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Abstract

We resolve the following conjecture raised by Levin together with Linial, London, and Ra-
binovich [Combinatorica, 1995]. For a graph G, let dim(G) be the smallest d such that G occurs
as a (not necessarily induced) subgraph of Z

d
∞

, the infinite graph with vertex set Z
d and an

edge (u, v) whenever ||u − v||∞ = 1. The growth rate of G, denoted ρG, is the minimum ρ such
that every ball of radius r > 1 in G contains at most rρ vertices. By simple volume arguments,
dim(G) = Ω(ρG). Levin conjectured that this lower bound is tight, i.e., that dim(G) = O(ρG)
for every graph G.

Previously, it was unknown whether dim(G) could be bounded above by any function
of ρG. We show that a weaker form of Levin’s conjecture holds by proving that dim(G) =
O(ρG log ρG) for any graph G. We disprove, however, the specific bound of the conjecture and
show that our upper bound is tight by exhibiting graphs for which dim(G) = Ω(ρG log ρG). For
several special families of graphs (e.g., planar graphs), we salvage the strong form, showing
that dim(G) = O(ρG). Our results extend to a variant of the conjecture for finite-dimensional
Euclidean spaces posed by Linial and independently by Benjamini and Schramm.

1 Introduction

The geometry of graphs, a fascinating area of combinatorics concerned with the geometric repre-
sentation of graphs, has found many algorithmic applications in recent years. A very fruitful and
actively studied line of research involves embedding the metric of a weighted graph into some
finite-dimensional real-normed space (see, for instance, the surveys [13] and [19, ch. 15]). In their
seminal paper [16], Linial, London, and Rabinovich were the first to fully realize the algorithmic
importance of low-distortion metric embeddings. However, their initial motivation was to under-
stand the relationship between the dimensionality of a graph and its combinatorial properties.

The notion of dimensionality for a graph is usually based on a particular way of embedding
the graph into some space that possesses an intrinsic dimension (e.g., a finite-dimensional Eu-
clidean space). One then defines the dimension of a graph to be the least dimension into which
it can be embedded. Several such notions have been extensively studied; see [18]. In [16], the
authors wished to express the concept that graphs of “everywhere large diameter” should have
low dimensionality. With the help of Leonid Levin, this concept was was formalized as follows.
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Let Z
d
∞ be the infinite graph with vertex set Z

d and an edge (u, v) for two vertices u and v
whenever ||u − v||∞ = 1. For a graph G = (V,E), define dim(G) to be the smallest d such that G
occurs as a (not necessarily induced) subgraph of Z

d
∞.

For a pair of vertices u, v ∈ V , we define dG(u, v) to be the distance between u and v in the
shortest path metric on G. We denote by

B(v, r) = {u ∈ V : dG(u, v) ≤ r}

the closed ball of radius r in G centered at v, and define the growth rate of G to be

ρG = inf{ρ : |B(v, r)| ≤ rρ for all v ∈ V and r > 1}.

Equivalently, ρG = sup{ log |B(v,r)|
log r : v ∈ V, r > 1}. Notice that ρZd

∞
= Θ(d), so by a simple counting

argument, we must have dim(G) = Ω(ρG). Levin, together with Linial, London, and Rabinovich
[16], conjectured that O(ρG) dimensions suffice.

Conjecture 1. For any graph G with growth rate ρG, G occurs as a (not necessarily induced) subgraph of

Z
O(ρG)
∞ . In other words, dim(G) = Θ(ρG).

In [16], it was shown that Conjecture 1 holds for the k-dimensional hypercube and the complete
binary tree, but nothing beyond these two special cases was known. Indeed, it was not known
whether dim(G) could be upper bounded by any function of ρG, even in the seemingly simpler
case when the graph is a tree. Linial [15] asked about a Euclidean analogue to this notion of
dimensionality.

Question 2. For a graph G = (V,E), what is the minimum dimension d, denoted dim2(G), such that
there exists a mapping γ : V → R

d with the following properties?

1. ||γ(u) − γ(v)||2 ≥ 1 for all u 6= v ∈ V , and

2. ||γ(u) − γ(v)||2 ≤ 2 for all (u, v) ∈ E.

Itai Benjamini and Oded Schramm [personal communication, 2003] independently asked a
similar question: Is it the case that, for every infinite graph G with ρ(G) <∞, we have dim2(G) <
∞? In what follows, we resolve all these questions and give tight quantitative bounds. Linial
remarked that the condition ||γ(u) − γ(v)||2 ≤ 2 is somewhat arbitrary; indeed, we will see that it
can be replaced by ||γ(u) − γ(v)||2 ≤ C for any fixed C > 1 while affecting the value of dim2(G)
by only a constant factor (that depends on C), see Section 6.

1.1 Results and techniques

In Section 2, we provide a self-contained proof of Levin’s conjecture for trees. We first perform
a recursive decomposition of the tree. Each “level” of the decomposition is responsible for pairs
of vertices whose distance (in the tree) falls into a certain range of the form [r, r2]. For any single
level, we use the probabilistic method to construct an embedding that handles all the respective
pairs of vertices. We can embed each level separately and concatenate the O(log log |V |) resulting
mappings, but the dimension of the host lattice becomes too large. The key technique, which com-
pletes the proof, is a method of handling all the levels using the same coordinates. The solution
involves “conservation” of randomness between levels—our hierarchical decomposition of the
tree induces a partition of a corresponding probability space, and the probabilistic construction
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at later levels is restricted to randomizing over only the remaining “untapped” randomness (an
idea that reappears throughout the paper). This result extends to graphs whose induced simple
cycles are of bounded length by known low-distortion embeddings of such graphs into trees, due
to [5, 6].

In Section 3, we give a lower bound on the dimension necessary to embed low-degree ex-
pander graphs which shows that the strong form of Levin’s conjecture does not hold in general.
In particular, we show that for a log n-degree expander G, dim(G) = Ω(ρG log ρG).

In Section 4, using different techniques, but many ideas from our proof for trees, we give a
general upper bound on dim(G) in terms of certain graph decompositions. In this setting, choosing
a good embedding for a level with high probability is more difficult; the approach we use is
inspired by a technique of [21] (which was used there to embed planar graphs into Euclidean
space with low distortion). Again, we must discover a delicate way of handling all the levels
simultaneously. In Section 4.4, we employ the decomposition of [14] (see also [10]), combined
with the results of Section 4, to prove the conjecture for any family of graphs which excludes a
fixed minor (this includes planar graphs, for instance).

In Section 5, we modify a probabilistic decomposition of [17, 3] for use with growth-restricted
graphs. Our modifications are two-fold. First, the parameters of our decomposition depend on ρ
(and not on n = |V | as in [17, 3]). This is essential to our application. Secondly, our decomposition
is local in the sense that events which are far apart (in G) are mutually independent. As a result,
we are able to apply the Lovász Local Lemma, yielding decompositions which, when combined
with the results of Section 4, give dim(G) = O(ρ3

G) for any graph G.
To obtain a tight upper bound of dim(G) = O(ρG log ρG), we observe in Section 5.3 that the

many steps of our embedding can be essentially performed “at once,” removing the need to am-
plify the individual probabilities at each step. Here, it is essential that every step of the embedding
process is “local” with respect to its “scale.”

Finally, in Section 6, it is shown that all our results for dim(G) hold also for Linial’s variant
dim2(G) [15], yielding a conclusive answer to Question 2, and positively resolving the question of
Benjamini and Schramm. This follows from a standard application of Chernoff-type tail bounds
to the random processes employed in previous sections.

1.2 Related work

Notions of dimensionality for graphs were perhaps first considered by Erdös, Harary, and Tutte
[8]. The geometric representations of graphs have been extensively studied in other settings; see,
for instance, the survey of Lovász and Vesztergombi [18]. As mentioned before, the related study
of low-distortion metric embeddings has received increasing attention in recent years (see the
surveys [13, 19]).

Conjecture 1 is actually a dual of the bandwidth problem for graphs. The bandwidth problem
asks for the minimum stretch of any edge in an embedding of the graph into Z = Z

1
∞. Conjecture

1 asks for the minimum dimension needed to achieve a stretch of one (no stretch). Interestingly,

the density bound D = max{ |B(v,r)|
2r } (a one-dimensional analogue of the growth rate), which is

a straightforward lower bound on the bandwidth, is conjectured to be within a log |V | factor of
the bandwidth (this gap is met, for instance, by expanders). From [9], we know that the band-
width and density differ by only a polylog(|V |) factor. However, the techniques employed for the
bandwidth problem do not seem to help in resolving the dual question.

Imposing a growth restriction like |B(v, r)| ≤ rρ on a graph has many analogs in the analysis of
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metric spaces, and in Riemannian geometry. For metric spaces, there are the notions of a doubling
metric and Ahlfors Q-regularity (see [12]). A metric space (X, d) is called doubling if there exists a
constant L > 0 such that every ball in X can be covered by L balls of half the radius. Assouad [2]
showed that, for any fixed 0 < ε < 1, the metric space (X, dε) (with distances raised to the power
ε) embeds into R

k with distortion D, where k and D depend only on L. This theorem is similar
in spirit to a number of the results presented here. Although Assouad’s methods are significantly
different and do not apply to Levin’s problem, the relationship is not entirely superficial; the
techniques of Section 5 were used in [11] to obtain a new (quantitatively almost optimal) proof of
Assouad’s theorem.

1.3 Preliminaries

For a point x = (x1, . . . , xd) ∈ R
d, we write ||x||2 = (

∑d
i=1 |xi|2)

1

2 and ||x||∞ = maxd
i=1 |xi|. For a

graph G, we write V (G) and E(G) for the vertex and edge set of G, respectively.

Definition 1.1. For a graph G = (V,E), a map ϕ : V → Z
d is a contraction (or contractive) if

(u, v) ∈ E implies ||ϕ(u) − ϕ(v)||∞ ≤ 1. Furthermore, if {ϕi} is a finite set of mappings, we define
the direct sum, ϕ =

⊕

i ϕi to be the mapping ϕ(u) = (ϕ1(u), ϕ2(u), . . .) (i.e., where coordinates are
concatenated).

Notice that if a map ϕ : V → Z
d is both contractive and injective, then G occurs as a subgraph

of Z
d
∞, and in particular, dim(G) ≤ d. We can think of any such embedding ϕ as consisting of d

separate one-dimensional maps ϕ1, . . . , ϕd such that ϕ =
⊕n

i=1 ϕi. The following simple lemma
will serve as our guide.

Lemma 1.2. Let G = (V,E) and ϕ =
⊕d

i=1 ϕi where ϕi : V → Z, then the following are true.

1. ϕ is a contraction ⇐⇒ every ϕi is a contraction.

2. ϕ is injective ⇐⇒ for every pair u, v ∈ V , there exists some ϕi such that ϕi(u) 6= ϕi(v).

Unless otherwise stated, || · || = || · ||∞ and all logarithms are to the base 2.

