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Abstract
We consider the problem of NON-UNIFORM GRAPH PAR-
TITIONING, where the input is an edge-weighted undirected
graph G = (V,E) and k capacities n1, . . . , nk, and the
goal is to find a partition {S1, S2, . . . , Sk} of V satisfying
|Sj | ≤ nj for all 1 ≤ j ≤ k, that minimizes the total weight
of edges crossing between different parts. This natural graph
partitioning problem arises in practical scenarios, and gen-
eralizes well-studied balanced partitioning problems such as
MINIMUM BISECTION, MINIMUM BALANCED CUT, and
MINIMUM k-PARTITIONING. Unlike these problems, NON-
UNIFORM GRAPH PARTITIONING seems to be resistant to
many of the known partitioning techniques, such as spread-
ing metrics, recursive partitioning, and Räcke’s tree decom-
position, because k can be a function of n and the capacities
could be of different magnitudes.

We present a bicriteria approximation algorithm for
NON-UNIFORM GRAPH PARTITIONING that approximates
the objective within O(log n) factor while deviating from
the required capacities by at most a constant factor. Our
approach is to apply stopping-time based concentration re-
sults to a simple randomized rounding of a configuration
LP. These concentration bounds are needed as the commonly
used techniques of bounded differences and bounded condi-
tioned variances do not suffice.

1 Introduction
Graph partitioning problems have been studied extensively
in the last few decades, exhibiting beautiful connections
to metric geometry, functional analysis, and computa-
tional complexity, including e.g. [LR99, LLR95, AR98,
ENRS99, FK06, R0̈8, ARV08, KNS09, CGR08, ALN08,
LN06, CKN09] in the case of approximation algorithm for
balanced partitioning. Typically, the goal is to partition an
input graph into several parts, so as to minimize the cost of
the cut, i.e., the total weight of edges connecting different
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parts. Such problems arise in many diverse settings, includ-
ing parallel and cloud computing, data mining and cluster-
ing, pattern recognition, VLSI layout design, and sparse lin-
ear systems.

In balanced partitioning, one seeks to break the graph
into two parts of equal size (as in MINIMUM BISECTION
and its variant BALANCED b-CUT), or into k equal-size
parts (as in MINIMUM k-PARTITIONING). These prob-
lems are uniform in the sense that the requirement on the
parts’ sizes is symmetric and does not depend on the iden-
tity of each part. But recently, there is a growing inter-
est in non-uniform graph partitioning, including SMALL-
SET EXPANSION [RS10, RST10, RST12, BFK+11], and
SPARSEST k-PARTITIONING [LRTV11, LOT12, LRTV12,
KLL+13, LM13].

We consider the NON-UNIFORM GRAPH PARTITION-
ING problem, whose input is an undirected graph G =
(V,E) equipped with edge weights w : E → R+ and k
capacities n1 ≥ n2 ≥ . . . ≥ nk ≥ 1, and the goal is to find
a partition {S1, S2, . . . , Sk} of V satisfying the capacities,
namely, |Sj | ≤ nj for all 1 ≤ j ≤ k, that minimizes the cost∑

i<j δ(Si, Sj) (the total weight of edges crossing between
different parts in the partition). To ensure feasibility, the sum
of the capacities is

∑k
j=1 nj ≥ n, where n = |V | is the num-

ber of vertices in the graph G. We stress that the number of
capacities k can be a function of n and that the capacities
could possibly be of significantly different magnitudes.

The NON-UNIFORM GRAPH PARTITIONING problem
is a natural generalization of well-known cut problems
like MINIMUM BISECTION [FK06, R0̈8], BALANCED b-
CUT [LR99, ARV08] and MINIMUM k-PARTITIONING
[ENRS99, KNS09]. This problem not only arises in many of
the above mentioned settings (e.g. parallel computing, clus-
tering, and VLSI layout design), but it has additional appli-
cations. For example, the design of bandwidth-constrained
datacenters requires one to solve NON-UNIFORM GRAPH
PARTITIONING [BMC+12] (consult the references therein
for more details). Due to the wide range of applications, a se-
quence of works, which studies heuristics for solving NON-
UNIFORM GRAPH PARTITIONING, exists [Bar82, BVW88,
San89, HMV92, RW95]. These heuristics utilize different
tools such as spectral theory and quadratic programming.
Unfortunately, to the best of our knowledge, no provable
guarantee is known for the NON-UNIFORM GRAPH PAR-
TITIONING problem.



