
minimum dimension into which the graph can be embed-
ded. Several such notions have been extensively studied,
see [18]. In [16], the authors wished to express the concept
that graphs of large diameter should have low dimensional-
ity. With the help of Leonid Levin, this concept was was
formalized as follows.

Let Zd
∞ be the infinite graph whose vertices are the ele-

ments of Zd and such that two elements u and v are adjacent
whenever ||u − v||∞ = 1. For a graph G = (V,E), define
dim(G) to be the smallest d such that G occurs as a (not
necessarily induced) subgraph of Zd

∞. For a vertex v ∈ V ,
let B(v, r) be the ball of radius r (in G) centered at v, and
define the growth rate of G to be

ρG := min{ρ : |B(v, r)| ≤ rρ for all v ∈ V and r > 1}.

Stated differently, ρG = max{ log |B(v,r)|
log r

: v ∈ V, r > 1}.
Notice that ρZd

∞

= Θ(d), so by a simple counting argument,

we must have dim(G) = Ω(ρG). Levin, together with Linial,
London, and Rabinovich [16], conjectured that O(ρG) di-
mensions suffice.

Conjecture 1 ([16]). Every graph G with growth rate

ρG occurs as a (not necessarily induced) subgraph of ZO(ρG)
∞ .

In other words, dim(G) = Θ(ρG).

It is shown in [16] that Conjecture 1 holds for the k-
dimensional hypercube and the complete binary tree, but
nothing beyond these two special cases was known. Indeed,
previously it was not known whether dim(G) could be upper
bounded by any function of ρG, even in the special case of
trees. Linial [15] asked about a Euclidean analogue to this
notion of dimensionality.

Question 2 ([15]). For a graph G, what is the mini-
mum dimension d = dim2(G) such that there exists a map-
ping γ : G→ ℓd2 with the following properties?

1. ||γ(u) − γ(v)||2 ≥ 1 for all u 6= v, and

2. ||γ(u) − γ(v)||2 ≤ 2 for (u, v) ∈ E(G).



It is easy to verify that the same lower bound holds for
dim2(G), i.e. dim2(G) = Ω(ρG). As we will see later,
dim(G) and dim2(G) are closely related.

Dimensionality is a highly important issue in various con-
texts. For instance, dimensionality reduction is the main
tool in solving many problems efficiently, see [12]. Another
example is the algorithms designed in [13, 11] to achieve su-
perior performance on restricted growth metrics (a related,
but different, notion of dimensionality for metrics spaces).
Low-dimensional representations also have a variety of com-
binatorial consequences, like the existence of good graph
decompositions [16]. Indeed, if dim(G) is small, then one
can efficiently find small vertex separators in G. (A precise
statement and proof of this is deferred to the full version).

1.1 Results and techniques
In Section 2, we provide a self-contained proof of Levin’s

conjecture for trees. We first recursively decompose a tree
into many hierarchically nested partitions called levels. Each
level is responsible for pairs of vertices whose distance (in
G) falls into a certain range. Fixing a single level, we show
that a map drawn from a particular distribution is a good
embedding of the level with high probability. If each level is
embedded independently, the dimension of the host lattice
becomes too large. The key technique, which completes the
proof, is to find a way of handling all the levels simultane-
ously (using the same coordinates). We then extend this re-
sult to graphs whose induced simple cycles are of bounded
length by relying on known low-distortion embeddings of
such graphs into trees, due to [5, 6].

In Section 3, using different techniques, but many ideas
from our proof for trees, we give a general upper bound on
dim(G) in terms of certain graph decompositions. In this
setting, choosing a good embedding for a level with high
probability is more difficult. For this purpose, we modify
a technique of [21] (which was used there to embed planar
graphs into Euclidean space with low distortion). Again,
we must discover a delicate way of handling all the levels
simultaneously.

In Section 4, we employ the decomposition of [14], com-
bined with the results of Section 3, to prove the conjecture
for any family of graphs which excludes a fixed minor (this
includes planar graphs, for instance).

In Section 5, we modify a probabilistic decompositions of
Linial and Saks [17] and of Bartal [3] for use with growth-
restricted graphs. Our modifications are two-fold. First, the
parameters of our decomposition depend on ρ (and not on
n = |V | as in [3]). This is essential to our application. Sec-
ondly, our decomposition is local in the sense that events
which are far apart (in G) are mutually independent (a sim-
ilar idea was used for a different purpose in [17]). As a
result, we are able to apply the Lovász Local Lemma, yield-
ing decompositions which, when combined with the results
of Section 3, give dim(G) = O(ρ3

G) for any graph G. By del-
icately combining the steps of Section 3 together via some
Chernoff-type tail bounds, and applying the local lemma to
their composition, we are able to show an improved upper
bound: For any graph G, dim(G) = O(ρG log ρG). In ad-
dition, it is shown that our use of the local lemma can be
made algorithmic.

In Section 6, we give a lower bound of Ω(ρG log ρG) on the
dimension necessary to embed low-degree expander graphs.
This shows that Levin’s conjecture does not hold in general

and that our upper bound is tight. Finally, we show in
Section 7 that all our results for dim(G) hold also for Linial’s
variant, dim2(G).

1.2 Related work
Notions of dimensionality were perhaps first considered by

Erdös, Harary, and Tutte [8]. The geometric representations
of graphs have been extensively studied in other settings;
see, for instance, the survey of Lovász and Vesztergombi [18].
If one defines the cubical dimension of a graph G to be the
least k for whichG occurs as a subgraph of the k-dimensional
hypercube, then characterizing the graphs which have cubi-
cal dimension k is one of the most famous open problems in
graph theory [4]. Also, as mentioned before, low-distortion
metric embeddings have found many applications (see, e.g.,
the surveys [12, 19]).

A seemingly related notion was considered by Assouad [2]
(see also [10]). He conjectured that every metric space (X, d)
with restricted growth (suitably defined) is bi-Lipschitz em-
beddable into Rd with the Euclidean norm, where d and the
bi-Lipschitz constant depend only on the growth rate. He
proved that this holds for (X, dǫ), for any fixed 0 < ǫ < 1,
but the conjecture itself (the case ǫ = 1) was disproved by
Semmes [22].

Conjecture 1 is actually a dual of the bandwidth prob-
lem for graphs. The bandwidth problem asks for the min-
imum stretch of any edge in an embedding of the graph
into Z = Z1

∞. Conjecture 1 asks for the minimum dimen-
sion needed to achieve a stretch of one (no stretch). In-

terestingly, the density bound D = maxv,r{ |B(v,r)|
2r

} (the
one-dimensional analogue of the growth rate), which is a
straightforward lower bound on the bandwidth, is conjec-
tured to be within an O(log n) factor of the bandwidth. We
know from [9] that the bandwidth and density differ by only
a polylog(n) factor. However, even when D = O(1), there
are graphs for which the bandwidth is Ω(log n) [7]. Thus
for d = 1, the minimum achievable stretch into Zd

∞ cannot
be bounded by a function of D. In contrast, our results im-
ply that when d = Ω(ρG), the stretch can be bounded by a
function which depends only on ρG.

1.3 Preliminaries.

Definition 1.1. For a graph G = (V,E), we will say
that a map ϕ : V → Zd is a contraction (or contractive)
if (u, v) ∈ E implies ||ϕ(u) − ϕ(v)||∞ ≤ 1. Furthermore,
if {ϕi} is a finite set of mappings, we define the direct
sum, ϕ = ⊕iϕi to be the mapping ϕ(u) = (ϕ1(u), ϕ2(u), . . .)
(where coordinates are concatenated).