2 Trees

In this section we show that every tree T with growth rate ρ occurs as a subgraph of Z
d
∞ with

d = O(ρ) by exhibiting a map ϕ : T → Z
d that is both contractive and injective.

2.1 Embedding trees by random walks

In light of Lemma 1.2, it is natural to define a distribution over random contractions and then
argue that some such map must be injective.

Let T = (V,E) be a tree whose growth rate is at most ρ. Fix an arbitrary root r of T , and let h
be the height of T (so that V ⊆ B(r, h)). Define dT to be the shortest path metric on T and let c > 0
be a sufficiently large constant to be determined later. Let T1, T2, . . . , Tcρ be cρ weighted copies of
T , where the weight of every edge in Ti is chosen independently and uniformly at random from
the set {−1,+1}. For each v ∈ V , let vi be the sum of the edge weights on the unique path from r
to v in Ti. Finally, define the image of v in Z

cρ by ϕ(v) = (v1, v2, . . . , vcρ).

4



Clearly ϕ is a contraction. Now consider any two vertices u, v ∈ V for which dT (u, v) ≥
√
h.

The probability that the images of u and v agree in any single coordinate, i.e. that ui = vi, is the
probability that a random walk with +1/−1 steps and length

√
h ends at its starting point, namely

O(h)−1/4. Hence the probability that ϕ(u) = ϕ(v) is at most O(h)−cρ/4. Observe that since T is
contained in a ball of radius h centered at r, it contains at most hρ vertices. Taking a union bound
over at most h2ρ pairs {u, v} ∈ V 2,

Pr[∃u, v ∈ V, dT (u, v) ≥
√
h and ϕ(u) = ϕ(v)] ≤ h2ρO(h)−cρ/4.

It follows that there exists universal constants h0 > 0, c > 9 such that for every tree T of height
h ≥ h0, there exists a map ϕ : V → Z

cρ for which dT (u, v) ≥
√
h =⇒ ϕ(u) 6= ϕ(v). In what

follows, we carefully utilize this simple but powerful observation to show that dim(T ) = O(ρ) for
any tree T , thus proving Conjecture 1 for the special case of trees.

2.2 Relative embeddings and rooted subtrees

Consider a tree T = (V,E) with ρ = ρT and fix a root rT of T . Define a rooted subtree of T to
be a connected vertex-induced subgraph X with a distinguished root rX . Let W = {−1, 0,+1}
be the set of edge weights. For a rooted subtree X = (VX , EX), we define a d-dimensional relative
embedding of X to be a map µX : EX → W d. Finally, we will denote by µ∗X : VX → Z

d the (absolute)
embedding induced by the relative embedding µX (with respect to the root rX), which is the map
obtained as follows: For a vertex v ∈ VX , define its image µ∗X(v) ∈ Z

d as the sum of the edge
weights µX(e) along the unique path from rX to v in X. By our choice of W , induced embeddings
are always contractions. Furthermore, given any contractive embedding ϕ : VT → Z

d, there exists
a unique d-dimensional relative embedding µ such that ϕ = µ∗ (with respect to rX). Let us define
0 = (0, 0, . . . , 0) to be the all-zero vector. Notice that the construction of Section 2.1, when applied
to a subtree X, yields a relative embedding of X with the following desirable property.

Lemma 2.1 (Relative embeddings). There exist constants h0 and c such that for every rooted subtree
X = (VX , EX) of T with height at most h where h ≥ h0, there is a relative embedding µX : EX → W cρ

such that, for all u, v ∈ VX , µ∗X(u) 6= µ∗X(v) whenever dT (u, v) ≥
√
h.

In essence, µ∗X “separates” points in X which are far apart relative to the height of T . Notice
that the above lemma only works for h sufficiently large. When h is bounded, i.e., h = O(1), a
brute force embedding suffices.

Lemma 2.2 (Small subtrees). For any rooted subtree X = (VX , EX) of T with height at most h1, there
exists a relative embedding µ : EX →W ρ log(h1+2) such that µ∗ is injective.

Proof. Let VX = {v1, v2, . . . , vm} and define ϕ(vi) = B(i) where B(i) is the binary representation
of i − 1 written as a dlogme-dimensional vector. Now ϕ is clearly injective and also a contraction
since ||B(i) − B(j)||∞ ≤ 1 for all i, j. Finally, notice that since X is of height h = O(1), we have
m ≤ hρ and hence dlogme ≤ ρ log(h1 + 2). Let µ be the unique relative embedding such that
ϕ = µ∗. It follows that µ : EX →W ρ log(h1+2) is a relative embedding with µ∗ injective.

Suppose {X1,X2, . . . ,Xk} is a collection of vertex-disjoint rooted subtrees of T , and let each
Xi = (Vi, Ei) have root ri. Furthermore, suppose that for each Xi, we have a relative embedding
µi : Ei →W d. Then we can define a relative embedding µ on all of V by

µ(e) =

{

µi(e) if e ∈ Ei for some i

0 otherwise.

5



Note that µ has the desirable property ||µ∗(u)− µ∗(v)|| = ||µ∗i (u) − µ∗i (v)|| whenever u, v ∈ Vi. We
will say that µ is obtained by glueing the relative embeddings {µi} together.

In the sequel, we will construct, for a given ĥ > 0 (which need not be the height of the tree
T ), an embedding ϕ : V → Z

O(ρ) that satisfies ϕ(u) 6= ϕ(v) whenever ĥ1/2 ≤ d(u, v) ≤ ĥ. (This is
essentially the “single scale” version of the conjecture.) To do this, we will partition T into subtrees
of height O(ĥ), find for each subtree a relative embedding that satisfies the desired property, and
then glue all these relative embeddings into an embedding for T . There is the slight problem that
for pairs u, v with ĥ1/2 ≤ d(u, v) ≤ ĥ that end up in different subtrees, we have no guarantee that
their images (under µ∗) will be distinct. To handle this, we will actually use two sets of disjoint
subtrees which are “staggered” so that every pair u, v with d(u, v) ≤ h ends up in the same subtree
in at least one of the sets. A far more challenging problem is that this embedding is guaranteed to
handle only one value of h.

2.3 The leveled decomposition

Let diam(T ) be the diameter of T . Set k = dlog log diam(T )e and ∆ = 22k
, hence diam(T ) ≤ ∆ ≤

diam(T )2. We define k levels L0, L1, . . . , Lk−1 as follows. Level i consists of two partitions of T into
rooted subtrees, Denote these two partitions Ai and Bi and let Li = Ai ∪ Bi. The subtrees in Li

will cover T (in a sense that will be defined soon) and will each have height at most 3h(i), where

h(i) = ∆1/2i
. (For convenience, we define h(k) = 1.) To form Ai, let OA

i be the set of edges in T
whose depth (i.e., distance from the root rT ) is a multiple of 3h(i). Removing OA

i from T results in
a collection of disjoint subtrees; let Ai consist of these subtrees, each rooted at its (unique) closest
vertex to rT . Bi is formed similarly, except that OB

i is defined as the set of edges in T whose depth
modulo 3h(i) is equal to h(i) (rather than 0). The edges in OA

i and OB
i are called the open edges of

level Li. The next lemma is easy to verify. In particular, property (3) follows from the “staggering”
of the two sets of subtreesAi and Bi. Property (4) follows from the specifics of the decomposition;
it provides a nesting that will turn out to be useful in Section 2.5.

Lemma 2.3 (The leveled decomposition). For every tree T = (V,E), the above construction satisfies
the following properties.

1. Each Ai and each Bi is a partition of V .

2. The height of any subtree X ∈ Li is at most 3h(i).

3. For any pair u, v ∈ V with d(u, v) ≤ h(i), there is some X ∈ Li containing both u and v.

4. For every i, OA
i+1 ⊆ OA

i ; hence, each subtree in Ai is entirely contained in some subtree in Ai+1. The
same holds for the subtrees in Bi. In this sense, each level is a refinement of the previous level.

Definition 2.4 (A separating map). We say that ϕ : V → Z
d separates Ai (and similarly Bi) if, for

every X ∈ Ai and for every pair u, v ∈ V (X) with h(i+ 1) ≤ d(u, v) ≤ h(i), we have ϕ(u) 6= ϕ(v).

Notice that if ϕ separates Ai and Bi for all i ∈ {0, 1, . . . , k − 1}, then ϕ is injective (by the
properties in Lemma 2.3).

2.4 A first attempt

Consider the partitionAi of T . Applying the embedding of Lemmas 2.1 and 2.2 to eachX ∈ Ai and
glueing the relative embeddings together yields an induced embedding ϕA

i which separates Ai.
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Let ϕB
i be a similar embedding obtained from the partition Bi, and let ϕi : V → Z

O(ρ) be defined
as ϕi = ϕA

i ⊕ ϕB
i . Then ϕi separates Ai and Bi. Finally, the map ϕ = ϕ0 ⊕ · · · ⊕ ϕk−1 separates

everyAi and everyBi, and is hence injective (by Lemma 1.2). Since ϕ is also a contraction, it yields
dim(T ) = O(ρk) = O(ρ log log diam(T )). Unfortunately, this bound depends on the diameter of T
and is therefore insufficient for our purposes.

2.5 Conserving randomness or “Not using all your ammo at once.”

In the preceding section, we used too many dimensions because we needed a distinct set of coor-
dinates for every level. In essence, determining the embedding for level Li leaves no randomness
for “higher” levels Li−1, Li−2, . . . , L0 (since all the edge weights in the relative embedding for Li

are determined).
Now consider the open edges of level Li, namely, OA

i and OB
i , which run between disjoint

subtrees. In Section 2.2, when the relative embeddings for subtrees are glued together, the open
edges are assigned a weight of 0. But they might as well have been assigned any other weight in
W d. Clearly the resulting embedding would still be a contraction. Thus even after fixing a relative
embedding for Li, there is still some freedom left to us in deciding how to choose weights for the
edges in OA

i and OB
i . It turns out that the randomness stored in the unassigned open edges is

sufficient.
We will now show that, after finding a relative embedding for the subtrees in Li+2, there is still

enough randomness left to embed the subtrees in Li simply by assigning random weights to the
open edges of Li+2. Notice that this process goes up two levels at a time, from Li+2 to Li, so we
will need to do it twice, once for “even” levels and once for “odd” levels. This will increase the
number of coordinates used by only a factor of 2.

Theorem 2.5 (Embedding trees). Any tree T with growth rate ρ occurs as a (not necessarily induced)

subgraph of Z
O(ρ)
∞ , thus dim(T ) = O(ρ).

Proof. We will construct four contractions,ϕA
even, ϕ

A
odd, ϕ

B
even, ϕ

B
odd : V → Z

O(ρ). LetL0, L1, . . . , Lk−1

be the levels of the decomposition for T , and assume for simplicity that k is odd. Then ϕA
even

will separate Ak−1, Ak−3, . . . , A0, ϕA
odd will separate Ak−2, Ak−4, . . . , A1, and ϕB

even and ϕB
odd will

satisfy similar properties for the Bi. It will follow from the discussion in Section 2.4, that ϕ =
ϕA

even ⊕ ϕA
odd ⊕ ϕB

even ⊕ ϕB
odd is a contractive injection, providing the desired embedding of T into

Z
O(ρ)
∞ .