1.1 Our Results. We present an efficient algorithm that
achieves an approximation factor of O(logn) while violating
the capacity of each part by at most a constant factor.

THEOREM 1.1. There are absolute constants c, C ≥ 1 and
a polynomial-time algorithm, which given as input an edge
weighted graph G and k capacities n1, . . . , nk, outputs a
partition {S1, . . . , Sk} of V such that |Si| ≤ cnj for all
1 ≤ j ≤ k and∑

i<j

δ(Si, Sj) ≤ C logn
∑
i<j

δ(S∗
i , S

∗
j )

where {S∗
1 , . . . , S

∗
k} is an optimal partition for NON-

UNIFORM GRAPH PARTITIONING.

We defer the analysis that optimizes the constant c (the
multiplicative capacity violation) to the full version of this
paper.

1.2 Techniques. Even though NON-UNIFORM GRAPH
PARTITIONING is closely related to many balanced graph
partitioning problems, known approaches for the latter
fail when applied to NON-UNIFORM GRAPH PARTITION-
ING. First, the natural formulation of a spreading metric
[ENRS99, ENRS00] for the problem is not strong enough,
since (by convexity) it admits a fractional solution in which
all vertices are spread equally with respect to the average
capacity. When the capacities n1, . . . , nk vary in magni-
tude significantly, such an average spreading guarantee is too
weak to represent parts whose sizes are close to the required
ones. Second, the application of a recursive partitioning ap-
proach, which gradually decomposes the graph into parts of
the desired sizes, fails because we have no method to cor-
rect mistakes at intermediate steps, and reverting them leads
to inefficient backtracking. Third, reducing the problem to
a tree via Räcke [R0̈8] followed by dynamic programming
is not effective as the number of capacities k might depend
on n, and the capacities n1, . . . , nk can have vastly different
magnitudes. Hence, known methods like [AR06, FF12] do
not yield polynomial runtime. Even if one approximates the
capacities, say by rounding them to powers of 2, there could
easily be log k distinct capacity values, requiring nO(log k)

runtime.
We overcome these obstacles by employing the follow-

ing three techniques.
Instance Simplification. We simplify the capacities se-

quence, which is crucial in order to bound the capacity vi-
olation of our algorithm. First, we round the capacities
n1, . . . , nk into powers of 2. Second, the rounded capacities
are increased so that the “aggregate” capacity is geometri-
cally increasing; more precisely, a strict decrease in capac-
ity, i.e., ni > ni+1, means that the aggregate of all capacities
bigger or equal to ni is significantly smaller than the aggre-
gate of capacities bigger or equal to ni+1. Of course, we

must be able to revert the process in the sense of mapping a
solution to the simplified instance back to a solution to the
original instance, while violating the capacity constraints by
at most another constant factor.

Configuration LP. We take a combinatorial approach
and write a configuration LP for choosing (fractionally) a
collection of vertex subsets (interpreted as cuts) whose sizes
meet the capacity constraints, and altogether they cover all
vertices of the graph. As this LP contains an exponential
number of variables, an efficient method for solving it is
needed.

The standard argument used in such cases, solving the
dual of the configuration LP, does not seem to work as the LP
contains both packing and covering constraints and we have
only an approximate dual separation oracle. To overcome
this, we reduce the configuration LP to a decision problem of
whether a given polytope Q is empty. Techniques designed
for packing-covering polytopes, such as Q, when applied
as a black box, ultimately result in a loss of O(log n) in
both the objective’s value and in the capacity violation factor
(O(logn) is the approximation factor of our dual separation
oracle). A careful application of these techniques that uses
a different scaling factor for different constraints, results
in a loss of O(logn) only in the objective value of the
configuration LP, whereas there is no such loss in any of the
LP constraints.