Notice that if a map ϕ : V → Zd is both contractive and
injective, then G occurs as a subgraph of Zd

∞, and, in par-
ticular, dim(G) ≤ d. We can think of any such embedding ϕ
as consisting of d separate one-dimensional maps ϕ1, . . . , ϕd

such that ϕ = ⊕n
i=1ϕi. The following trivial lemma will

serve as our guide.

Lemma 1.1. Let G = (V,E) and ϕ = ⊕d
i=1ϕi where

ϕi : V → Z, then the following are true.

1. ϕ is a contraction ⇐⇒ every ϕi is a contraction.

2. ϕ is injective ⇐⇒ for every pair u, v ∈ V , there exists
some ϕi such that ϕi(u) 6= ϕi(v).

In what follows, || · || = || · ||∞.



2. TREES
In this section we show that every tree T with growth rate

ρ = ρT occurs as a subgraph of Zd
∞, with d = O(ρ). Relying

on Lemma 1.1, we will exhibit a map ϕ : T → Zd that is
both contractive and injective.

2.1 Embedding trees by random walks
In light of Lemma 1.1, it is natural to define a distribution

over random contractions and then argue that some such
map must be injective.

Let T = (V,E) be a tree whose growth rate is at most ρ.
Fix an arbitrary root r of T , and suppose that the height
of T is O(h). Let dT be the shortest path metric on T . For
some constant c to be chosen later, let T1, T2, . . . , Tcρ be cρ
weighted copies of T , where the weight of every edge in Ti

is chosen independently and uniformly at random from the
set {−1,+1}. Let di be the weighted shortest path metric
on Ti. For a vertex v, define its image in Zcρ as ϕ(v) =
(v1, v2, . . . , vcρ) where vi = di(r, v), i.e. the distance from
the root to v in Ti.

Clearly ϕ is a contraction. Now consider any two vertices
u, v ∈ V for which dT (u, v) ≥

√
h. The probability that the

images of u and v agree in any single coordinate, i.e. that
ui = vi, is the probability that a random walk of length√
h ends at its starting point, namely O(h)−1/4. Hence the

probability that ϕ(u) = ϕ(v) is at most O(h)−cρ/4. Observe
that since T is contained in a ball of radius 2h centered at
r, it contains at most O(h)ρ vertices. Taking a union bound
over at most O(h)2ρ pairs u, v, the probability that any such
pair collides is, for any c > 9,

O(h)−cρ/4O(h)2ρ = o(1).

It follows that for some universal constant h0 and all h ≥
h0, there exists a map ϕ : V → Zcρ such that dT (u, v) ≥√
h =⇒ ϕ(u) 6= ϕ(v). In what follows, we carefully utilize

this simple but powerful idea to show that dim(T ) = O(ρT )
for any tree T , thus proving Conjecture 1 for the special case
of trees.

2.2 Relative embeddings
Consider a tree T = (V,E) with ρ = ρT and fix a root

rT of T . Define a rooted subtree of T to be a connected
vertex-induced subgraph T with a distinguished root rT .
Let W = {−1, 0,+1} be the set of edge weights. For a
rooted subtree T = (VT , ET ), we define a d-dimensional
relative embedding of T to be a map µT : ET → W d. Finally,
we will denote by µ∗

T : VT → Zd the absolute embedding
induced by the relative embedding µT (with respect to the
root rT ), which is the map obtained as follows: For a vertex
v ∈ VT , define its image µ∗

T (v) ∈ Zd as the sum of the edge
weights along the unique path from rT to v in T , where an
edge e ∈ ET has weight µT (e). Note, in particular, that
induced embeddings are always contractions. Furthermore,
given any contraction ϕ : VT → Zd, there exists a unique
d-dimensional relative embedding µ such that ϕ = µ∗ (with
respect to rT ). Let us define 0 = (0, 0, . . . , 0) to be the
all-zero vector. Notice that the construction of Section 2.1,
when applied to a subtree T , essentially yields a relative
embedding of T with the following nice property.

Lemma 2.1 (Relative embeddings). For any rooted
subtree T = (VT , ET ) of T with height O(h) (where h is

larger than some constant), there exists a relative embed-

ding µT : E → WO(ρ) such that µ∗
T (u) 6= µ∗

T (v) whenever

dT (u, v) ≥
√
h.

In essence µ∗
T “separates” points in T which are far apart

relative to the height of T . Notice that the above lemma
only works for h sufficiently large. When h = O(1), we can
do even better.

Lemma 2.2 (Small subtrees). For any rooted subtree
T = (VT , ET ) of T with height h = O(1), there exists a rel-

ative embedding µT : E →WO(ρ) such that µ∗
T is injective.

Proof. Let VT = {v1, v2, . . . , vm} and define ϕ(vi) =
B(i) where B(i) is the binary representation of i represented
as a logm-dimensional vector. Now ϕ is clearly injective
and also a contraction since ||B(i)−B(j)||∞ ≤ 1 for all i, j.
Finally, notice that since T is of height h = O(1), we have
m ≤ O(1)ρ and hence logm = O(ρ). Let µ be the unique
relative embedding such that ϕ = µ∗. It follows that µ :
ET →WO(ρ) is a relative embedding with µ∗ injective.

Suppose {T1, T2, . . . , Tk} is a collection of vertex-disjoint
rooted subtrees of T , and let each Ti = (Vi, Ei) have root ri.
Furthermore, suppose that for each Ti, we have a relative
embedding µi : Ei → W d. Then we can define a relative
embedding µ on all of V by

µ(e) =

{

µi(e) if e ∈ Ei for some i

0 otherwise.

Note that µ has the desirable property that ||µ∗(u)−µ∗(v)|| =
||µ∗

i (u) − µ∗
i (v)|| whenever u, v ∈ Vi. We will say that µ is

obtained by gluing the relative embeddings {µi} together.
In the sequel, we will construct, for a given h, an embed-

ding ϕ : V → ZO(ρ) that satisfies ϕ(u) 6= ϕ(v) whenever

h1/2 ≤ d(u, v) ≤ h. To do this, we will partition T into
subtrees of height O(h), find for each subtree a relative em-
bedding that satisfies the desired property, and then glue all
these relative embeddings into an embedding for T . There is
the slight problem that for pairs u, v with h1/2 ≤ d(u, v) ≤ h
that end up in different subtrees, we have no guarantee that
their images (under µ∗) will be distinct. To handle this,
we will actually use two sets of disjoint subtrees which are
“staggered” so that every pair u, v with d(u, v) ≤ h ends
up in the same subtree in at least one of the sets. A more
challenging problem is that this embedding is guaranteed to
handle only one value of h.

2.3 The leveled decomposition
Let ∆ = diam(T ) and k = log log ∆. We define k levels

L0, L1, . . . , Lk−1 as follows. Level i consists of two partitions
of T into rooted subtrees, Denote these two partitions Ai

and Bi and let Li = Ai ∪ Bi. The subtrees in Li will cover
T (in a sense that will be defined soon) and will each have

height at most 3h(i), where h(i) = ∆1/2i

. (For convenience,
define h(k) = 1.) To form Ai, let OA

i be the set of edges in T
whose depth (i.e., distance from the root rT ) is a multiple of
3h(i). Removing OA

i from T results in a collection of disjoint
subtrees; let Ai consist of these subtrees, each rooted at its
(unique) closest vertex to rT . Bi is formed similarly, except
that OB

i is defined as the set of edges in T whose depth
modulo 3h(i) is equal to h(i) (rather than 0). The edges
in OA

i and OB
i are called the open edges of level Li. The



next lemma is easy to verify. In particular, property (3)
follows from the “staggering” of the two sets of subtrees
Ai and Bi. Property (4) follows from the specifics of the
decomposition; it provides a nesting that will turn out to be
useful in Section 2.5.

Lemma 2.3 (The leveled decomposition). For every
tree T = (V,E), the above construction satisfies the follow-
ing properties.