We will construct the map ϕA
even inductively. The other maps are constructed similarly. Let

h0 and c be the constant from Lemma 2.1 and let k0 be the largest even integer such that h(k0) ≥
h0. Since the trees in Ak0

have height at most 3h(k0), and since we may assume without loss of
generality that c ≥ log(3h0 + 2), Lemma 2.2 yields a relative embedding µk0

: E → W cρ for which
µ∗k0

separates Ak−1, Ak−3, . . . , Ak0
.

The inductive step. Now assume that we have a relative embedding µi+2 : E → W cρ for which
µ∗i+2 separates Ak−1, Ak−3, . . . , Ai+2. We will show the existence of a relative embedding µi : E →
W cρ which satisfies

1. For all T ∈ Ai+2 and all u, v ∈ V (T ), ||µ∗i+2(u) − µ∗i+2(v)|| = ||µ∗i (u) − µ∗i (v)||;

2. µ∗i separates Ai.
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Since the subtrees of Aj for j ≥ i + 2 are all completely nested within the subtrees of Ai+2 (recall
property (4) of Lemma 2.3), the first condition guarantees that µ∗i separates Ak−1, Ak−3, . . . , Ai+2,
since µ∗i+2 does.

To obtain µi from µi+2, we will only change the edge weights in OA
i+2, i.e. those running

between disjoint subtrees of Ai+2. Condition (1) then follows immediately. The construction of
the relative embedding µi is actually probabilistic; we shall randomly change edge weights in
OA

i+2, and show that (2) is satisfied with positive probability. For every e ∈ OA
i+2, choose µi(e)

uniformly at random from {−1,+1}cρ. For all other edges e, define µi(e) = µi+2(e).
Let us now show that with positive probability, µ∗i separatesAi. Fix someX ∈ Ai and consider

two points u, v ∈ V (X) such that d(u, v) ≥ h(i + 1) = h(i)1/2. Let Puv be the unique path from
u to v in X. Since Puv has length at least h(i)1/2 and each subtree of Ai+2 has height at most
3h(i + 2) = 3h(i)1/4, Puv must pass through at least 1

3h(i)
1/4 such subtrees. In particular, the path

includes at least 1
3h(i)

1/4 − 2 edges from OA
i+2.

Now consider the part of Puv which is composed of edges whose weights are already fixed
(i.e., edges not in OA

i+2). The sum of their weights is fixed, and the probability that a random walk

of length at least 1
3h(i)

1/4 − 2 (along open edges) is equal to the negation of any fixed amount is

at most O(h(i))−1/8. This also upper bounds the probability that the images of u and v (under µ∗i )
agree in any single coordinate. So the probability of this occurring in cρ independent coordinates
is

Pr[µ∗i (u) = µ∗i (v)] = O(h(i))−cρ/8.

Finally, notice thatX has height at most 3h(i), and thus contains at most (3h(i))2ρ pairs of vertices.
Since h(i) ≥ h0 and we may assume that h0 and c are sufficiently large constants (which are
independent of i), the union bound O(h(i))−cρ/8O(h(i))2ρ < 1/2 shows the existence of a map µi

with the desired property in X. Continuing in this way for each disjoint subtree X ∈ Ai, we see
that with positive probability, µi satisfies condition (2).

By induction, µ∗0 separates each of Ak−1, . . . , A0. Setting ϕA
even = µ∗0 completes the proof.

2.6 Alteration

We offer two simple lemmas on fixing maps which are sufficiently close to good embeddings.

Lemma 2.6 (Almost injective embeddings). For a graph G = (V,E), if there is a contractive map
ϕ : V → Z

d which is k-to-1, then there is a mapping ϕ′ : V → Z
d+dlog ke which is contractive and

injective.

Proof. To see this, suppose z ∈ Im(ϕ) and let ϕ−1(z)1, . . . , ϕ
−1(z)k be the k possible preimages of

z. Now define ϕ′(ϕ−1(z)i) = (ϕ(z), B(i)) where B(i) is the dlog ke-digit binary representation of
i− 1.

Lemma 2.7 (Almost contractive embeddings). For a graph G = (V,E), if there is an injective mapping
ϕ : V → Z

d which satisfies (u, v) ∈ E =⇒ ||ϕ(u) − ϕ(v)||∞ ≤ k, then there is a mapping ϕ′ : V →
Z

d(2+log k) which is contractive and injective.

Proof. To get ϕ′, split Z
d up into cubes of side length k. Now contract every such cube to its

center, and then scale all the coordinates by a factor of 1/k. It is easy to see that the resulting
map is a contraction, but since each cube contained at most kd points, the resulting map is only
kd-to-1. Applying Lemma 2.6, we can get a mapping which is injective and has d + dlog(kd)e
dimensions.
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2.7 Graphs without long induced simple cycles

For a graphG, let λ(G) be the length of the longest induced simple cycle inG. We will use Lemmas
2.6 and 2.7 and the following theorem of Brandstädt, Chepoi, and Dragan [5, 6] to prove a result
on graphs which have no long induced simple cycles.

Theorem 2.8 ([6]). For any graph G = (V,E), there exists a tree T = (V, F ) such that

|dG(u, v) − dT (u, v)| = O(λ(G)). (1)

Theorem 2.9. For any graph G, let ρ = ρG, λ = λ(G), then G occurs as a subgraph of Z
O(ρ log2[λ+2])
∞ .

Proof. Let ρ = ρG, λ = λ(G), and let T be the corresponding tree of Theorem 2.8. First, set-
ting dG(u, v) = 1 in (1), we see that edges are stretched in T by at most O(λ). Secondly, setting
dT (u, v) = 1 in (1), we see that edges in T correspond to paths in G of length at most O(λ). It
follows that

ρT = sup
x,r

log |BT (x, r)|
log r

≤ sup
x,r

log |BG(x, λr)|
log r

≤ sup
x,r

log(λr)ρ

log r
≤ ρ(1 + log λ).

So we can embed T into O(ρ log(λ+ 2)) dimensions by Theorem 2.5. The same mapping is also an
injective embedding for G that expands edges by at most O(λ). Applying Lemma 2.7, we arrive
at a contractive, injective embedding of G into O(ρ log2[λ+ 2]) dimensions.

Corollary 2.10. Conjecture 1 is true for any class of graphs in which λ(G) is bounded, yielding dim(G) =
O(ρ). This class includes trees and chordal graphs.

3 Expanders

Before we jump into the proof of our main theorem, let us take a moment to prove a lower bound
for expander graphs.

Definition 3.1 (Expander graphs). An n-vertex graph G = (V,E) will be called a Θ(k)-degree ex-
pander for k = k(n) ≥ 2 if it has the following properties:

(a) The degree of every vertex is Θ(k).

(b) The diameter of G is O(logk n).

(c) Every two disjoint subsets of n/ log n vertices are connected by a path of length O(logk log n).

Observe that properties (b) and (c) follow from vertex expansion. Indeed, let Γ(S) stand for
the set of vertices with at least one neighbor in S, and suppose that for every S ⊂ V , we have
|Γ(S)| ≥ min{Ω(k|S|), 2

3 |V |}. Hence, there exists t ≤ O(logk n), such that every u ∈ V satisfies
|Γt(u)| ≥ 2

3 |V |, and it follows that the diameter of G is at most 2t = O(logk n). Property (c) follows
similarly.

Consequently, for every 3 ≤ k(n) ≤ log n and every sufficiently large n, there exists a a graphG
satisfying properties (a)-(c). An even simpler way to obtain such a graph G is to take a (standard)
3-regular n-vertex expander H , and create G on the same vertex set by a connecting two vertices
u, v whenever dH(u, v) ≤ log3 k. It is easy to satisfy property (a) by iteratively connecting by an
edge the two vertices of lowest degree. A simple argument as above shows that the diameter of
G is O(log n) and that every two sets of size n/logn are connected by a path of length O(log log n).
Properties (b) and (c) now follow from the fact that for very two vertices u, v we have dG(u, v) ≤
O(dH(u, v)/ log k).
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3.1 A dimension lower bound

Theorem 3.2. Let G = (V,E) be a Θ(log |V |)-degree expander, then dim(G) = Ω(ρG log ρG). In partic-
ular, Conjecture 1 is not true (for general graphs).

Proof. Let G = (V,E) be a Θ(k)-degree expander graph on n vertices (see Definition 3.1), with
1 ≤ k ≤ log n. It follows from Properties (a) and (b) that ρG = Θ( log n

log logk n). We shall show that if

G occurs as a subgraph of Z
d
∞ then d ≥ Ω( log n

1+log logk log n). Note that for k = log n, this implies that

dim(G) = Ω(log n) = Ω(ρG log ρG) and this lower bound is tight, up to constant factors, since the
trivial upper bound d = O(log n) holds for any n-vertex graph (by a bijection into {0, 1}dlog ne).

Assume for contradiction that G occurs as a subgraph of Z
d
∞ with d = o( log n

1+log logk log n). Let ϕ

be the corresponding embedding of G into Z
d
∞, and let ϕi be the projection of ϕ on the coordinate

i = 1, . . . , d. Let the set Si consist of the n/ log n vertices v ∈ V with smallest ϕi(v), and let the set
Li consist of the n/ log n vertices v ∈ V with largest ϕi(v), breaking ties arbitrarily.

We claim that ϕi(V \ (Si ∪ Li)) is contained in an interval of size O(logk log n). Indeed, by
property (c) above G contains a path of length O(logk log n) that connects some vertex s ∈ Si with
some vertex l ∈ Li, and since ϕ is contractive, ϕi(l) − ϕi(s) ≤ O(logk log n). By the definition of Si

and Li, for every v ∈ V \ (Si ∪ Li) we have ϕi(s) ≤ ϕi(v) ≤ ϕi(l), which proves the claim.
Finally, the set of vertices V ′ = V \ (∪d

i=1(Si ∪Li)) contains at least n−dn/ log n > n/2 vertices.
By the above claim, ϕ(V ′) is contained in a subset of the lattice Z

d formed by the Cartesian product
of d intervals of size O(logk log n). However, this subset of Z

d contains at most (O(logk log n))d ≤
n/2 points, which contradicts the assumption that ϕ is injective.

3.2 A distortion lower bound

It is well-known that the bandwidth of an expander is Ω(n). The bandwidth may be seen as the
maximum stretch of any edge in an injective embedding of the graph into Z

1
∞, thus embeddings

into Z
d
∞ provide a generalization of the bandwidth. We show now that even in much higher

dimensions, the edges of the expander must be stretched by a large factor.