Measure Concentration via Stopping Times. Given a
solution to the configuration LP, we employ a simple proba-
bilistic rounding that repeatedly chooses a vertex subset (cut)
with probability proportional to its (fractional) value in the
LP, until all vertices are assigned. Bounding the cost of such
a randomized partitioning is straightforward – this rounding
increases the cost only by a factor of 2 compared to the LP.
However, bounding the total number of vertices assigned to
a part in the partition is not immediate.

The obvious approach for bounding the probability of
having too many vertices in some part is to use Markov’s
inequality and apply a union bound over the different capac-
ities. This results in a capacity violation of O(k), a com-
pletely useless guarantee as the capacity of the largest piece
is at least n/k. To overcome this, we observe that parts of ap-
proximately equal capacities are interchangeable. One could
therefore clump the capacities (which we call “buckets”) into
“mega-buckets” and consider the total number of vertices as-
signed to this mega-bucket. The above argument, applied
now for the mega-buckets, gives an improved O(log k) de-
viation form the capacity, as one can argue using pruning
arguments that there are at most O(log k) mega-buckets.

Another natural approach is to bound the capacity de-
viation by relying on measure concentration results, and
therefore the next thing to consider is the Doob martin-
gale that corresponds to the total number of vertices as-
signed to a mega-bucket. When usually applying martin-



gale concentration results one of the following two is used,
an absolute upper bound on the martingale’s difference in
two consecutive steps (also known as the Lipschitz con-
dition) or an upper bound on the variance of this differ-
ence conditioned on the worst possible history (also known
as the variance condition). Unfortunately, these two upper
bounds could equal the expected total number of vertices
assigned to the mega-bucket, and thus accumulate rapidly
in each step of the rounding. Since the rounding process
needs to make Ω(k log n) steps until all vertices are chosen,
the above two concentration techniques provide an overall
O(
√
k log n log log k) multiplicative violation of the capaci-

ties, an even worse violation than the previous O(log k)1.
To bypass this issue, we take a different approach and

prove that with high probability the sum of the conditioned
variances is sufficiently small. We stress that in contrast
to the concentration result based on the variance condition,
where in each step a possibly different worst history is condi-
tion on, we prove that the random variable which equals the
sum of the conditioned variances is sufficiently small with
good probability. Stopping-time based concentration results
are now used along with this fact, to obtain on overall capac-
ity deviation of O(log log k). So how then do we get only
a constant violation? This is where the instance simplifica-
tion comes in. We show that if the buckets satisfy a certain
volume condition then the probabilities of constant deviation
form a geometric sequence, hence a union bound over the
mega-buckets suffices to achieve a bounded failure probabil-
ity. The instance simplification done initially ensures that the
mega-buckets’ aggregates increase geometrically, and there-
fore the required volume condition is satisfied.

1.3 Related Work. In [LR99] Leighton and Rao gave
an O(logn) approximation for SPARSEST CUT which is
based on a linear spreading metric, resulting in a bi-criteria
O(logn) approximation for BALANCED b-CUT. This was
subsequently improved to an O(

√
log n) guarantee via the

use of negative type spreading metrics for both problems,
by Arora, Rao and Vazirani [ARV08]. Using the negative
type spreading metric machinery of the latter, Chawla et. al
[CGR08] presented an approximation of O(log3/4 n) for the
general demands version of SPARSEST CUT. This was im-
proved by Arora et. al. [ALN08] to O(

√
log n log logn)

who constructed a better embedding of negative type metrics
into Euclidean space. For the MINIMUM BISECTION prob-
lem, Feige and Krauthgamer [FK06] provided a true approx-
imation with an approximation guarantee of O(log3/2 n),
which was improved by Räcke [R0̈8] to O(logn) by con-
structing a distribution over trees that approximates all cuts
in the graph. Makarychev et. al [MMV12] consider the

1One can make only O(k log k) steps to cover all vertices except a
fraction of 1/poly(k) which can be assigned to the largest mega-bucket.
This results in a slightly better overall deviation of O(

√
k log k log log k).