1. Each Ai and each Bi is a partition of V .

2. The height of any subtree T ∈ Li is at most 3h(i).

3. For any pair u, v ∈ V with d(u, v) ≤ h(i), there is
some T ∈ Li containing both u and v.

4. Each subtree in Ai is entirely contained in some subtree
in Ai+1; thus, OA

i+1 ⊆ OA
i . The same holds for the

subtrees in Bi. In this sense, each level is a refinement
of the previous level.

2.4 A first attempt
Let us say that a map ϕ separates Ai (and similarly Bi)

if, for every T ∈ Ai and for every pair u, v ∈ V (T ) with
h(i+ 1) ≤ d(u, v) ≤ h(i), we have ϕ(u) 6= ϕ(v). Notice that
if ϕ : V → Zd separates Ai and Bi for all i ∈ {0, 1, . . . , k−1},
then ϕ is injective (by the properties of the decomposition
in Lemma 2.3).

Now consider the partition Ai of T . Applying the embed-
ding technique of Lemma 2.1 to each T ∈ Ai and gluing the
relative embeddings together yields an induced embedding
ϕA

i which separates Ai. Let ϕB
i be a similar embedding ob-

tained from the partition Bi, and let ϕi : V → ZO(ρ) be
defined as ϕi = ϕA

i ⊕ ϕB
i . Then ϕi separates Ai and Bi.

Finally, as noted before, the map ϕ = ϕ0 ⊕ · · · ⊕ϕk−1 sepa-
rates every Ai and Bi, and is hence injective. Since ϕ is also
a contraction, it yields dim(T ) = O(ρk) = O(ρ log log ∆).
Unfortunately, this bound is not good enough for our pur-
poses.

2.5 Conserving randomness or “Not using all
your ammo at once”

Why did we use so many dimensions? Because we needed
a distinct set of coordinates for every level. In essence, after
fixing an embedding for level Li, there is no randomness
left for “higher” levels Li−1, Li−2, . . . , L0 (since all the edge
weights in the relative embedding for Li are fixed).

Now consider the open edges of level Li, namely, OA
i

and OB
i , which run between disjoint subtrees. In Section

2.2, when the relative embeddings for subtrees are glued
together, the open edges are assigned a weight of 0. But
they might as well have been assigned any other weight in
W d. Clearly the resulting embedding would still be a con-
traction. Thus even after fixing a relative embedding for
Li, there is still some freedom left to us in deciding how to
choose weights for the edges in OA

i and OB
i . And as it turns

out, this is enough.
We will now show that, after finding a relative embedding

for the subtrees in Li+2, there is still enough randomness
left to embed the subtrees in Li simply by assigning random
weights to the open edges of Li+2. Notice that this process
goes up two levels at a time, from Li+2 to Li, so we will need
to do it twice, once for “even” levels and once for “odd”
levels. This will increase the number of coordinates used by
only a factor of 2.

Theorem 2.1. Any tree T with growth rate ρ occurs as a

(not necessarily induced) subgraph of ZO(ρ)
∞ , thus dim(T ) =

O(ρT ).

Proof. We will construct four contractions,

ϕA
even, ϕ

A
odd, ϕ

B
even, ϕ

B
odd : V → ZO(ρ).

Let L0, L1, . . . , Lk−1 be the levels of the decomposition for
T , and assume for simplicity that k is odd. Then ϕA

even will
separate Ak−1, Ak−3, . . . , A0, ϕ

A
odd will separate Ak−2, Ak−4,

. . . , A1, and ϕB
even and ϕB

odd will satisfy similar properties for
the Bi. It will follow from Lemma 2.3, Lemma 1.1, and the
discussion in Section 2.4, that ϕ = ϕA

even⊕ϕA
odd⊕ϕB

even⊕ϕB
odd

is a contractive injection and thus gives an embedding of T
into ZO(ρ)

∞ .
We will construct the map ϕA

even inductively. The other
maps are constructed similarly. Let µk−1 : E → W cρ be a
relative embedding for which µ∗

k−1 separates Ak−1. Since
the trees in Ak−1 have constant height, we can use the con-
struction of Lemma 2.2.

The inductive step. Now assume that we have a rela-
tive embedding µi+2 : E → W cρ for which µ∗

i+2 separates
Ak−1, Ak−3, . . . , Ai+2. We will show the existence of a rela-
tive embedding µi : E → W cρ which satisfies

1. For T ∈ Ai+2 and every u, v ∈ V (T ),
||µ∗

i+2(u) − µ∗
i+2(v)|| = ||µ∗

i (u) − µ∗
i (v)||,

2. µi separates Ai.

Since the subtrees of Aj for j ≥ i + 2 are all completely
nested within the subtrees of Ai+2 (recall property (4) of
Lemma 2.3), the first condition guarantees that µ∗

i separates
Ak−1, Ak−3, . . . , Ai+2, since µ∗

i+2 does.
To obtain µi from µi+2, we will only change the edge

weights in OA
i+2, i.e. those running between disjoint sub-

trees of Ai+2. Condition (1) then follows immediately. We
now define the relative embedding µi randomly and show
that it satisfies (2) with positive probability. For e ∈ OA

i+2,
choose µi(e) uniformly at random from {−1,+1}cρ and de-
fine µi(e) = µi+2(e) otherwise.

Let us now show that with positive probability, µ∗
i sepa-

rates Ai. Fix some T ∈ Ai and consider two points u, v ∈
V (T ) such that d(u, v) ≥ h(i + 1) = h(i)1/2. Let Puv be
the unique path from u to v in T . Since Puv has length
at least h(i)1/2 and each subtree of Ai+2 has height at most

3h(i+2) = 3h(i)1/4, Puv must pass through at least 1
3
h(i)1/4

such subtrees. In particular, the path includes at least
1
3
h(i)1/4 edges from OA

i+2.
Now consider the part of Puv which is composed of edges

whose weights are already fixed (i.e., edges not in OA
i+2).

The sum of their weights is fixed, and the probability that a
random walk of length 1

3
h(i)1/4 (along open edges) is equal

to the negation of any fixed sum is at most O(h(i))−1/8.
This also upper bounds the probability that the images
of u and v (under µ∗

i ) agree in any single coordinate. So
the probability of this occurring in cρ independent coordi-
nates is Pr[µ∗

i (u) = µ∗
i (v)] = O(h(i))−cρ/8. Finally, no-

tice that T has height at most 3h(i), and thus contains
at most (3h(i))2ρ pairs of vertices. Choosing c to be a
large enough constant (which is independent of i), the union

bound O(h(i))−cρ/8O(h(i))2ρ = o(1) shows the existence of
the desired map µi on T . Continuing in this way for each



disjoint subtree T ∈ Ai, we see that with positive probabil-
ity, µi satisfies condition (2).

By induction, µ∗
0 separates each of Ak−1, . . . , A0. Setting

ϕA
even = µ∗

0 completes the proof.

For a graph G, let λ(G) be the length of the longest in-
duced simple cycle in G. The proof of the following theorem,
which uses Theorem 2.1 and the low-distortion embeddings
of [5, 6] is omitted from this version.

Theorem 2.2. Conjecture 1 holds for for any class of
graphs in which λ(G) is bounded, For such graphs, dim(G) =
O(ρG). This includes trees and chordal graphs.

3. DIMENSION UPPER BOUNDS VIA GRAPH
DECOMPOSITION

In this section, we use the ideas of the previous section to
prove a result on general graphs in terms of their decompo-
sitions (Theorem 3.1).