Corollary 3.3. For 1 ≤ k ≤ log n, any embedding of an n-vertex Θ(k)-degree expander G into Z
O(ρG)
∞

stretches at least one edge to length (log n)Ω(1).

Proof. Proceed similar to the proof of Theorem 3.2, with d = O(ρG) = O( log n
log log n). Now if every

edge is stretched by at most α, then two sets of n/ log n vertices have their lattice images within
distance O(α logk log n) of each other. It follows that O(α logk log n)O(ρG) ≤ n/2, and for α =
(log n)o(1) we derive a contradiction.

4 Divide & conquer: Upper bounds from graph decomposition

In this section, we will use the ideas of Section 2 to prove a result on general graphs in terms
of their decompositions (Theorem 4.2). As an example application of this general result, we will
show that Conjecture 1 holds for graphs excluding a fixed minor (Section 4.4).

Outline. At a conceptual level, our embedding method for a general graph G bears some sim-
ilarity to the case of trees, although several technical aspects differ significantly. We cannot, for
example, form a coordinate by assigning edge weights independently at random (the weights
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along every cycle would have to sum to 0). Here is an outline of the proof, with simplified no-
tation and constants. Our first step is to focus on a single “scale” r, and show a contraction ϕr

such that ϕr(u) 6= ϕr(v) for every two vertices u, v with r1/2 ≤ d(u, v) ≤ r. The construction of ϕr

follows a divide and conquer approach—we decompose the graph into (overlapping) “clusters”,
embed each cluster separately, and then “glue” these embeddings together. The decomposition
guarantees that for every pair u, v as above there exists at least one cluster C that contains them
both, hence it suffices that the embedding ϕC of this cluster satisfies ϕC(u) 6= ϕC(v). The decom-
position further guarantees that each cluster C has diameter at most rO(1), and then the growth
rate bound implies |C| ≤ rO(ρG).

One key difference between trees and general graphs is in the “divide” stage. For trees, we
were able to design such a decomposition directly (Section 2.3), using only two “layers”, i.e. two
partitions of V . When embedding general graphs, we consider decompositions with more layers,
but we must ensure that the number of layers is bounded by, say,O(1) orO(ρG), since it affects the
dimension of the resulting embedding. Furthermore, for trees our decompositions were nested (in
the sense that finer partitions were refinements of coarser ones); for general decompositions we
will have to force this nesting property to hold.

Another key difference is in the “conquer” (or combining) stage. In trees, it is quite easy to
glue embeddings of disjoint subtrees, using the concept of relative embeddings (Section 2.2). In
general graphs, we ensure that embeddings of disjoint clusters can be glued together by restricting
ourselves to cluster embeddings in which the “boundary” of the cluster is mapped to the all-zeros
vector. One side effect of this restriction is that for u, v ∈ C lying on or “close” to the boundary
of C , we cannot require that ϕC(u) 6= ϕC(v). In addition, to embed a single cluster C , we have to
resort to a more sophisticated method, inspired by Rao [21]; roughly speaking, we employ another
decomposition that breaks C into subclusters and map each subcluster independently at random.
This inner decomposition of C into subclusters has the same requirements as the outer decompo-
sition, but it is applied with a different parameter, namely—each subcluster’s diameter is less than
r1/2. To show that this embedding of C succeeds with high probability we use a union bound over
the at most |C|2 ≤ rO(ρG) pairs u, v ∈ C . Notice that the inner decomposition guarantees, for pairs
u, v ∈ C as above, that ϕC(u) and ϕC(v) are independent, while the outer decomposition limits
the size of the subproblem C , enabling the use of a union bound. On top of this, we have to adapt
the technique of conserving randomness (Section 2.5) to this new embedding method.

Preliminaries. In what follows, let G = (V,E) be a simple graph with growth rate ρ = ρG. A
cluster of G is a simply subset S ⊆ V , though we will usually use this terminology in the context
of a partition which contains S.

Define the boundary of a cluster S as ∂S = {u ∈ S : ∃(u, v) ∈ E, v /∈ S}. The boundary of a
collection C of clusters is defined as ∂C = ∪S∈C∂S. For a cluster S ⊆ V and a partition P of V ,
the induced partition (on the cluster S) is defined as Q = {C ∩ S : C ∈ P} \ {∅}. As before, let
0 = (0, 0, . . . , 0) be the all-zero vector.

For u, v ∈ V let d(u, v) be the distance between u and v in the shortest path metric of G. We
stress that even when a particular cluster S is considered, d(u, v) denotes the distance in G and
not in S. In particular, define the diameter (sometimes called weak diameter) of S ⊆ V to be
diam(S) = supu,v∈S d(u, v). As usual, for S ⊆ V we define d(u, S) = infv∈S d(u, v).

The padded decomposition. We first discuss our method of choosing clusters. For the rest of
this section, fix an arbitrary constant α > 1. We will not explicitly state the dependence of other
constants on α, but it will be clear that α = O(1) suffices for our purposes.
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Definition 4.1 (The padded decomposition). A set {P1, P2, . . . , Pm} of m partitions of V is called an
r-padded decomposition of G with m layers if the following properties are satisfied.

1. If C ∈ ∪m
i=1Pi, then diam(C) ≤ rα.

2. For every u ∈ V there exists some C ∈ ∪m
i=1Pi such that B(u, 3r) ⊆ C .

We can now state our main result about embeddings obtained from graph decompositions. Its
proof appears in Section 4.3.

Theorem 4.2 (Embedding via decomposition). Let G be a graph with ρ = ρG. If for every 4 ≤ r ≤
diam(G) there exists an r-padded decomposition of G with m layers, then dim(G) = O(m2ρ).

4.1 Relative embeddings

Suppose we are given a cluster S ⊆ V . Define a d-dimensional relative embedding of S to be a
contraction ϕ : S → Z

d such that ϕ(∂S) = 0, i.e. the boundary is mapped to 0. Suppose further
that we would like to find a relative embedding of S with the following property (parameterized
by r > 0): For every u, v ∈ S with d(u, v) > r and such that B(u, 3r1/2) ⊆ S, we have ϕ(u) 6= ϕ(v).
In other words, since we are imposing the rather stringent condition that ϕ(∂S) = 0, we only
make requirements on vertices that are far enough from the boundary.

We will produce such an embedding using a technique inspired by the methods of Rao [21].
Each coordinate is formed by partitioning S into clusters of diameter at most r, so u, v as above
must end up in different clusters. We then define the image of a vertex to be the distance from that
vertex to the boundary of its cluster. To achieve injectiveness with high probability, we “perturb”
the images by randomly contracting each cluster’s boundary inward.

For ease of notation, we define an r-inner decomposition to be an r1/α-padded decomposition;
in this case, clusters have diam(C) ≤ r and vertices have “padding” of the form B(u, 3r1/α). We
now show how to use an r-inner decomposition to produce a good relative embedding.

Lemma 4.3 (Relative embeddings). Suppose that G has an r-inner decomposition with m layers, and let
S ⊆ V be a cluster with |S| ≤ rO(ρ). Then there exists a relative embedding ϕ : S → Z

O(mρ) such that for
every u, v ∈ S with d(u, v) > r and B(u, 3r1/α) ⊆ S, we have ϕ(u) 6= ϕ(v).

Proof. Them partitions produced by the r-inner decomposition inducem partitionsQ1, . . . , Qm of
S (recall the definition of an induced partition). For eachQj we will construct a map ϕj : S → Z

cαρ,
where c > 0 is a constant to be determined later.

Fix some partition Qj and form a single coordinate ϕ0
j : S → Z as follows: For every C ∈ Qj ,

choose some rC ∈ {0, 1, . . . , r1/α} uniformly at random and let ∂∗C = {v ∈ C : d(v, ∂C) ≤ rC}
(this is the boundary of C randomly contracted inward). Now for each u ∈ S let Cu ∈ Qj be the
cluster containing u and define ϕ0

j (u) = d(u, ∂∗Cu
). Recall that d(·, ·) denotes distance in G, and

thus ϕ0
j (u) = max{0, d(u, ∂Cu) − rCu}.

Clearly ϕ0
j (u) is a contraction, since (u, v) ∈ E implies that either u and v are in the same cluster

C ∈ Qj and then |d(u, ∂∗C ) − d(v, ∂∗C )| ≤ 1, or each of them belongs to the boundary of its cluster
and then ϕ0

j (u) = ϕ0
j (v) = 0. It is also clear that u ∈ ∂S implies u ∈ ∂C for some C ∈ Qj and hence

ϕ0
j (u) = 0. Thus ϕ0

j (∂S) = 0.
Now independently form cαρ such coordinates (each time picking fresh values for the rC) and

let ϕj be the direct sum of the resulting maps, where c > 0 is a sufficiently large constant to be
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determined later. Finally, set ϕ = ϕ1 ⊕ · · · ⊕ ϕm. From the properties of ϕj , we conclude that
ϕ : S → Z

cmρ is a contraction which maps ∂S to 0, i.e., a relative embedding.
Consider a pair u, v with d(u, v) > r and such thatB(u, 3r1/α) ⊆ S. It follows from property (2)

of Definition 4.1 that there exists a partitionQj of S and a subsetC ∈ Qj for whichB(u, 3r1/α) ⊆ C .
Since d(u, v) > r, the two vertices u and v must lie in different subsets of Qj . It follows that, in any
single coordinate ϕ0

j of the map ϕj , the value of ϕ0
j (u) is distributed uniformly over an interval of

size r1/α independently of the value ϕ0
j (v), hence Pr[ϕ0

j (u) = ϕ0
j (v)] ≤ r−1/α. Thus the probability

that u and v collide in all cαρ coordinates of ϕj is Pr[ϕj(u) = ϕj(v)] ≤ r−cρ. Since |S| ≤ rO(ρ), there
are at most rO(2ρ) such pairs u, v, and hence the probability that there exists a pair that collides is
at most rO(2ρ)r−cρ < 1/2, if the constant c is chosen to be sufficiently large. The existence of a map
ϕ satisfying the lemma follows.

4.2 A first attempt

Here is a simple approach which will fail in the end, but will give some intuition as to how the
padded decomposition will be used. We will use the padded decomposition (Definition 4.1) to de-
composeG into layers of disjoint clusters. Using Section 4.1 we can then find a relative embedding
for each cluster; glueing all these embedding together, we shall arrive at a good embedding for G.
Note that the padded decomposition is being first to decompose the graph G into clusters which
will be separately embedded, and then inside each cluster to compute a good relative embedding
for that cluster.

Let k = dlog log diam(G)e, and set ri = 22i
for i ∈ {1, . . . , k}, and r0 = 0. We apply an r-padded

decomposition with r = r1, . . . , rk. For each value of r, this decomposition will break the graph
into clusters of diameter at most rα such that every two vertices within a distance r are contained
in some such cluster S and are “far” from the boundary of S (as otherwise we cannot ensure that
they are “separated” by the relative embedding for S).