SPARSEST CUT problem in the semi-random model and pro-
vide improved guarantees for it. If one wishes to partition
a graph into k pieces of equal size, Even et. al. [ENRS99]
provided a bi-criteria O(logn) algorithm by using the region
growing technique of Garg et. al. [GVY93]. Building upon
the negative-type spreading metric machinery of [ARV08],
Krauthgamer et. al. [KNS09] improved the latter bound to
O(
√
log k log n).
A different related work is that of Andrews et. al.

[AHKM11] for the CAPACITATED METRIC LABELING
problem. This problem, when the metric is uniform, is iden-
tical to NON-UNIFORM GRAPH PARTITIONING with addi-
tional assignment costs specifying how much it costs assign-
ing a vertex to a piece in the partition. [AHKM11] proved,
assuming NP * ZPTIME(npolylog(n)), that there is no
algorithm with a finite approximation guarantee for CAPAC-
ITATED METRIC LABELING that violates the capacities by
a factor of o(

√
log k). This should be in contrast to the con-

stant capacity violation of our algorithm, which heavily uses
the fact that any vertex can be assigned to any piece, i.e., all
assignment costs are 0.

Paper Organization. The instance simplification re-
duction appears in Section 2, whereas the configuration LP
is in Section 3. Our randomized rounding algorithm and our
main technical argument of concentration via stopping times
appear in Section 4. Section 5 contains the algorithm for
approximately solving the configuration LP.

2 Instance Simplification
We first show that an instance of NON-UNIFORM GRAPH
PARTITIONING can be reduced to a different one in which
the capacities, also called henceforth buckets, satisfy some
special properties. Given an instance (G = (V,E), C =
{n1, . . . , nk}) of NON-UNIFORM GRAPH PARTITIONING,
we will simplify C to have a special structure. We introduce
some definitions first.

DEFINITION 2.1. Let C = {n1, . . . , nk} and let C ′ =
{m1, . . . ,mk′}. We say that C ≼ C ′ if there exists a
mapping f : [k]→ [k′] such that

∀j ∈ [k′]
∑

i∈[k]:f(i)=j

ni ≤ mj .

PROPOSITION 2.1. Given a solution S to (G,C) and a
mapping f that corresponds to C ≼ C ′, one can construct a
solution S ′ to (G,C ′) such that cost(S ′) ≤ cost(S).

Proof. Let f be the mapping certifying C ≼ C ′ and let
vertex v be assigned to bucket i in S. Then in S ′, we assign
v to bucket f(i). It is easy to see that the cost of S ′ is at most
that of S. Moreover, the definition of the ≼ relation implies
that if S was feasible, then so is S ′. �



The following lemma argues that rounding bucket sizes
to the next power of two gives us an instance which is
essentially equivalent up to a factor of two in the capacities.
We use αC to denote the scaling of each capacity in a
multiset C by a factor α > 0.

LEMMA 2.1. Let C = {n1, . . . , nk} and let C ′ =
{m1, . . . ,mk} where each mi = 2⌈log2 ni⌉ is derived by
rounding ni up to the next power of two. Then C ≼ C ′ ≼
2C.

Proof. The identity map certifies the domination in both
directions. �

Let C = {n1, n2, . . . , nk} be an instance in which all
buckets sizes are powers of two and let n1 ≥ n2 ≥ . . . ≥ nk.
Let kj denote the number of occurrences of 2−jn1 in C. We
call this set of kj buckets a megabucket, and let its volume,
denoted by vol(j) be defined as the total capacity of buckets
in it; thus vol(j) = kj2

−jn1.
The following sufficient condition for dominance will

be useful.

LEMMA 2.2. Let C = {n1, . . . , nk} and C ′ =
{n′

1, . . . , n
′
k′} be such that all bucket sizes are powers of

two, n1 ≥ n2 ≥ . . . ≥ nk, n′
1 ≥ n′

2 ≥ . . . ≥ n′
k′ ,

and let vol(j) and vol′(j) denote the respective megabucket
volumes. Suppose that n1 = n′

1 and for all p ≥ 0,∑
j≤p vol(j) ≤

∑
j≤p vol

′(j). Then C ≼ C ′.