In what follows, let G = (V,E) be a simple graph with
growth rate ρ = ρG. For any set S, define P(S) to be the
power set of S. For a subset S ⊆ V , define ∂S = {u ∈ S :
∃v /∈ S s.t. (u, v) ∈ E} to be the boundary of S. For a collec-
tion C ⊆ P(V ), define ∂C = ∪S∈C∂S as the the boundary of
C. For a subset S ⊆ V , let G[S] be the subgraph induced on
the vertices of S. When G[S] is connected, we refer to such
a subset as a cluster, and define the weak diameter of S to
be diam(S) = maxu,v∈S dG(u, v). Finally, set ∆ = diam(G).

3.1 Relative embeddings and the padded de-
composition

Suppose we are given a cluster S ⊆ V . Define a d-
dimensional relative embedding of S to be a contraction
ϕ : S → Zd such that ϕ(∂S) = 0, i.e. the boundary is
mapped to 0. Suppose further that we would like to find a
relative embedding of S with the following property: For ev-
ery u, v ∈ S with d(u, v) > r and such that B(u, 3r1/2) ⊆ S,
we have ϕ(u) 6= ϕ(v). In other words, since we are impos-
ing the rather stringent condition that ϕ(∂S) = 0, we only
make requirements on vertices which are far enough away
from the boundary.

We will produce such an embedding using a technique
similar to that of Rao [21]. First we will partition S into
clusters of diameter at most r. It follows that if d(u, v) > r,
then u and v will end up in different clusters. We will define
the image of a vertex in a single coordinate to be simply the
distance from that vertex to the boundary of its cluster, but
to achieve injectiveness with high probability, we will first
randomly contract the boundary inward. We first discuss
our method of choosing clusters. Let us call a collection of
disjoint subsets P ⊆ P(S) a semi-partition of S.

Definition 3.1 (The padded decomposition). Let
S ⊆ V be a cluster in G. A set {P1, P2, . . . , Pm} of m semi-
partitions of S is called an r-padded decomposition of S
with m layers if the following properties are satisfied.

1. Every C ∈ ∪m
i=1Pi is a cluster with diam(C) ≤ rα.

2. For every u ∈ S with B(u, 3r) ⊆ S, there exists some
C ∈ ∪m

i=1Pi such that B(u, 3r) ⊆ C.

Any α = O(1) suffices in the above definition. For ease

of notation, define an r-inner decomposition to be an r1/α-
padded decomposition.

Note that in an r-inner decomposition, clusters have diam(C) ≤
r and vertices have “padding” of the form B(u, 3r1/α). We
now show how to use an r-inner decomposition to produce
a “good” relative embedding.

Lemma 3.1 (Relative embeddings). Let S ⊆ V be a

cluster with |S| ≤ rO(ρ). If S has an r-inner decomposition
with m layers, then there exists a relative embedding ϕ :
S → ZO(mρ) such that for every u, v ∈ S with d(u, v) > r

and B(u, 3r1/α) ⊆ S, we have ϕ(u) 6= ϕ(v).

Proof. Let P1, . . . , Pm be the semi-partitions of the in-
ner decomposition. For each Pi (i = 1, . . . ,m) we will con-
struct a map ϕi : S → Zcρ; eventually we shall take the
direct sum of all these maps.

Fix some semi-partition Pi and form a single coordinate
ϕ0

i : S → Z as follows: For every cluster C ∈ Pi, choose
uniformly at random rC ∈ {0, 1, . . . , r1/α}, and let ∂∗

C =
{v ∈ C : d(v, ∂C) ≤ rC} be the boundary of C randomly
contracted inward. Now for every u ∈ C, define ϕ0

i (u) =
d(u, ∂∗

C).
Clearly ϕ0

i (u) is a contraction, since whenever (u, v) ∈ E,
their distances to ∂∗

C can differ by at most 1. It is also
clear that u ∈ ∂S implies u ∈ ∂C for some C and hence
ϕ0

i (u) = 0. It follows that ϕ0
i (∂S) = 0.

Now independently form cρ such coordinates (each time
picking fresh values for the rC) and let ϕi be the direct sum
of the resulting maps. Finally, set ϕ = ϕ1 ⊕ · · · ⊕ϕm. From
the properties of ϕi, we conclude that ϕ : S → Zcmρ is a
contraction which maps ∂S to 0.

Consider a pair u, v with d(u, v) > r and such that

B(u, 3r1/α) ⊆ S. It follows from from property (2) of Defi-
nition 3.1 that there exists a semi-partition Pi and a cluster
C ∈ Pi for which B(u, 3r1/α) ⊆ C. Since d(u, v) > r, u
and v must lie in different clusters of Pi. It follows that, in
any single coordinate ϕ0

i of the map ϕi, the value of ϕ0
i (u)

is distributed uniformly over an interval of size r1/α inde-
pendently of the value ϕ0

i (v), hence Pr[ϕ0
i (u) = ϕ0

i (v)] ≤
r−1/α. Thus the probability that u and v collide under ϕi is
Pr[ϕi(u) = ϕi(v)] ≤ r−cρ/α. Since |S| ≤ rO(ρ), there are at

most rO(2ρ) such pairs u, v, and hence the probability that
some pair collides is at most rO(2ρ)r−cρ/α < 1/2 for suffi-
ciently large constant c (remembering that α = O(1)). The
existence of a map ϕ satisfying the lemma follows.

3.2 A simple approach
Now that we can find relative embeddings for clusters, we

will use the padded decomposition to decompose G into lev-
els of disjoint clusters that cover G (by setting S = V in Def-
inition 3.1). Finding a relative embedding for each cluster,
and then gluing all these embedding together, we will arrive
at a good embedding for G. Note that the padded decom-
position is serving two purposes here. First, it is being used
inside clusters to compute a good relative embedding (this
is like choosing random edge weights to produce a relative
embedding for trees). Second, it is being used to decompose
the graph into the clusters which will be separately embed-
ded (this is similar to the leveled decomposition of Section
2).

Here is a simple approach which will fail in the end, but
will give some intuition as to how the padded decompo-

sition will be used. Let k = log log ∆. Set ri = ∆1/2i

for i ∈ {0, 1, . . . , k − 1}, and rk = 0 (notice that rk−1 =



O(1)). Suppose we use the padded decomposition with
r = r0, r1, . . . , rk−1. For each value of r, the r-padded de-
composition will be used to break the graph into clusters of
diameter at most rα such that every two vertices within a
distance r are contained in some such piece (and are “far”
from the boundary of the piece—this is needed to ensure
that they are “separated” by the relative embedding for that
cluster).

An embedding for one level. Assume that j < k − 1.
Let {P1, P2, . . . , Pm} be the semi-partitions produced by the
rj-padded decomposition. We will show how to construct a
contraction ϕj that satisfies: For every pair u, v ∈ V with
rj+1 < d(u, v) ≤ rj , ϕj(u) 6= ϕj(v).

Fix some single semi-partition Pi of V . For every clus-
ter C ∈ Pi, compute a relative embedding ψC by apply-

ing Lemma 3.1 with parameter rj+1 = r
1/2
j . Note that

the lemma is applicable since diam(C) ≤ rα
j implies |C| ≤

r2αρ
j+1 = r

O(ρ)
j+1 . Now set ψi(u) = ψC(u) if u belongs to some

cluster C and ψi(u) = 0 otherwise. Notice that this map
is well-defined since the clusters C ∈ Pi are disjoint. Also,
notice that it is a contraction, for suppose (u, v) ∈ E. If u
and v are in the same cluster C, then ||ψi(u) − ψi(v)|| =
||ψC (u)−ψC(v)|| ≤ 1 since ψC is a relative embedding, and
hence a contraction. If u and v are in different clusters,
or one or both of them are contained in no cluster, then
ψi(u) = ψi(v) = 0 since both of u and v are either on the
boundary of their cluster (which is mapped to 0), or in no
cluster at all. Finally, set ϕj = ψ1 ⊕ · · · ⊕ ψm.