An embedding for one level. Assume that i > 1. Let {P1, P2, . . . , Pm} be the partitions produced

by the ri-padded decomposition. We will show how to construct a contraction ϕi : V → Z
O(m2ρ)

that satisfies: For every pair u, v ∈ V with ri−1 < d(u, v) ≤ ri, we have ϕi(u) 6= ϕi(v).
Fix a partition Pj of V . For every cluster S ∈ Pj , compute a relative embedding ψS : S →

Z
O(mρ) by applying Lemma 4.3 with the parameter r set to ri−1 = r

1/2
i ≥ 2. Note that the lemma is

applicable since diam(S) ≤ rα
i implies |S| ≤ rαρ

i = r
O(ρ)
i−1 . Now for every u ∈ V , set ϕij(u) = ψS(u)

where S ∈ Pj is the cluster containing u. Notice that this map is well-defined since Pj is a partition
of V . Also, notice that it is a contraction, for suppose (u, v) ∈ E. If u and v are in the same cluster
S, then ||ϕij(u) − ϕij(v)|| = ||ψS(u) − ψS(v)|| ≤ 1 since ψS is a relative embedding, and hence a
contraction. If u and v are in different clusters, then ϕij(u) = ϕij(v) = 0 since both of u and v are
on the boundary of their cluster. Finally, set ϕi = ϕi1 ⊕ · · · ⊕ ϕim.

Now consider some u, v ∈ V with ri−1 < d(u, v) ≤ ri. By property (2) of Definition 4.1, there
exists some partition Pj and a cluster S ∈ Pj such that B(u, 3ri) ⊆ S. Thus u, v ∈ S, and certainly

B(u, 3r
1/α
i−1) ⊆ S, so by Lemma 4.3, ψS(u) 6= ψS(v). It follows that ϕij(u) 6= ϕij(v), and hence

ϕi(u) 6= ϕi(v).

The base case. For r = r1 = O(1), we will construct ϕ1 in a special way so that for all u, v ∈ V
with 0 < d(u, v) ≤ r1 we have ϕ1(u) 6= ϕ1(v). We break G into clusters using an r1-padded
decomposition as above, but then revert to a much simpler relative embedding technique: Given a
cluster S = {v1, v2, . . . , vs} with diam(S) ≤ rα

1 , define the relative embedding ψS(vi) = B(i) if vi /∈
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∂S and ψS(vi) = 0 otherwise, where B(i) is the binary representation of i as an O(ρ)-dimensional
vector. Notice that the number of coordinates meets our needs, since s = |S| ≤ rαρ

1 ≤ 2O(ρ). This
map is a contraction and satisfies ψS(u) 6= ψS(v) whenever u, v /∈ ∂S. Using this technique in the
above argument (instead of Lemma 4.3) yields the desired map ϕ1. In fact, this map uses only
O(mρ) coordinates, so we append 0’s to every image and extend it to O(m2ρ) coordinates.

Putting it all together. If we let ϕ = ϕ1 ⊕ϕ2 ⊕· · · ⊕ϕk, we see that ϕ is a contractive, injective em-
bedding since for any distinct u, v ∈ V , the distance d(u, v) falls into some range rj−1 < d(u, v) ≤ ri
and thus ϕj(u) 6= ϕj(v).

Assuming that for every r ≥ 4 we can construct r-padded decompositions with m layers,
then each ϕij (which we obtained by applying Lemma 4.3) usesO(mρ) coordinates, and thus each
ϕi uses O(m2ρ) coordinates. It follows that the final embedding ϕ uses O(m2ρ log log diam(G))
coordinates in all. It turns out that this bound is of the right form, except for the dependence on
diam(G), so our next goal will be to eliminate this term. In the case of trees, we achieved this goal
by exploiting some “untapped randomness”, namely, after fixing a relative embedding for a level,
we were still free to assign arbitrary weights to the open edges of that level. In the next section,
we exploit a similar observation, namely that the boundary of a cluster need not be mapped to 0,
because the edges running between clusters are still “open.”

4.3 Forced nesting, contracted clusters, and untapped randomness

We improve over the preceding failed attempt by reusing the coordinates when proceeding induc-
tively from finer partitions to coarser ones. Informally, the main idea is to consider every cluster
of the finer partition as a single entity whose embedding is “rigid”, achieved by contracting each
such cluster into a single vertex. For this approach to work, we need the padded decompositions
to be nested, achieved by a “forced nesting” technique. We introduce these two notions and then
prove Theorem 4.2.

Contracted clusters. Suppose we have a relative embedding ψC for each cluster C in a partition
P . Previously, we “glued” these embeddings by setting Ψ(u) = ψC(u) where C ∈ P is the cluster
containing u. This yielded a contraction Ψ defined on all of V with the property that whenever
u, v belong to the same cluster C ∈ P , we have ||Ψ(u) − Ψ(v)|| = ||ψC(u) − ψC(v)||. The following
gives a simple way of maintaining this property, while allowing some freedom in choosing Ψ.

Definition 4.4 (Contracted graph). Let P be a partition of V . The contracted graph (with respect to P )
is the graph Ĝ = (V̂ , Ê) obtained from G by contracting, in the graph-theoretic sense, each cluster C ∈ P
to a single vertex.

Each cluster C ∈ P corresponds to a vertex in Ĝ, and vice versa. Hence, we may identify
V̂ = P and then Ê = {(C1, C2) : ∃(u1, u2) ∈ E, u1 ∈ C1 ∈ P, u2 ∈ C2 ∈ P}. We let dĜ(·, ·) be

the shortest path metric in the contracted graph Ĝ, and BĜ(·, ·) be a closed ball in Ĝ. We shall
keep using d(·, ·) and B(·, ·) when referring to the corresponding notions in the given graph G. A
cluster Ŝ in Ĝ and its boundary ∂Ŝ are defined similarly to those in G.

Lemma 4.5. Let Ĝ = (V̂ , Ê) be the contracted graph with respect to a partition P of V . Suppose that for
each cluster C ∈ P we have a relative embedding ψC : C → Z

d, and suppose that we have a contraction
ψ̂ : V̂ → Z

d. For every u ∈ V , define the map Ψ : V → Z
d as follows: Ψ(u) = ψ̂(Cu) + ψCu(u), where

Cu ∈ P is the cluster containing u. Then Ψ is a contraction and for all u,v in the same cluster C ∈ P , we
have ||Ψ(u) − Ψ(v)|| = ||ψC(u) − ψC(v)||.
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Proof. By definition, for all u, v ∈ C and C ∈ P , we have ||ψ(u) − ψ(v)|| = ||ψC(u) − ψC(v)||. In
particular, ψ contracts every edge whose endpoints are in the same clusterC . For (u, v) ∈ E where
u, v are in different clusters of P , we have ||ψ(u) − ψ(v)|| = ||ψ̂(Cu) − ψ̂(Cv)|| ≤ 1 because ψP is a
contraction and (u, v) ∈ E implies (Cu, Cv) ∈ Ê.

Forced nesting. Given two partitions P and Q of V , we say that P is a refinement of Q if for all
C ∈ P and there exists S ∈ Q such that C ⊆ S. It turns out that we can force such a nesting and
remove only a negligible amount of padding.

Lemma 4.6. Let P = {P1, . . . , Pm} be an r-padded decomposition of G, and P̃ = {P̃1, . . . , P̃m} be an
r̃-padded decomposition of G, where r ≥ r̃α. Then we can modify P so that, for every j ∈ {1, . . . m}, the
partition Pj is a refinement of P̃j , with only a constant factor loss in the padding guarantee of Definition
4.1, namely condition (2) is replaced with:

(2’) For every u ∈ V there exists some C ∈ ∪m
i=1Pi such that B(u, 2r) ⊆ C .

Proof. Whenever a clusterC ∈ Pj contains only a portion of a clusterC ′ ∈ P̃j (i.e. ∅ 6= C∩C ′ 6= C ′),
modify Pj by breakingC into the clusterC\C ′ and a singleton cluster {u} for every u ∈ C∩C ′. This
process is continued (in an arbitrary order) until there is no such cluster C . When this happens,
for every j ∈ {1, . . . m}, the partition P̃j is a refinement of Pj , as desired.

Notice that condition (1) of Definition 4.1 remains satisfied since each modification only de-
creases the diameter of clusters in Pj . Condition (2) is still satisfied if we replace B(u, 3r) by
B(u, 3r − r̃α) ⊇ B(u, 2 r), which completes the proof.

We are now ready to prove Theorem 4.2. Here is a brief outline: We shall construct relative
embeddings from the bottom up, i.e., proceeding inductively from finer partitions to coarser par-
titions. Once we find an embedding that is “good” for level j, we modify it so that it becomes
good also for level j − t, for some constant t. This modification will involve constructing a ran-
dom embedding of the contracted graph (essentially via Lemma 4.3) and combining it with the
existing embedding (using Lemma 4.5). Repeating this t = O(1) times, starting at levels 1, 2, . . . , t,
respectively, will yield an embedding that uses only O(tm2ρ) = O(m2ρ) coordinates.

Proof of Theorem 4.2 (Embedding via decomposition). Suppose that for every 4 ≤ r ≤ diam(G), and
every cluster S ⊆ V , there exists an r-padded decomposition of S with m layers. Let α > 1 be the

constant from Definition 4.1. As before, define k = dlog log diam(G)e, ri = 22i
for i ∈ {1, . . . , k},

and r0 = 0. For every i ∈ {1, . . . , k} let Pi = {P i
1, . . . , P

i
m} be the ri-padded decomposition of G.

Let t = t(α) be a positive integer to be chosen later (e.g., t ≥ α3 suffices assuming α ≥ 2).
We first make sure that this series of decompositions P1, . . . ,Pk is nested. Iteratively, for i =

t + 1, t + 2, . . . , k, apply Lemma 4.6 to the padded decompositions Pi and Pi−t. Thereafter, for
every j ∈ {1, . . . m}, the partition P i−t

j is a refinement of P i
j with only a constant factor loss in the

padding guarantee (which will be sufficient for what follows).

Definition 4.7 (A separating map). We say that ϕ : V → Z
d separates a partition P i

j if, for all

u, v ∈ V such that ri−1 < d(u, v) ≤ ri and such that there is a cluster S ∈ P i
j with B(u, 2ri) ⊆ S, we

have ϕ(u) 6= ϕ(v).

To prove the theorem it suffices to construct, for each j ∈ {1, . . . ,m} and each i0 ∈ {1, . . . , t}, a
contractive map ϕi0,j : V → Z

O(mρ) that separates every partition P i
j for which i ≡ i0 (mod t). In-

deed, the direct sumϕ =
⊕

i0,j ϕi0,j is a contractive embedding ofG into theO(tm2ρ)-dimensional
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lattice, which separates every P j
i and is thus injective. Since t is a constant, it would follow that

dim(G) = O(m2ρ).
Fixing j ∈ {1, . . . ,m} and i0 ∈ {1, . . . , t}, it remains to construct only the map ϕi0,j satisfying

the stated properties. We shall actually prove, by induction on i, a more general assertion: If
c = c(t, α) is a sufficiently large constant, then for every i ∈ {1, . . . , k} with i ≡ i0 (mod t), there
exists a contractive map ψi : V → Z

cmρ such that

i. ψi separates each of P i0
j , P

i0+t
j , . . . , P i

j , and

ii. the restriction of ψi to any cluster C ∈ P i
j is a relative embedding of C .