Proof. We define the mapping f greedily: with ni’s and n′
i’s

sorted in decreasing order, we match each i ∈ [k] to the first
bucket whose capacity has not been filled already; i.e. having
defined f on [i− 1], we define f(i) to be the smallest i′ such
that

∑
j<i:f(j)=i′ nj < n′

i′ . The volume condition ensures
that n′

i′ ≥ ni, and moreover, since all ni’s are powers of two,
the remaining capacity in n′

i′ must have been at least ni, and
hence the assignment of f(i) does not violate the capacity of
i′. Continuing in this manner, we can define an f certifying
the dominance. The claim follows. �

We next introduce the notion of a nice instance, which
informally means that all bucket sizes are powers of two, and
each non-empty megabucket (i.e. the set of buckets of size
2j for some j) has volume at least a factor of b > 1 larger
than the volume of every megabucket for size larger than 2j .

DEFINITION 2.2. (NICE INSTANCE) A set of capacities
C = {n1, n2 . . . , nk} with n1 ≥ n2 ≥ . . . ≥ nk is called
b-nice if there is a sequence of integers 0 = p1, . . . , pl such
that:

• n1 is a power of two;

• all bucket sizes ni belong to the set {2−pjn1 : j ∈ [l]};

• let kj be the number of occurrences of 2−pjn1 in C.
Then the kj’s satisfy

kj2
−pjn1 ≥ b · kj−12

−pj−1n1 ∀j > 1

The following is the central claim of this section, estab-
lishing that any set of capacities C is well-approximated by
one that is nice.

THEOREM 2.1. For any set of capacities C =
{n1, . . . , nk}, and for any constant b ≥ 1, one can
construct a set of b-nice capacities C ′ such that

C ≼ C ′ ≼ c · C,

where c ≤ O(b).

Proof. By lemma 2.1, we can assume that all ni’s are powers
of two; this will affect the constant c in the theorem by at
most a factor of two.

Informally, we will go down the list of megabuckets in
decreasing order of bucket sizes, and delete megabuckets
until we have deleted much more volume than the last
non-empty megabucket, at which point we add the deleted
volume to the megabucket at which we stop. We repeat this
until there are no more megabuckets left, and increase the
capacity of all megabuckets to restore dominance. We next
formalize this intuition.

We start with p1 = 0 and let nvol(1) denote the volume
of the first megabucket. We add to C ′ (b + 1) · k1 buckets
of size n1. Given pj and nvol(j) we set pj+1 to be the
smallest value (if any) such that

∑pj+1

i=pj+1 vol(i) is at least
b · nvol(j). We then set nvol(j + 1) ,

∑pj+1

i=pj+1 vol(i), and
add (b+1)·nvol(j+1)/(2−pj+1n1) buckets of size 2−pj+1n1

to C ′. We repeat this until we run out of megabuckets.
The definition of C ′ ensures that it is b-nice. We next

argue that C ≼ C ′ ≼ c ·C. To certify these relations, we use
Lemma 2.2.

First, we claim inductively that for all p ≥ 1,∑
i≤p vol(i) ≤

∑
i≤p vol

′(i). Since vol′(i) is non-zero only
when i = pj for some j, it suffices to prove the claim for all
p = pj − 1. For p = p2 − 1, we have

∑
i≤p

vol(i) = vol(0) +

p2−1∑
i=1

vol(i)

≤ vol(0) + b · vol(0)
= (b+ 1) vol(0) = vol′(0)

where the inequality follows from the definition of p2. As-



suming the claim is true for p = pj , we write

∑
i≤p

vol(i) =
∑

i≤pj−1

vol(i) + vol(pj) +

p∑
i=pj+1

vol(i)

≤
∑

i≤pj−1

vol′(i) + (b+ 1) vol(pj)

=
∑

i≤pj+1−1

vol′(i)

This proves that C ≼ C ′.
We next prove the other direction. Since vol′(i) is non-

zero only when i = pj for some j, it suffices to prove the
claim for all p = pj . For p = p0, the definition of C ′ implies
the claim for c = (b + 1). For j ≥ 0, the added vol′ at
p = pj+1 is by definition equal to (b + 1)

∑pj+1

i=pj+1 vol(i),
which is exactly (b + 1) times the added vol from pj + 1
to pj+1. Thus the induction holds and we conclude that
C ′ ≼ (b+ 1)C.