Now consider some u, v ∈ V with rj+1 < d(u, v) ≤ rj . By
property (2) of Definition 3.1, there exists some partition
Pi and a cluster C ∈ Pi such that B(u, 3rj) ⊆ C. Thus

u, v ∈ C, and certainly B(u, 3r
1/2α
j ) ⊆ C, so by Lemma 3.1,

ψC(u) 6= ψC(v). It follows that ψi(u) 6= ψi(v), and hence
ϕj(u) 6= ϕj(v).

The base case. For r = rk−1, we will construct ϕk−1

in a special way so that for u, v ∈ V with d(u, v) ≤ rk−1,
ϕk−1(u) 6= ϕk−1(v). We do this as above, but using a much
simpler relative embedding technique: Given a cluster C

with C = {v1, v2, . . . , vs} and s = r
O(ρ)
k−1 , define the relative

embedding ψC(vi) = B(i) if vi /∈ ∂C and ψC(vi) = 0 other-
wise, where B(i) is the binary representation of i as a log s-
dimensional vector. Note that this map is a contraction and
satisfies ψC(u) 6= ψC(v) whenever u, v /∈ ∂C. Using this
technique in the above argument (instead of Lemma 3.1)
yields the desired map ϕk−1. Also notice that ϕk−1 uses
only m log s = O(mρ) coordinates (since rk−1 = O(1)).

Putting it all together. If we let ϕ = ϕ0⊕ϕ1⊕· · ·⊕ϕk−1,
we see that ϕ is in fact a contractive, injective embedding
because for any pair u, v, the distance d(u, v) falls into some
range rj+1 < d(u, v) ≤ rj and thus ϕj(u) 6= ϕj(v).

If we assume that, for every sufficiently large value of r,
we can construct r-padded decompositions with m layers,
then each ψi (From Lemma 3.1) uses O(mρ) coordinates
and thus each ϕj uses O(m2ρ) coordinates. It follows that
ϕ uses O(m2ρ log log ∆) coordinates in all. It turns out that
this bound is of the right form, except for the appearance
of ∆. And indeed, this dependence on ∆ will be removed in
the next subsection.

In the case of trees, we removed the dependence of the
dimension on ∆ by exploiting some “untapped randomness.”
We saw that even after fixing a relative embedding for a

single level, we were still free to assign arbitrary weights to
the open edges of that level. In the next section, we exploit
a similar observation, namely that the boundary of a cluster
need not be mapped to 0.

3.3 Forced nesting, contractions, and untapped
randomness

We can now prove the main result of this section.

Theorem 3.1. Let G be a graph with ρ = ρG. If for every
cluster S ⊆ V and every value r ≤ diam(G) that is larger
than a suitable constant, there exists an r-padded decompo-
sition of S with m layers, then dim(G) = O(m2ρ).

First, consider a single layer Pi of an r-padded decompo-
sition, consisting of many disjoint clusters. For each C ∈ Pi,
let ψC be the relative embedding for C. Previously, we set
ψi(u) = ψC(u) for u ∈ C and ψi(u) = 0 otherwise. This
yielded a contraction defined on all of V with the property
that for u, v ∈ C, ||ψi(u) − ψi(v)|| = ||ψC(u) − ψC(v)||.
The following lemma gives a simple way of maintaining this
property, while allowing some freedom in choosing ψi.

Lemma 3.2. Let P be a partition of V into disjoint clus-
ters. Suppose that, for each cluster C ∈ P , we have a con-
traction ψC : C → Zd. Let GP = (VP , EP ) be the graph ob-
tained from G by contracting (in the graph-theoretic sense)
each cluster C to a single vertex, and let ψP : VP → Zd

be a contraction of GP . We may identify VP with P and
think of ψP as a map defined on P . Let Cu be the cluster
containing u and define the map ψ : V → Zd as follows:
ψ(u) = ψP (Cu) + ψC(u). Then ψ is a contraction and for
u, v ∈ C, ||ψ(u) − ψ(v)|| = ||ψC (u) − ψC(v)||.

Proof. It is clear that for u, v ∈ C, ||ψ(u) − ψ(v)|| =
||ψC(u)−ψC(v)||. It follows that ψ contracts vertices which
are in the same cluster. For u, v in different clusters with
(u, v) ∈ E, ||ψ(u) − ψ(v)|| = ||ψP (Cu) − ψP (Cv)|| ≤ 1 be-
cause ψP is a contraction and (u, v) ∈ E implies (Cu, Cv) ∈
EP .

The above lemma tells us that even after fixing a rela-
tive embedding for each cluster C ∈ Pi, we still have some
freedom in choosing the map ψi (every contraction ψP in
Lemma 3.2 gives rise to a valid ψi). The following proof has
a structure which is similar to that of Theorem 2.1 for trees,
but is technically more difficult. Basically, we want to find
an embedding ϕj which is “good” for level j and then mod-
ify it so that it remains good for j, and at the same time it
is also good for level j − t for some t = O(1) (in Theorem
2.1 we had t = 2, giving rise to the even and odd levels).
Continuing inductively, we will handle a constant fraction
of the levels with only one set of O(m2ρ) coordinates. Do-
ing this t times and taking the direct sum of the results, we
obtain an embedding which uses only O(tm2ρ) = O(m2ρ)
coordinates.

Proof of Theorem 3.1 (sketch). Let ∆ = diam(G),
and suppose that for some constant R0, every r with R0 ≤
r ≤ ∆, and every cluster S ⊆ V , there exists an r-padded
decomposition of S with m layers. Define k = log log ∆

and set ri = ∆1/2i

for i ∈ {0, 1, . . . , k − 1}, rk = 0. Let
Pi = {P i

1 , . . . , P
i
m} be the r-padded decompositions corre-

sponding to S = V and r = ri for i ∈ {0, 1, . . . , k − 1}.



In Section 3.2, we used one O(m2ρ)-dimensional embed-
ding for every level Pi. This resulted in the undesirable
log log ∆ factor in the dimension. To overcome this, we
shall use the same O(m2ρ)-dimensional embedding for say
the first layer of every level Pi, and so forth. Consider then
the sequence of layers P 1

1 , P
2
1 , . . . , P

k−1
1 . Let us say that a

map ϕ separates a partition P i
1 if, for any u, v ∈ V with

ri+1 < d(u, v) ≤ ri, such that there exists a cluster C ∈ P i
1

with B(u, 3ri) ⊆ C, we have ϕ(u) 6= ϕ(v).

We will show how to construct a map ϕ1 : V → ZO(mρ)

which separates the first layer of every level simultaneously,
i.e., ϕ1 separates P 0

1 , P
1
1 , . . . , P

k−1
1 . Constructing similar

maps ϕi for each sequence P 0
i , P

1
i , . . . , P

k−1
i , and taking the

sum ϕ̂ = ⊕m
i=1ϕi, we arrive at an embedding of G into the

O(m2ρ)-dimensional lattice, and hence dim(G) = O(m2ρ),
proving the theorem.

Let t = log 4α (where α = O(1) appears in Definition 3.1)
and set b = ⌊(k − 1)/t⌋. We will construct, for each i =
0, 1, . . . , t − 1, a map ϕi

1 which separates P i
1 , P

t+i
1 , P 2t+i

1 ,
. . . , P bt+i

1 . Letting ϕ1 = ⊕t−1
i=0ϕ

i
1 will yield the desired map

ϕ1. In what follows, we will construct only ϕ = ϕ0
1 : V →

ZO(mρ), which will separate P 0
1 , P

t
1 , . . . , P

bt
1 . The other maps

are constructed similarly. We now sketch the remaining de-
tails. A more technical proof is deferred to the full version.