The base case. For i = i0 we have ri0 ≤ rt = O(1), and thus we can use the base case from Section
4.2 to generate a map ψi0 that separates P i0

j . This map need only use O(ρ) coordinates, since we

have only a single partition P i0
j at hand rather than m partitions, but we can extend the map to

use cmρ coordinates by appending 0’s to every image.

The inductive step. Suppose we have a contractive map ψi which satisfies properties (i) and (ii),
and let us construct ψi+t using Lemma 4.5. Define Ĝ = (V̂ , Ê) as the contracted graph of G with
respect to the partition P i

j . For every clusterC ∈ P i
j , let ψC : C → Z

cmρ be the restriction of ψi toC ;
by the induction hypothesis, ψC is a relative embedding of C . It remains to define an embedding
ψ̂ : V̂ → Z

cmρ, and then we can let ψi+t : V → Z
cmρ be the map yielded by Lemma 4.5.

Since V̂ = P i
j is a refinement of P i+t

j , the latter naturally yields a partition P̂ i+t
j of V̂ , as follows.

With every cluster S ∈ P i+t
j we associate a cluster Ŝ = {C ∈ V̂ : C ⊆ S} in Ĝ. It is then easy to

verify that P̂ i+t
j = {Ŝ : S ∈ P i+t

j } is a partition of V̂ .

Below, we shall define the mapping ψ̂ on a single cluster Ŝ ∈ P̂ i+t
j in Ĝ. By construction, ψ̂ will

be a relative embedding of that cluster Ŝ (with respect to Ĝ) i.e. ψ̂(∂Ŝ) = 0, and thus the resulting
embedding will necessarily be a contractive embedding of the entire V̂ . In fact, we shall define ψ̂
on each Ŝ randomly.

Fix a cluster S ∈ P i+t
j and the corresponding Ŝ ∈ P̂ i+t

j . Now construct an “inner decompo-

sition” for Ŝ, as follows: Take an m-layer r
1/α
i+t -inner decomposition of G (note that r

1/α2

i+t ≥ 4),
and force P i

j to be a refinement of each layer of this inner decomposition using Lemma 4.6. The

forced nesting procedure is applicable because r
1/α2

i+t ≥ rα
i . This procedure modifies only the inner

decomposition (and not P i
j ), changing its padding guarantee to 2r

1/α2

i+t . Each layer of the inner
decomposition is a partition of V , and hence induces a partition of S. Denote these m partitions
of S by Q1, . . . , Qm. Since P i

j is a refinement of the inner decomposition, each partition Ql of S

naturally yields a partition of Ŝ which we shall denote by Q̂l. (This is similar to the way P̂ i+t
j was

defined.)
We generate the map ψ̂ : Ŝ → Z

cαmρ in a random fashion, using an argument similar to Lemma
4.3.1 Fix a partition Ql and form a single coordinate f : Ŝ → Z randomly as follows: For every
C ∈ Q̂l choose a value rC ∈ {0, 1, . . . , ri} uniformly at random and let f(w) = max{0, dĜ(w, ∂Q̂l)}.
Now independently form cαρ such coordinates (each time picking fresh values for the rC ), and let
ψ̂l : Ŝ → Z

cαρ be the direct sum of the resulting maps. We apply the above to every partition Ql

and set ψ̂ = ψ̂1
⊕ · · ·⊕ ψ̂m.

1Applying this lemma directly to Ŝ would generate ψ̂ such that ψ̂(C) 6= ψ̂(C′) for certain C,C′ ∈ V̂ , but it does not
guarantee that as a result ψi+t(u) 6= ψi+t(v) for suitable u ∈ C, v ∈ C′.
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Notice that once ψ̂ is defined on Ŝ, the map ψi+t yielded by Lemma 4.5 is defined on S. Since
the former map is constructed in a random fashion, the latter mapping is randomized as well. The
next two lemmas analyze this randomized embedding of S.

Claim 4.8. Fix S ∈ P i+t
j . Then ψi+t : S → Z

cαmρ is a relative embedding of S.

Proof. Let us first show that ψ̂ : Ŝ → Z
cαρ is a relative embedding of Ŝ (with respect to Ĝ). Indeed,

it is easy to see that every coordinate f generated as above using some partition Q̂l is a contraction,
and that for every vertex w ∈ ∂Ŝ, we have w ∈ ∂Q̂l and hence f(w) = 0. It follows that ψ̂, which
is a direct sum of such maps f , is a relative embedding of Ŝ.

Now consider ψi+t; we know it is a contraction from Lemma 4.5, so we only need to show that
ψi+t(∂S) = 0. Fix u ∈ ∂S and let Cu ∈ P i

j be the cluster containing u. Then u ∈ ∂Cu (recall that

Cu ⊆ S) and thus ψCu(u) = 0. It also follows that Cu ∈ ∂Ŝ, and hence ψ̂(Cu) = 0. By definition,
ψi+t(u) = ψ̂(Cu) + ψCu(u) = 0, which proves the claim.

Claim 4.9. Fix S ∈ P i+t
j . Then with probability at least 1/2, for all u, v ∈ S with ri+t−1 < d(u, v) ≤ ri+t

and with B(u, 2ri+t) ⊆ S, we have ψi+t(u) 6= ψi+t(v).

Proof. Fix u, v ∈ S with ri+t−1 < d(u, v) ≤ ri+t and B(u, 2ri+t) ⊆ S. Let Cu ∈ P i
j be the cluster

containing u, and let Cv ∈ P i
j be similarly for v. Clearly, u, v ∈ S ∈ P i+t

j ; recalling that P i
j is a

refinement of P i+t
j we get that Cu, Cv ∈ Ŝ.

The ball B = B(u, 2r
1/α2

i+t ) is contained in some cluster of the inner decomposition, even after
the forced nesting with P i

j . By the above, B ⊆ S and thus B is entirely contained also in some

cluster of some partition Ql of S. Since clusters in P i
j have diameter at most rα (in G), we have:

(a) ri+t−1/r
α
i < dĜ(Cu, Cv) ≤ ri+t.

(b) BĜ(Cu, 2r
1/α2

i+t /r
α
i ) is entirely contained in some cluster of Q̂l.

Now consider ψ̂l(Cu) and ψ̂l(Cv). Clusters in Q̂l have diameter (in Ĝ) at most r
1/α
i+t ≤ ri+t−1/r

α
i ,

so (a) implies that Cu and Cv reside in different clusters of Q̂l. This, in conjunction with (b) (and

because 2r
1/α2

i+t /r
α
i ≥ ri), implies that each coordinate of ψ̂l(Cu) is distributed uniformly over

an interval of size ri, independently of the corresponding coordinate in ψ̂(Cv). Recalling that
ψ̂ = ψ̂1

⊕ · · ·⊕ ψ̂m, ψi+t(u) = ψi(u) + ψ̂(Cu), and ψi+t(v) = ψi(v) + ψ̂(Cv), we get that each of at
least cαρ coordinates of ψi+t(u) is distributed uniformly over an interval of size ri, independently
of the corresponding coordinate in ψi+t(v). Therefore,

Pr[ψi+t(u) = ψi+t(v)] ≤ r−cαρ
i .

The number of pairs u, v ∈ S is at most |S|2 ≤ (rα
i+t)

2ρ = r2
t+1αρ

i , the claim follows via a union
bound if only we choose the constant c ≥ 2t+2.

As mentioned before, we use the preceding claim to construct for every S ∈ P i+t
j a map ψ̂ :

Ŝ → Z
O(mρ). This collection of maps gives an embedding ψ̂ : V̂ → Z

O(mρ), and using Lemma 4.5
we produce from it an embedding ψi+t : V → Z

O(mρ) that satisfies the induction hypothesis for
i+ t, and this completes the proof of Theorem 4.2.
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4.4 Graphs excluding a fixed minor

Let G be a graph that excludes a Ks,s minor for some fixed s. By adapting a decomposition tech-
nique of Klein, Plotkin, and Rao [14] we construct, for any value r ≥ 1, an r-padded decomposi-
tion of G with only O(2s) layers. Applying Theorem 4.2, we then arrive at the main result of this
section.

Theorem 4.10 (Excluded minor families). Conjecture 1 is true for any family of graphs that excludes a
fixed minor. For such graphs, dim(G) = O(ρG).

Proof. By Theorem 4.2 it suffices to show how to produce an r-padded decomposition withm = 2s

layers for any graph that excludes a Ks,s minor, as this implies that dim(G) ≤ O(4sρG).
To this end, consider such a graph G = (V,E) and fix a value r. First, construct a Breadth-

First-Search (BFS) tree from an arbitrary vertex v ∈ V , and compute for every vertex its BFS level
(i.e., its distance from v). Then cut the tree every 12r BFS levels by removing any edge connecting
a vertex of BFS-level j to a vertex of BFS-level j + 1 for any j ≡ 0 (mod 12r). Let C0 denote the
resulting set of connected components of G. Next, take another copy of G and cut it similarly but
starting from BFS level 6r, i.e., remove any edge connecting a vertex of BFS-level j to a vertex of
BFS-level j+ 1 for any j ≡ 6r (mod 12r). Let C1 denote the resulting set of connected components
of G. Now for each Ci, apply the same procedure on all the connected components in Ci, namely,
choose an arbitrary vertex, construct a BFS tree, and form two sets of connected components Ci0

and Ci1 by making the cuts as above (staggered, each at intervals of size 12r). Repeat this process
s times and let Cq for q ∈ {0, 1}s denote the 2s final sets of connected components. From [14] we
know that every connected component in every final Cq has diameter at most O(r). In addition,
for every vertex u the entire ball B(u, 3r) is uncut in at least one final set Cq, because each step
performs two different sets of “staggered” cuts, at least one of which must avoid the entire ball
B(u, 3r).

5 A general dimension upper bound

In this section we give a tight upper bound on the dimension of general graphs: dim(G) =
O(ρG log ρG) for any graph G. (In Section 3, we showed that this upper bound is met by ex-
panders.) First, we devise a decomposition for growth-restricted metrics (Section 5.1) and use
Theorem 4.2 to obtain a weaker upper bound of O(ρ3

G) (Section 5.2). Then, by combining the
previous arguments more carefully and utilizing some Chernoff-type tail bounds, we obtain the
aforementioned tight upper bound (Section 5.3). We shall use some terminology from Section 5.2.