The assumption that all bucket sizes in C were powers
of two costs us another factor of two, so overall the theorem
holds with c = 2(b+ 1). �

3 Configuration LP
Denote the collection of all possible cuts (vertex subsets)
of size nj by Fj , {S : S ⊆ V, |S| ≤ nj}. Consider the
following configuration LP:

(P) min
1

2

k∑
j=1

∑
S∈Fj

δ(S) · xS,j

s.t.
k∑

j=1

∑
S∈Fj :u∈S

xS,j ≥ 1 ∀u ∈ V(3.1)

∑
S∈Fj

xS,j ≤ 1 ∀j = 1, . . . , k(3.2)

xS,j ≥ 0 ∀j = 1, . . . , k,∀S ∈ Fj

It is easy to check that the above linear program is a
relaxation for NON-UNIFORM GRAPH PARTITIONING. In
Section 5 we show that this linear program can be approxi-
mately solved in polynomial time. Specifically, we prove in
Section 5 the following theorem.

THEOREM 3.1. For every constant 0 < ε < 1 there is a
polynomial-time algorithm that, given as input an instance
of (P) represented succinctly using the graph G and the sizes

n1, . . . , nk, outputs x⃗ such that:

1

2

k∑
j=1

∑
S∈Fj

δ(S) · xS,j ≤ O(log n) ·OPT(P)

k∑
j=1

∑
S∈Fj :u∈S

xS,j ≥ 1, ∀u ∈ V

∑
S∈Fj

xS,j ≤ 1 + ε, ∀j = 1, . . . , k

xS,j ≥ 0. ∀j = 1, . . . , k,∀S ∈ Fj

Here OPT(P) is the optimum (objective value) of (P).

Note that a solution x⃗ obtained from the above theorem is
feasible except for constraint (3.2), which might be violated
by a multiplicative constant of 1 + ε. In order to make x
feasible, we change the instance to a new one in which all
capacities are doubled. This can be done as follows. Choose
ε such that 1 + ε ≤ 3/2 and for every bucket j partition
X = {S : xS,j > 0} into two sets A and B such that∑

S∈A xS,j ≤ 1 and
∑

S∈B xS,j ≤ 1 (start with A = B = ∅
and go over the elements of X in a non-increasing order of
xS,j and assign each cut S to A if

∑
S∈A xS,j ≤

∑
S∈B xS,j

or to B otherwise). Therefore, up to an additional loss of two
in the capacity violation, from this point on we assume the
we are given a feasible fractional solution for (P) whose cost
is at most O(log n) ·OPT(P).

4 Randomized Rounding
In order to simplify the presentation of the rounding algo-
rithm and its analysis, as mentioned before, we refer to each
capacity nj as a bucket that contains cuts. We assume that the
instance is b-nice for a suitable constant b to be determined
later. As before, we aggregate the buckets into mega-buckets
according to powers of 2 as follows:

Wi ,
{
j : nj = 2−(i−1)n1

}
∀i = 1, . . . , ℓ .

Denote by ki the number of buckets in the ith mega-bucket,
namely ki , |Wi|, ∀i = 1, . . . , ℓ. Given the jth bucket,
1 ≤ j ≤ k, let m(j) be the mega-bucket to which the jth
bucket belongs, namely j ∈Wm(j).

4.1 Algorithm. Informally, the algorithm repeatedly picks
a bucket j uniformly at random, picks an S according to the
distribution given by xS,j , and assigns the yet-unassigned
portion of S to megabucket m(j). Once all vertices have
been assigned, we assemble the pieces assigned to each
megabucket in the appropriate number of pieces. We will
later argue that if the instance is nice, this can be done while
violating the capacity of each bucket by at most a constant
factor. We next describe the algorithm in more detail.