Forced nesting. First, with some negligible loss, we can
force the sequence of semi-partitions P 0

1 , P
t
1 , . . . , P

bt
1 to be

nested so that P it
1 is a refinement of P

(i+1)t
1 for all 0 ≤ i < b.

In other words, for every cluster S ∈ P
(i+1)t
1 , there is a clus-

ter S′ ∈ P it
1 which contains S. This can be achieved induc-

tively as follows: Suppose that P
(i+1)t
1 , P

(i+2)t
1 , . . . , P bt

1 are

nested. If there is any cluster S ∈ P
(i+1)t
1 that is not con-

tained completely in a cluster S′ ∈ P it
1 (for instance, if it is

split between two or more clusters of P it
1 ), then simply make

every vertex of S its own cluster in P it
1 . That is, clusters of

P it
1 are contracted inwards to avoid breaking any clusters of

P
(i+1)t
1 . The nesting property is now clearly satisfied. Also,

note that if B(u, 3rit) is contained in some cluster S′ of P it
1 ,

then B(u, 3rit − rα
(i+1)t) ⊆ S′ holds after the modification,

since the diameter of any removed cluster S ∈ P
(i+1)t
1 is at

most rα
(i+1)t by Definition 3.1. Note that rα

(i+1)t ≤ r
1/4
it , so

this loss is asymptotically negligible.

We will now proceed as follows. For i = b, b − 1, . . . , 0,
we will exhibit a map γi : V → ZO(mρ) which separates

P bt
1 , . . . , P

(i+1)t
1 , P it

1 . Setting ϕ = γ0 will complete the proof.
γi will be constructed by modifying γi+1 using Lemma 3.2.

Suppose we have a map γi+1 separating P bt
1 , . . . , P

(i+1)t
1 .

We would like to modify γi+1 to a map γi so that it also
separates P it

1 . This is accomplished by mapping the bound-

aries of the clusters in P
(i+1)t
1 to values other than 0 using

Lemma 3.2.
To this end, consider a cluster C ∈ P it

1 . Let us see how to
modify the proof of Lemma 3.1 to construct a relative em-
bedding of C which only changes the images of the bound-

aries of the clusters in P
(i+1)t
1 . We construct an rit-inner

decomposition of C as before, but force it to be nested with

the clusters U = {C′ ∈ P
(i+1)t
1 : C′ ⊂ C} using the tech-

nique discussed above. Then, each C′ ∈ U is contracted to
a single vertex. To the resulting contracted graph, we apply
the embedding technique of Lemma 3.1. The only concern is
that a padded vertex, i.e. one for which B(u, 3rit) ⊆ C has

significantly less padding in the contracted graph. But it is
not too difficult to see that, during contraction, the padding
decreases by only a polynomial factor (in rit). Thus by in-
creasing the constant of Lemma 3.1, the union bound can
still be applied.

After a relative embedding for the contracted version of
C is found, we apply Lemma 3.2 to arrive at a relative em-
bedding of C which is still good for the clusters C′ ∈ U .
Finally, we construct γi as in Section 3.2, using the relative
embeddings exhibited for the clusters C ∈ P it

1 .

4. GRAPHS EXCLUDING A FIXED MINOR
Let G be a graph which excludes a Ks,s minor for some

fixed s. Then we can use a decomposition technique of Klein,
Plotkin, and Rao [14], to construct, for any value of r, an
r-padded decomposition of G with only O(2s) layers. Ap-
plying Theorem 3.1, we arrive at the main result of this
section. Due to space considerations, the proof is deferred
to the full version of this paper.

Theorem 4.1. Conjecture 1 is true for any family of graphs
that excludes a fixed minor, i.e., dim(G) = O(ρG) for any
such graph G.

5. A GENERAL DIMENSION UPPER BOUND
In this section we give a tight upper bound on the di-

mension of general graphs: dim(G) = O(ρG log ρG) for any
graph G. (We show that this upper bound is met by ex-
panders in Section 6). First, we devise a decomposition for
growth-restricted metrics (Section 5.1) and use Theorem 3.1
to obtain a weaker upper bound of O(ρ3

G) (Section 5.2).
Then, by combining the previous arguments more carefully
and utilizing some Chernoff-type tail bounds, we obtain the
aforementioned tight upper bound (Section 5.3).

5.1 Decomposition of growth-restricted graphs
Linial and Saks [17] and Bartal [3] show that for any graph

G = (V,E) and 1 ≤ r ≤ diam(G), there exists a probabilis-
tic partition of G into disjoint clusters of diameter at most
O(r lnn), such that for any pair of vertices u, v ∈ V , the
probability that u and v end up in different clusters is at
most O(d(u, v)/r). Let ρ = ρG. In this section, we give a
similar decomposition, but we replace the diameter bound
of O(r lnn) with a bound which is independent of n, namely
O(ρ r ln r), for r ≥ ρ. Our partitioning method is similar to
those of [17] and [3], but different in a subtle and crucial
way: It is local. Events which are sufficiently far apart are
mutually independent.

First, take the continuous exponential distribution with
mean r, truncate it at M and rescale the remaining den-
sity function. The resulting distribution, which we denote

Texp(r,M), has density function p(z) = eM/r

r(eM/r−1)
e−z/r for

z ∈ (0,M).

The algorithm. Let V = {v1, v2, . . . , vn}. For each vt,
choose a radius rt according to the distribution Texp(r, 8ρr ln r).
For a vertex v, define Bv = min{t : v ∈ B(vt, rt)}. Fi-
nally, define St = {v : Bv = t} as the set of vertices v for
which B(vt, rt) is the first ball containing v. Notice that
G[St] may be disconnected, so define the set of clusters to
be C = ∪t{connected components of G[St]}.

It is easy to bound the (weak) diameter of every cluster
C ∈ C by diam(C) ≤ 16ρr ln r. Further analysis will require



the following simple facts, which show that the truncated
exponential distribution is “almost” memoryless.

Fact 5.1. Consider a random variable R ∼ Texp(r,M)
for M ≥ 2r. Then,

1. Pr[R ≥ α] ≤ 2e−α/r.

2. Pr[R ≤ α] ≤ 2(1 − e−α/r) ≤ 2α/r.

3. if R0 ≤M/2 then Pr[R ≤ R0 + α |R ≥ R0] ≤ 2α/r.

For a vertex u ∈ V , let Ex
u be the event that B(u, x) is

split between multiple clusters, i.e., the event that no cluster
C ∈ C fully contains B(u, x).

Theorem 5.1. Let u ∈ V and r ≥ ρ. Then Pr[Ex
u ] ≤

10x/r.

Proof. Assume 1 ≤ x ≤ r (the theorem says nothing for
larger x) and let B = B(u, x), Bt = B(vt, rt). Let us say
that the ball B is cut by the ball Bt if St ∩ B is non-empty
but B * St. Then Ex

u is precisely the event that some ball
Bt cuts B.

Let us separate the cuts into two classes, depending on
the distance from vt to u. Define Efar to be the event that
Bt cuts B and d(vt, u) ≥ 4ρr ln r. Define Enear to be the
event that Bt cuts B and d(vt, u) ≤ 4ρr ln r.

Fix vt with d(u, vt) ≥ 4ρr ln r and notice that by Fact 5.1,

Pr[Bt cuts B] ≤ Pr[rt ≥ 4ρr ln r − x] ≤ 2r−4ρex/r ≤ 6r−4ρ.

But the number of such vt for which Bt can possibly cut B
is at most the number of points in a ball of radius (8ρr ln r+
x) ≤ r3 which is at most r3ρ. Taking a union bound over all
such possible vt, we see that Pr[Efar] ≤ 6r−4ρr3ρ ≤ 6/rρ ≤
6/r. Thus we are left only to bound the probability of Enear.