5.1 Partitioning of growth-restricted graphs

Linial and Saks [17] and Bartal [3] show that for any graph G = (V,E) and 1 ≤ r ≤ diam(G),
there exists a probabilistic partitioning of G into disjoint clusters of diameter at most O(r ln |V |),
such that for any pair of vertices u, v ∈ V , the probability that u and v end up in different clusters
is at most d(u, v)/r. Let ρ = ρG. In this section, we give a similar decomposition, but we replace
the diameter bound of O(r ln |V |) with a bound that is independent of |V |, namely O(ρ r ln r), for
any r ≥ ρ. Our partitioning method is similar to those of [17] and [3], but different in a subtle and
crucial way: It is local. Events which are sufficiently far apart are mutually independent.
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First, take the continuous exponential distribution with mean r > 0, truncate it at some value
M > 0 and rescale the remaining density function. The resulting distribution, which we denote

Texp(r,M), has density function p(z) = eM/r

r(eM/r−1)
e−z/r for z ∈ (0,M).

The partitioning procedure. Let V = {v1, v2, . . . , vn} and let r ≥ ρ. For each vt ∈ V , choose inde-
pendently a radius rt according to the distribution Texp(r, 8ρr ln r). Now define St = B(vt, rt) \
∪t−1

i=1B(vi, ri) as the set of vertices v for which B(vt, rt) is the first ball containing v. Finally, define
the set of clusters to be C = {S1, . . . , Sn}.

It is easy to see that C is a partition of V , and that the (weak) diameter of every cluster C ∈ C is
bounded by diam(C) ≤ 16ρr ln r. Further analysis will require the following simple facts. In par-
ticular, (3) shows that if M ≥ 2r, the truncated exponential distribution is “almost” memoryless.

Fact 5.1. Consider a random variable R ∼ Texp(r,M) for M ≥ 2r > 0. Then,

1. For all β ≥ 0, Pr[R ≥ β] ≤ 2e−β/r .

2. For all β ≥ 0, Pr[R ≤ β] ≤ 2(1 − e−β/r) ≤ 2β/r.

3. For all β ≥ 0 and R0 ≤M/2, Pr[R ≤ R0 + β |R ≥ R0] ≤ 2β/r.

For a vertex u ∈ V and x ≥ 0, let Ex
u be the event that B(u, x) is split between multiple clusters,

i.e., that no cluster C ∈ C fully contains B(u, x).

Lemma 5.2. Let u ∈ V and r ≥ 16ρ, and x ≥ 0. Then Pr[Ex
u ] ≤ 10x/r.

Proof. Assume x ≤ r (the theorem says nothing for larger x) and let B = B(u, x), Bt = B(vt, rt).
Let us say that the ball B is cut by the ball Bt if ∅ 6= St ∩ B 6= B while for all i < t, Si ∩ B = ∅.
Ex

u is precisely the event that there is a ball Bt that cuts B. Let us separate these balls Bt into two
classes, depending on the distance from vt to u. Define Efar to be the event that there exists Bt

that cuts B and d(vt, u) ≥ 4ρr ln r. Define Enear to be the event that there exists Bt that cuts B and
d(vt, u) < 4ρr ln r.

Fix vt with d(vt, u) ≥ 4ρr ln r and notice that by Fact 5.1,

Pr[Bt cuts B] ≤ Pr[rt ≥ 4ρr ln r − x] ≤ 2r−4ρex/r ≤ 6r−4ρ.

But the number of such vt for which Bt can possibly cut B is at most the number of vertices in a
ball of radius 8ρr ln r + x ≤ r3 which is at most r3ρ. Taking a union bound over all such possible
vt, we see that Pr[Efar] ≤ 6r−4ρr3ρ ≤ 6/rρ ≤ 6/r. Thus we are left only to bound the probability of
Enear.

Let the random variable T be the minimum t such that BT ∩B 6= ∅ (note that possibly vT ∈ B).
The ball BT can either cut B (in which case Ex

u occurs) or contain B (and then B ⊆ ST is not cut
by any ball Bt). By the principle of deferred decision it suffices to upper bound the conditional
probability Pr[Enear|T = t] for an arbitrary t. To this end, we may assume that d(vt, u) ≤ 4ρr ln r (as
otherwise this conditional probability is 0) and then Enear happens if and only if Bt cuts B, which
in turn happens only if rt ≤ d(vt, u) + x. Hence,

Pr[Enear |T = t] ≤ Pr
[

rt ≤ d(vt, u) + x | rt ≥ d(vt, u) − x
]

≤ 4x

r
,

where we have used Fact 5.1 in conjunction with d(vt, u) ≤ 4ρr ln r. Thus, Pr[Enear] =
∑

t Pr[T =
t] · Pr[Enear|T = t] ≤ 4x/r and Pr[Ex

u ] ≤ Pr[Enear] + Pr[Efar] ≤ 10x/r.
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5.2 Layered decomposition of growth-restricted graphs

Now we describe how to obtain an r-padded decomposition withO(ρG) layers for general graphs
G. Plugging these values into Theorem 4.2 yields an embedding into O(ρ3

G) dimensions. We will
only be able to show the existence of such decompositions under the assumption that r ≥ ρ. In
the case where r ≤ 16ρ, clusters of diameter rO(1) have at most ρO(ρ) points, so we will be able to
embed these by brute force using only O(ρ log ρ) dimensions (similar to the base case of Section
4.2). The final result appears in Theorem 5.5.

Theorem 5.3 (Decomposition theorem). For every graph G = (V,E) and every r ≥ 16ρG, there exists
an r-padded decomposition with m = O(ρG) layers.

Proof. Let ρ = ρG and assume r ≥ 16ρ. To produce a single layer of the decomposition (a partition
of V into clusters), we will use the procedure of Section 5.1, with the parameter r (in that procedure
and in Lemma 5.2) set to r2. Notice that the clusters produced have diameter at most 32ρr2 ln r ≤
r4. For a vertex v ∈ V , let Ev be the event that the ball of radius 3r about v is cut (i.e., split amongst
two or more clusters). From Lemma 5.2, we know that Pr[Ev] ≤ 3/r.

Now produce m layers independently (with fresh random coins each time) and let Em
v be the

event that the ball of radius 3r about v is cut in every layer. Clearly Pr[Em
v ] ≤ (3/r)m. We would

like to say that Pr
[
∧

v∈V Em
v

]

> 0. If we could show this withm = O(ρ), the theorem would follow.
And indeed, this is our goal. We will employ the following symmetric form of the Lovász Local
Lemma, see e.g. [1].

Lemma 5.4 (Lovász Local Lemma). Let A1, . . . , An be events in an arbitrary probability space. Suppose
that for each Ai there is a set that contains all but at most d of the other events Aj , such that Ai is mutually
independent of this set of events. If for all i ∈ {1, . . . , n} we have Pr[Ai] ≤ p, and ep(d + 1) ≤ 1, then
Pr[∧n

i=1Ai] > 0.

Let r1 = 2r3 ln r+6r. An event Em
u is mutually independent of all events Em

v for which d(u, v) >
r1 because every ball in the partitioning of Section 5.1 has radius at most r3 ln r and thus cannot
intersect both B(u, 3r) and B(v, 3r). It follows that Em

u is mutually independent of the set of all
events Em

v except those for which v ∈ B(u, r1), and there are at most d = rρ
1 such vertices v. Thus

if Pr[Em
u ] ≤ 1/e(d+ 1), we can apply the local lemma and the theorem is proved. But this is easily

accomplished by choosing say m = d8ρe. By applying Lemma 5.4 we conclude that there exists an
r-padded decomposition for V (with α = 4).

Theorem 5.5. For every graph G with growth rate ρG, dim(G) = O(ρ3
G).

Proof (sketch). We provide only a sketch of the proof, since a better upper bound is given in the next
section. We use the proof of Theorem 4.2, except that instead of the induction’s base case being r =
O(1), we start with a level corresponding to r = ρO(1). In this case, clusters have diameter rO(1) =
ρO(1), so we can easily give a relative embedding for each cluster using onlyO(ρ log ρ) coordinates,
similar to the base case of 4.2. The rest of the proof then proceeds unchanged, including the
inductive step in which we use the decomposition provided by Theorem 5.3.

Remark: Algorithmiziation of the Local Lemma. Although most of the techniques in this paper
can easily be interpreted algorithmically, this is not immediately obvious for our use of the local
lemma. Fortunately, it is not difficult to see that standard techniques suffice (see, e.g., [1, Chapter
5]).
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5.3 A tight upper bound

As mentioned previously, Theorem 5.3, combined with Theorem 4.2, shows that dim(G) = O(ρ3
G)

for every graph G. By carefully combining the previous arguments and utilizing some Chernoff-
type tail bounds, we are able to find a tight upper bound, dim(G) = O(ρG log ρG); see Theorem 5.8
below.

We first strengthen the decomposition of Theorem 5.3. Givenm layers (partitions of V )P1, P2, . . . , Pm,
we say that a vertex u ∈ V is padded in a layer j if there exists a cluster C ∈ Pj such that
B(u, 3r) ⊆ C (otherwise, we say that u is unpadded in layer j). We next show a decomposition in
which every vertex is padded in most of the layers (rather than in one layer).

Theorem 5.6 (Strengthened decomposition theorem). For every graph G = (V,E) and every r ≥
36ρG, there exists an r-padded decomposition with m = O(ρG) layers, in which:

(2”) For every u ∈ V there are 3
4m partitions Pj in which there is C ∈ Pj with B(u, 3r) ⊆ C .

Proof. Similar to the proof of Theorem 5.3, we construct m = O(ρG) layers of randomized parti-
tions that always satisfy requirement (1), and argue that, with positive probability, requirement
(2”) is satisfied. The probability that u is unpadded in a single layer is at most 3/r (this followed
from Lemma 5.2), so the expected number of layers in which u is unpadded is at most 3m/r. We
now need the following Chernoff-type tail bound (see, e.g., [20, Chapter 4]).

Lemma 5.7 (A tail bound). Let X1,X2, . . . ,Xn be independent Poisson trials such that, for 1 ≤ i ≤ n,
Pr[Xi = 1] = pi and 0 < pi < 1. Then for X =

∑

iXi, µ = E[X], and any δ > 0,

Pr[X > (1 + δ)µ] <

(

eδ

(1 + δ)1+δ

)µ

<

(

e

1 + δ

)(1+δ)µ

.

Let mu be the expected number of layers in which a vertex u is unpadded, and let Eu be the
event that u is unpadded in more than 1

4m layers. Then, applying the above lemma,

Pr[Eu] = Pr

[

Yu >
r

12
· 3m

r

]

≤ 1

(r/12e)m/4
.

Applying Lemma 5.4 the same way we did in the proof of Theorem 5.3 for a suitable m = O(ρG),
we conclude that Pr

[
∧

v∈V Em
v

]

> 0.

Theorem 5.8 (Embedding of general graphs). For every graph G = (V,E) with growth rate ρG,
dim(G) = O(ρG log ρG).

Proof. We adapt the proof of Theorem 4.2, as follows. First, we use the strengthened decomposi-
tion from Theorem 5.6. Second, we employ a more careful analysis that exploits the independence
of coordinates constructed from different layers together with the local lemma, instead of applying
a union bound separately in each cluster.