The algorithm’s description uses the following nota-
tions: t is the iteration index, V is the set of vertices covered
by the algorithm so far, Wi is the collection of cuts (vertex
subsets) assigned by the algorithm to the i-th mega-bucket
Wi, Jt is the random bucket chosen by the algorithm in it-
eration t, Yt is the random cut chosen by the algorithm in
iteration t from bucket Jt, Zt ⊆ Yt is the set of uncovered
vertices in Yt, and m(u) is the mega-bucket which vertex u
was assigned to by the algorithm.

1: t← 1 and V ← ∅.
2: Wi ← ∅ for all i = 1, . . . , ℓ.
3: while V ≠ V do
4: pick Jt ∈ {1, . . . , k} uniformly at random.
5: pick a cut Yt at random

(where Pr[Yt = S] = xS,Jt ∀S ∈ FJt).
6: Zt ← Yt \ V .
7: m(u)← m(Jt) for all u ∈ Zt.
8: Wm(Jt) ←Wm(Jt) ∪ {Zt} and V ← V ∪ Zt.
9: t← t+ 1.

10: for i = 1, . . . , ℓ do
11: while Wi contains more than ki cuts do
12: merge the smallest two cuts inWi.
13: return the partition ∪ℓi=1Wi.

One should note that there might be an iteration t in
which Yt = ∅. This can happen only when

∑
S∈FJt

xS,Jt <

1, and in this case with a probability of 1 −
∑

S∈FJt
xS,Jt ,

the algorithm chooses Yt = ∅ in step (5).

4.2 Cost Analysis. Let pu,v denote the probability that u
and v are assigned (to cuts) in different iterations of the
algorithm, formally

pu,v , Pr [∃t ̸= t′ : u ∈ Zt, v ∈ Zt′ ] .

Obviously, pu,v is an upper bound on the probability that u
and v are separated in the algorithm’s output.

LEMMA 4.1. For every u, v ∈ V we have

pu,v ≤
k∑

j=1

∑
S∈Fj :(u,v)∈δ(S)

xS,j .

Proof. Let us say that a pair (u, v) gets settled in iteration t
if neither of u and v has been assigned by iteration t− 1, but
at least one of them gets assigned in iteration t. We say the
pair gets separated in iteration t if it gets settled in iteration
t and exactly one of u, v gets assigned. Thus conditioned on
(u, v) not being already settled, the pair (u, v) gets settled
in iteration t if |Yt ∩ {u, v}| ≥ 1, and gets separated if
|Yt ∩ {u, v}| = 1. Hence conditioned on being settled in
iteration t, it gets separated with probability Pr[|Yt∩{u,v}|=1]

Pr[Yt∩{u,v}|≥1] .
Since the time steps are independent and these probability

values are the same regardless of the iteration t, it is easily
seen that

puv =
Pr[|Yt ∩ {u, v}| = 1]

Pr[|Yt ∩ {u, v}| ≥ 1]
.

Given that Yt is distributed according to {xS,j

k }j∈[k],S∈Fj
,

the numerator is exactly 1
k

∑k
j=1

∑
S∈Fj :(u,v)∈δ(S) xS,j .

The denominator is at least Pr[u ∈ Yt] ≥
1
k

∑k
j=1

∑
S∈Fj :u∈S xS,j ≥ 1

k by constraint (3.1). The
claim follows. �

The following theorem is immediate from Lemma 4.1.
Let cost(ALG) denote the cost of the partition reported by
the algorithm, and let cost(P) be the cost of the LP solution
x⃗, i.e., the objective value of P .

THEOREM 4.1. E[cost(ALG)] ≤ 2 · cost(P).

Proof. Lemma 4.1 implies that

E[cost(ALG)] =
∑

(u,v)∈E

w(u, v) · pu,v

≤
∑

(u,v)∈E

w(u, v)

k∑
j=1

∑
S∈Fj :(u,v)∈δ(S)

xS,j

=

k∑
j=1

∑
S∈Fj

δ(S) · xS,j = 2 · cost(P).