Let the random variable T be the minimum t such that
BT ∩ B 6= ∅ (note that possibly vT ∈ B). The ball BT can
either cut B (in which case Ex

u occurs) or contain B (and
then B ⊆ St is not cut by any ball Bt). By the principle of
deferred decision it suffices to upper bound the conditional
probability Pr[Enear|T = t]. To this end, we may assume
that d(vt, u) ≤ 4ρr ln r (as otherwise this conditional proba-
bility is 0) and then Enear happens if and only if Bt cuts B,
which in turn happens only if rt ≤ d(vt, u) + x. Hence,

Pr[Enear |T = t] ≤ Pr
[

rt ≤ d(vt, u)+x | rt ≥ d(vt, u)−x
]

≤ 4x

r
,

where we have used Fact 5.1 in conjunction with d(vt, u) ≤
4ρr ln r. Thus, Pr[Enear] =

∑

t Pr[T = t] · Pr[Enear|T = t] ≤
4x/r and Pr[Ex

u ] ≤ Pr[Enear] + Pr[Efar] ≤ 10x/r.

5.2 General layered decompositions
Now we describe how to obtain an r-padded decomposi-

tion with O(ρG) layers for general graphs G. Plugging these
values into Theorem 3.1 yields an embedding into O(ρ3

G)
dimensions. We will only be able to show the existence of
such decompositions under the assumption that r ≥ ρ. In
the case where r ≤ ρ, clusters of diameter rO(1) have at most
ρO(ρ) points, so we will be able to embed these by brute force
using only O(ρ log ρ) dimensions (similar to the base case of
Section 3.2). The final result appears in Theorem 5.3.

Theorem 5.2. Let r0 be a sufficiently large constant. Then
for any graph G = (V,E) with ρ = ρG and any r ≥ max{r0, ρ},
there exists an r-padded decomposition with O(ρ) layers.

Proof. Assume r ≥ max{r0, ρ}. To produce a single
layer of the decomposition (a partition of V into clusters), we
will use the algorithm of Section 5.1, with the parameter r
(in the algorithm and in Theorem 5.1) set to r2. Notice that
the clusters produced have diameter at most 32ρr2 ln r ≤ r4

(for r0 sufficiently large). For a vertex v ∈ V , let Ev be
the event that the ball of radius 3r about v is cut (i.e., split
amongst two or more clusters). From Theorem 5.1, we know
that Pr[Ev] ≤ O(1/r).

Now produce ℓ layers independently (with fresh random
coins each time) and let Eℓ

v be the event that the ball of
radius 3r about v is cut in every layer. Clearly Pr[Eℓ

v] ≤
O(1/r)ℓ. We would like to say that Pr

[

∧

v∈V Eℓ
v

]

> 0. If we

could show this with ℓ = O(ρ), the theorem would follow.
And indeed, this is our goal. We will employ the following
symmetric form of the Lovász Local Lemma, see e.g. [1].

Lemma 5.2 (Lovász Local Lemma). Let A1, . . . , An

be events in an arbitrary probability space. Suppose that for
each Ai there is a set that contains all the other events Aj

but at most d, such that Ai is mutually independent of this
set of events, and suppose that Pr[Ai] ≤ p for all 1 ≤ i ≤ n.
If ep(d+ 1) ≤ 1 then Pr[∧n

i=1Ai] > 0.

Let r1 = 32r3 ln r + 6r. An event Eℓ
u is mutually inde-

pendent of all events Eℓ
v for which d(u, v) > r1 because ev-

ery ball of the decomposition of Section 5.1 has radius at
most 16r3 ln r and thus cannot intersect both B(u, 3r) and
B(v, 3r). It follows that Eℓ

u is mutually independent of the
set of all events Eℓ

v except those for which v ∈ B(u, r1), and
there are at most d = rρ

1 such events. Thus if Pr[Eℓ
u] ≤

e/(d+ 1), we can apply the local lemma and the theorem is
proved. But this is easily accomplished by choosing ℓ = 4ρ
(for r0 a sufficiently large constant). By applying Lemma 5.2
we conclude that there exists an r-padded decomposition for
V (with α = 4). To get an r-padded decomposition for any
cluster S ⊆ V , just apply the theorem to G[S].

Theorem 5.3. For every graph G with growth rate ρG,
dim(G) = O(ρ3

G).

Proof (Sketch). Instead of starting the proof of Theo-
rem 3.1 at r = O(1), we start with the level corresponding
to r = max{ρ, r0}. In this case, the clusters have diameter

rO(1) = ρO(1), so we can easily give a relative embedding for
each cluster using only O(ρ log ρ) coordinates, similar to the
base case of 3.2. The proof then proceeds unchanged.

5.3 A tight upper bound
As mentioned previously, Theorem 5.2, combined with

Theorem 3.1, shows that dim(G) = O(ρ3
G) for every graph

G. Thus the dimension of a graph is indeed bounded above
by a function which depends only on its growth rate. We can
do better, though; by carefully combining the previous argu-
ments and utilizing some Chernoff-type tail bounds, we are
able to find a tight upper bound, dim(G) = O(ρG log ρG).

Theorem 5.4. For every graph G = (V,E) with growth
rate ρG, dim(G) = O(ρG log ρG).

Proof (Sketch). Consider again theO(ρ)-layer r-padded
decomposition who existence is guaranteed by Theorem 5.2.
Suppose we have ℓ = c0ρ layers P1, P2, . . . , Pℓ. Let us say
that a vertex u is padded in a layer i if there exists a cluster



C ∈ Pi such that B(u, 3r) ⊆ C (otherwise, we will say that
it is unpadded in layer i).

First let us show that with positive probability, every ver-
tex u ∈ V is padded in a constant fraction of the ℓ layers.
The probability that u is unpadded in layer Pi is at most
c1/r (by the analysis of Theorem 5.1) for some constant c1,
so the expected number of layers in which u is bad is at most
c1ℓ/r. We now need the following Chernoff-type tail bound
(see, e.g., [20]).

Lemma 5.3 (A tail bound). Let X1, X2, . . . ,Xn be in-
dependent Poisson trials such that, for 1 ≤ i ≤ n, Pr[Xi =
1] = pi, where 0 < pi < 1. Then for X =

∑

i Xi, µ = E[X],
and any δ > 0,

Pr[X > (1 + δ)µ] <

(

eδ

(1 + δ)1+δ

)µ

<

(

e

1 + δ

)(1+δ)µ

.

Let Yu be the expected number of layers in which u is
unpadded, and let Eu be the event that u is unpadded in
more than ℓ/2 layers. Then, applying the above lemma,

Pr[Eu] = Pr

[

Yu >
r

2c1
· c1ℓ
r

]

=
1

Ω(r)ℓ/2
.

We will now show that each layer of an r-padded decompo-
sition P1, P2, . . . , Pℓ can be embedded using only O(ρ log ρ)
coordinates, i.e., we can find, for each C ∈ Pi, a relative
embedding ϕC : C → ZO(log ρ), such that, letting ϕi(u) =
ϕC(u) for u ∈ C and ϕi(u) = 0 otherwise, and setting ϕ =
⊕ℓ

i=1ϕi, we have ϕ(u) 6= ϕ(v) whenever
√
r < d(u, v) ≤ r.

Using the nesting techniques of Theorem 3.1, the existence
of an embedding into only O(ρ log ρ) dimensions will follow.