In the sequel, we describe the modifications to that proof. In fact, we will only show that any
one level (in the sense of Section 4.2) can be embedded into O(ρ log ρ) dimensions. Using the
nesting techniques of Section 4.3, the existence of a contractive and injective embedding that uses
only O(ρ log ρ) coordinates follows.

Let ρ = ρG. Fix r = 22i
and suppose we are given an r-padded decomposition with m =

O(ρ) layers P1, P2, . . . , Pm strengthened as per Theorem 5.6. We may assume further that m ≥ ρ,
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because otherwise we can just duplicate every layer dρ/me times. Let c > 0 be a constant to be
determined later. We shall construct, for each cluster S ∈ Pj , a relative embedding ψS : S →
Z

c log ρ, such that for all u, v ∈ V with
√
r < d(u, v) ≤ r there exist a layer Pj and a cluster S ∈ Pj

such that u, v ∈ S and ψS(u) 6= ψS(v). Letting ϕj(u) = ψSu(u) where Su ∈ Pj is the cluster
containing u, and setting ϕ = ⊕m

j=1ϕj , we will conclude that ϕ(u) 6= ϕ(v) for all u, v ∈ V with√
r < d(u, v) ≤ r. As before, in the base case we shall replace the requirement

√
r < d(u, v) ≤ r

with 0 < d(u, v) ≤ r.

The base case. Assume 16ρ ≤ r ≤ ρO(1) (note that this is where our decomposition breaks down).
We produce, for every cluster S ∈ Pj , a relative embedding ψS : S → Z

c log ρ as follows: If u /∈ ∂S,
then let ψS(u) be a (c log ρ)-dimensional vector chosen uniformly at random from {0, 1}c log ρ, and
let ψS(u) = 0 otherwise. This ψS is clearly a contraction.

Consider two vertices u, v with 0 < d(u, v) ≤ r and let Pj be a layer in which u is padded. In
this layer, u and v belong to the same cluster S ∈ Pj and u /∈ ∂S, so Pr[ψS(u) = ψS(v)] ≤ (1

2)c log ρ =
ρ−c. Let Eu,v be the event that, in the resulting embedding ϕ = ⊕m

j=1ϕj , we have ϕ(u) = ϕ(v). For
this event to happen, it must be that in every layer in which u is padded, we have ψS(u) = ψS(v).
It then follows that

Pr[Eu,v] = Pr[ϕ(u) = ϕ(v)] ≤ ρ−cm/2 ≤ ρ−cρ/2.

There are Ω(|V |) events Eu,v and we would like to argue that with positive probability, none of
them occur. Again, the local lemma comes to our rescue. It is not difficult to see that Eu,v is inde-
pendent of all events Eu′,v′ for which d(u, u′) > r (because the image of u is chosen independently
of the images of all the corresponding v, u′, and v′). It follows that Eu,v is mutually independent of
all but at most d = r2ρ ≤ ρO(ρ) other events. Choosing the constant c to be a large enough relative
to the constants in the bound r ≤ ρO(1), we see that Pr[Eu,v] ≤ ρ−cρ/2 ≤ 1/e(d+ 1). Thus, applying
Lemma 5.4 yields an embedding for which none of the events Eu,v occur.

Higher levels. Assume r ≥ (16ρ)2. Recall that in Theorem 4.2, for each layer Pj and each cluster
S ∈ Pj , we produced a random relative embedding ψS : S → Z

O(m log ρ) by constructing (using
Lemma 4.3) O(log ρ) coordinates from each layer of an m-layer r1/2-inner decomposition. Here,
instead, for each S ∈ Pj we shall produce a random relative embedding ψS : S → Z

c (which is
of course stronger than using O(log ρ) coordinates), by constructing only c = O(1) coordinates
from layer j of the inner decomposition. More formally, take an m-layer r1/2-inner decomposi-
tion of G. Now for each Pj and each cluster S ∈ Pj , construct each of the c coordinates of ψS as
follows (this is analogous to Lemma 4.3): Let Qj be the partition of S induced by layer j of the
inner decomposition. For every cluster C ∈ Qj , choose rC ∈ {0, 1, . . . , r1/2α} uniformly at ran-
dom. For every u ∈ S, let Cu ∈ Qj be the cluster containing u, and define the image of u to be
max{0, d(u, ∂Cu) − rCu}. Clearly, ψS is a relative embedding of S.

Consider two vertices u, v with
√
r < d(u, v) ≤ r. Since u is padded in at least 3

4m layers each
decomposition (i.e., the layers {P1, . . . , Pm} and in the inner decomposition), we see that for at
least 1

2m values of j, the vertex u is padded both in Pj and in layer j of the inner decomposition.
Fix such j, and let S ∈ Pj be the cluster containing u. It follows that u, v belong to the same cluster
S ∈ Pj , but to different clusters of the inner decomposition. Since u is padded in layer j of the
inner decomposition, each coordinate of ψS(u) is chosen at random from an interval of size at
least r−1/2α, independently of ψS(v), and thus the probability it collides with the corresponding
coordinate of ψS(v) is at most r−1/2α. Hence,

Pr[ϕj(u) = ϕj(v)] = Pr[ψS(u) = ψS(v)] ≤ r−c/2α,
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and the embedding ϕ = ⊕m
j=1ϕj satisfies Pr[ϕ(u) = ϕ(v)] ≤ r−cm/4α ≤ r−cρ/4α. Finally, we would

like to apply Lemma 5.4 on the events Eu,v = {ϕ(u) = ϕ(v)} where
√
r < d(u, v) ≤ r. It can be seen

that every event Eu,v is mutually independent of all the other events Eu′,v′ but the r2ρ events for
which d(u, u′) ≤ 3r (because every cluster of the inner decomposition is mapped independently).
Hence, for c > 0 a sufficiently large constant we can apply Lemma 5.4, which completes the
embedding of a single level.

As mentioned before, the theorem follows by incorporating the nesting techniques of Section
4.3. It is straightforward to verify the details.

6 Related notions of dimensionality

Theorem 6.1 (Euclidean embeddings). The upper bounds for dim(G) in Theorems 5.8 and 4.10 hold
also for dim2(G).

Proof. Consider a contractive, injective embedding ϕ of G = (V,E) into Z
d such that for some

fixed 0 < ε < 1, and every two distinct vertices u, v, their images ϕ(u) and ϕ(v) differ in at least
εd coordinates. Our proof of Theorems 5.8 can be easily modified to yield such an embedding (for
some universal constant ε) by applying appropriate Chernoff bounds when the coordinates are
formed (see the application of Lemma 5.7 in Section 5.3, for instance). A similar modification to
the proof of Theorem 4.10 results with ε that depends only on the size s of the excluded minor,
namely, ε ≥ Ω(1/4s), because a modified proof of Theorem 4.2 guarantees that the images of every
two distinct vertices are different in Ω(ρ), out of the O(m2ρ), coordinates.

After scaling ϕ by (εd)−
1

2 , this embedding satisfies:

1. ||ϕ(u) − ϕ(v)||2 ≥ 1 for all u 6= v ∈ V ; and

2. ||ϕ(u) − ϕ(v)||2 ≤ 1/
√
ε for all (u, v) ∈ E.

We now show that, for every fixed 0 < ν < 1, the constant 1/
√
ε can be reduced to (1 + ν)3

for an arbitrarily small constant ν > 0, while increasing the dimension d only to O(d), where
the hidden constant depends only on ε and ν. Let K = K(ε, ν) ≥ 1/

√
ε be determined later.

For x ∈ R
d, let B2(x, r) = {y ∈ R

d : ||x − y||2 < r}. Since, for every distinct u, v ∈ V , the
balls B2(ϕ(u), 1

2 ) and B2(ϕ(v), 1
2) are disjoint, simple volume arguments show that, for all u ∈ V ,

|{v ∈ V : ||ϕ(v) − ϕ(u)||2 ≤ 2K}| ≤ (c1K)d, where c1 > 0 is a universal constant (constant
independent of ε and ν).

We claim that there exists a map β : V → R
c2d, where c2 = c2(K, ν), satisfying

(*) 1 ≤ ||β(u) − β(v)||2 ≤ 1 + ν for u 6= v ∈ V with ||ϕ(u) − ϕ(v)||2 ≤ K,

Assuming the existence of such a map β, we arrive at our final map γ : V → R
O(d) defined by the

direct sum γ = 1
Kϕ⊕ β, which satisfies

(1’) ||γ(u) − γ(v)||2 ≥ 1 for all u 6= v ∈ V ; and

(2’) ||γ(u) − γ(v)||2 ≤
√

1/K2ε+ (1 + ν)2 for all (u, v) ∈ E.

Choosing K(ε, ν) to be sufficiently large, say K = 1/
√
εν, we see that the bound in (2’) is at most

(1 + ν)3.
It remains now to prove the existence of such β. Let c2 = c2(K, ν) be determined later. We

define β(u) to be a random vector in R
c2d, where each coordinate is chosen to be 0 or 1 uniformly at
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random. We argue that if c2 is large enough, then with positive probability, the required condition
(*) holds, up to scaling, and this will complete the proof.

Let Yuv be the number of coordinates in which β(u) and β(v) disagree. Clearly E[Yuv] = 1
2c2d.

Furthermore, by standard Chernoff bounds, there exists c3 = c3(ν) > 0 such that

Pr

[

Yuv <
1

1 + ν
E[Yuv] or Yuv > (1 + ν) E[Yuv]

]

≤ e−c3c2d.

Let Eu be the event that there exists some ϕ(v) ∈ B2(ϕ(u),K), for which either Yuv <
1

1+ν E[Yuv] or

Yuv > (1 + ν) E[Yuv]. Since |{v ∈ V : ||ϕ(v) − ϕ(u)||2 ≤ K}| ≤ (c1K)d, we can choose c2 to be large
enough so that (by a union bound) Pr[Eu] ≤ e−c3c2d/2. Finally, note that each event Eu is mutually
independent of all events Ev for which ϕ(v) /∈ B2(ϕ(u), 2K). The number of such events is again
at most (c1K)d, and hence choosing c2 > 0 to be large enough and applying the local lemma
(Lemma 5.4), we see that, with positive probability, no event Eu occurs. In this case, the map β

satisfies
√

1
1+ν c2d/2 ≤ ||β(u)−β(v)||2 ≤

√

(1 + ν)c2d/2 whenever u 6= v and ||ϕ(u)−ϕ(v)||2 ≤ K.

Scaling this map proves the existence of the required β and completes the proof of the theorem.

Theorem 6.2. If G = (V,E) is a Θ(k)-degree expander with 1 ≤ k ≤ log |V |, then dim2(G) =

Ω( log |V |
log logk log |V |). For a Θ(log |V |)-degree expander, dim2(G) = Ω(ρG log ρG).

Proof. Similar to that of Theorem 3.2.
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