We first handle the base case, where r = ρ (notice that this
is where our decomposition breaks down). We will show how

to produce a contraction ϕ : V → ZO(ρ log ρ) which satisfies
ϕ(u) 6= ϕ(v) whenever d(u, v) ≤ ρ. The idea is simple: First,
produce an ℓ-layer r-padded decomposition P1, . . . , Pℓ. Now
for every cluster C ∈ Pi, form a relative embedding of C as
follows: If u /∈ ∂C, then let ϕC(u) be a log ρ-dimensional
vector chosen uniformly at random from {0, 1}log ρ and let
ϕC(u) = 0 otherwise. This is clearly a contraction. Now
set ϕi(u) = ϕC(u) where C ∈ Pi is the cluster containing u,
and then set ϕ = ⊕ℓ

i=1ϕi.
Consider two points u, v with d(u, v) ≤ r and let Pi be a

layer in which u is padded. In this layer, u and v occur in
the same cluster C and u /∈ ∂C, so Pr[ϕC(u) = ϕC(v)] ≤
( 1
2
)log ρ = 1

ρ
. Let Eu,v be the event that ϕ(u) = ϕ(v), then it

follows that Pr[Eu,v] ≤ Pr[Eu]+(1/ρ)ℓ/2 ≤ O(1/ρ)ℓ/2. There
are Ω(n) events Eu,v and we would like to argue that with
positive probability, none of them occur. Again, the local
lemma comes to our rescue. It is not difficult to see that Eu,v

is independent of all events Eu′,v′ for which d(u, u′),≥ 3ρ4.
This is because the r-padded decomposition is a local prob-
abilistic procedure and every ball appearing in its formation
has radius at most ρ4 (assuming without loss that ρ is not
smaller than a suitable constant as otherwise we could in-
crease it by a constant factor). Since the relative embed-
ding technique is also local, we get independence between
distant events. It follows that Eu,v is mutually independent
of all but at most d = O(ρ8ρ) other events (close enough
pairs u′, v′). Choosing c0 to be a large enough constant, we

see that Pr[Eu,v] ≤ O(1/ρ)cρ/2 ≤ e/(d + 1). Thus, applying
Lemma 5.2 yields an embedding for which none of the events
Eu,v occur.

Now let us consider the layers P1, . . . , Pℓ corresponding
to an r-padded decomposition for some value r ≥ ρ, and
assume that we already found a relative embedding for the
layers corresponding to say r1/64. In Theorem 3.1, for each
cluster C ∈ Pi, we applied an m-layer r1/2-inner decompo-
sition to C to produce the relative embedding. But now we
know that with high probability, a vertex u is padded in at
least half of the ℓ the layers, so we will only decompose C into
one (randomly chosen) layer. Furthermore, the relative em-
bedding we design will not use O(ρ) coordinates but rather
only one coordinate. Let us see that this works, i.e., with
positive probability ϕ(u 6= ϕ(v) whenever

√
r < d(u, v) ≤ r.

First, assume that u is padded in at least ℓ/2 layers. (Re-

call that his happens with probability 1 −O(1/r)l/2.) Con-
sider a layer Pi in which u is padded and let C ∈ Pi be such
that u ∈ C. To produce the one layer to which we apply the
relative embedding technique of Lemma 3.1, use the ran-
domized decomposition from the proof of Theorem 5.2 with
parameter r1/8 = (

√
r)1/4. The probability that u is not

padded in this layer, i.e. that B(u, 3r1/8) is not contained in

any cluster, is at most O(r1/8) by the same proof as in The-
orem 5.1. But there are at least ℓ/2 of these events since u is
padded in at least ℓ/2 layers, so, applying a Chernoff bound,

we see that u is r1/8-padded in at least ℓ/4 one-layer cluster

decompositions with probability 1 − O(1/rℓ/4). So assume
that this event happens, and then the probability that u and
v collide in every one of them is O(1/r1/8)ℓ/4. By a union
bound on the three bad events mentioned above we see that
Pr[ϕ(u) = ϕ(v)] ≤ O(1/rℓ/32). Finally, we would like to
apply Lemma 5.2 on the events Eu,v = {ϕ(u) = ϕ(v)} where√
r < d(u, v) ≤ r. It can be seen that every event Eu,v is

mutually independent of all the other events Eu′,v′ but the

rO(1) events for which d(u, u′) ≥ 3r4. Hence, for c > 0 a
sufficiently large constant we can apply Lemma 5.2, which
completes the proof of the theorem.

Algorithmic aspects. It is possible to make the applica-
tions of the local lemma in this section algorithmic. A proof
is deferred to the full version.

6. EXPANDERS

Theorem 6.1. Let G be a log n-degree expander, then
dim(G) = Ω(ρG log ρG). In particular, Conjecture 1 is not
true (for general graphs).

Proof. Let G = (V,E) be an expander graph on n ver-
tices with all vertices having roughly the same degree Θ(k),
for 1 ≤ k ≤ log n. Specifically, the expansion properties that
we need are:

(i) The diameter of G is O(logk n).

(ii) Every two sets of n/ log n vertices in G are connected
by a path of length O(logk log n).

Observe that these two properties follow from standard ver-
tex expansion. It follows from Property (i) that ρG = Θ( log n

log logk n
).

We shall show that if G occurs as a subgraph of Zd
∞ then

d = Ω( log n
log logk log n

). Note that for k = log n, this implies

that dim(G) = Ω(log n) = Ω(ρ log ρ) and this lower bound
is tight, up to constant factors, since the trivial upper bound
d = O(log n) holds for any n-vertex graph (by a bijection
into {0, 1}log n).



Assume for contradiction that G occurs as a subgraph of
Zd

∞ with d = o( log n
log logk log n

). Let ϕ be the corresponding

embedding of G into Zd
∞, and let ϕi be the projection of ϕ

on the coordinate i = 1, . . . , d. Let the set Si consist of the
n/ log n vertices v ∈ V with smallest ϕi(v),and let the set
Li consist of the n/ log n vertices v ∈ V with largest ϕi(v).

We claim that ϕi(V \ (Si ∪ Li)) is an interval of size
O(logk log n). Indeed, by property (ii) above G contains
a path of length O(logk log n) that connects some vertex
s ∈ Si with some vertex l ∈ Li. Since ϕ is contractive,
ϕi(l) − ϕi(s) ≤ O(logk log n). By the definition of Si and
Li, for every v ∈ V \(Si∪Li) we have ϕi(s) ≤ ϕi(v) ≤ ϕi(l),
which proves the claim.

Finally, the set of vertices V ′ = V \(∪d
i=1(Si∪Li)) contains

at least n − dn/ log n > n/2 vertices. By the above claim,
ϕ(V ′) is contained in a subset of the lattice Zd which is the
cartesian product of d intervals of size O(logk log n). How-
ever, this subset of Zd contains at most (O(logk log n))d ≪
n/2 points, which contradicts the assumption that ϕ is in-
jective.

7. RELATED NOTIONS OF DIMENSION-
ALITY

Theorem 7.1. All the upper bounds for dim(G) hold also
for dim2(G).

Proof. Consider a contractive, injective embedding of
G = (V,E) into Zd

∞ such that for every two distinct ver-
tices u, v, their images ϕ(u) and ϕ(v) differ in at least d

4
coordinates. Our constructions can be easily modified to
yield such an embedding by applying appropriate Chernoff
bounds when the coordinates are formed (see the application
of Lemma 5.3 in Section 5.3, for instance).

This embedding satisfies

1. ||ϕ(u) − ϕ(v)||2 ≥ 1
2

√
d for u 6= v ∈ V and

2. ||ϕ(u) − ϕ(v)||2 ≤
√
d for (u, v) ∈ E.

Now scaling the value of every coordinate by 2√
d

yields the

desired mapping.

Theorem 7.2. For a Θ(k)-degree expander G with 1 ≤
k ≤ log n, dim2(G) = Ω( log n

log logk log n
). For a log n-degree

expander, dim2(G) = Ω(ρG log ρG).

Proof. Similar to that of Theorem 6.1.
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