�

4.3 Capacity Analysis. Let xu,i denote the total coverage
of vertex u ∈ V by cuts from the ith mega-bucket, formally

xu,i ,
∑
j∈Wi

∑
S∈Fj :u∈S

xS,j .

It will be convenient to normalize it by the total coverage of
u, formally defining

x̃u,i ,
xu,i∑l

i′=1 xu,i′
=

xu,i∑k
j=1

∑
S∈Fj :u∈S xS,j

.

The following two observations bound the probability that a
vertex is assigned to a mega-bucket, and the probability that
a vertex is not assigned in the first t− 1 iterations.

OBSERVATION 1. For every vertex u ∈ V and mega-bucket
i = 1, . . . , ℓ,

Pr [m(u) = i] = x̃u,i.

Proof. Fix an iteration t ≥ 1, and condition on u being



assigned in this iteration. Then

Pr[m(u) = i | u ∈ Zt] =

=
Pr[m(u) = i ∧ u ∈ Zt]

Pr[u ∈ Zt]

=
Pr[u /∈ ∪t−1

s=1Ys] ·
∑

j∈Wi
( 1k
∑

S∈Fj :u∈S xS,j)

Pr[u /∈ ∪t−1
s=1Ys] ·

∑k
j=1(

1
k

∑
S∈Fj :u∈S xS,j)

= x̃u,i.

The observation now follows immediately by the law of total
probability. �

OBSERVATION 2. For every vertex u ∈ V and iteration
t ≥ 1,

Pr
[
u /∈ ∪t−1

s=1Ys

]
≤
(
1− 1

k

)t−1
.

Proof. Fix u ∈ V and s ≤ t− 1, then using constraint (3.1),

Pr[u ∈ Ys] =
k∑

j=1

1
k

∑
S∈Fj :u∈S

xS,j ≥ 1
k .

The observation now follows from the independence of the
different iterations. �

4.3.1 A Martingale. We define a martingale for every
mega-bucket i = 1, . . . , ℓ. Consider the following random
variables:

Ri,t ,
{
|Zt| if m(Jt) = i;

0 if m(Jt) ≠ i;

Ni ,
∑
t≥1

Ri,t.

The random variable Ri,t counts the number of vertices in
the cut Zt if it was added toWi and 0 otherwise. Ni counts
the total number of vertices in cuts added in all iterations of
the algorithm to Wi. We define the Doob martingale of Ni

conditioned on the random choices the algorithm made so
far:

Mi,t , E [Ni|Y1, . . . , Yt] .

By definition the sequence {Mi,t}∞t=0 is a martingale with
respect to {Yt}∞t=1. Specifically, for every iteration t ≥ 1 the
following holds: E [Mi,t|Y1, . . . , Yt−1] = Mi,t−1.

Comment: We note that in each iteration t the algo-
rithm makes two random choices, Jt and Yt. Formally, in
the definition of the martingale, when conditioning on the
history of the random choices the algorithm made so far, we
should have used (Jt, Yt) instead of Yt. However, for nota-
tional simplicity we only write Yt but the reader should keep
in mind that each Yt is accompanied by the corresponding
Jt.

4.3.2 Unconditioned Variance of Martingale Differ-
ences. We start by explicitly writing the change in the value
of the martingale {Mi,t}∞t=0 in every time step t.

LEMMA 4.2. For every mega-bucket i = 1, . . . , ℓ and itera-
tion t ≥ 1,

Mi,t −Mi,t−1 = Ri,t −
∑
u∈Zt

x̃u,i .

Proof. We can write Mi,t as

Mi,t
(i)
=

t∑
s=1

Ri,s + E

[∑
s>t

Ri,s

∣∣∣Y1, . . . , Yt

]

=

t∑
s=1

Ri,s +
∑

u/∈∪t
s=1Ys

Pr
[
m(u) = i

∣∣∣Y1, . . . , Yt

]
(ii)
=

t∑
s=1

Ri,s +
∑

u/∈∪t
s=1Ys

x̃u,i .

Equality (i) holds since the random variables Y1, . . . , Yt

(along with the corresponding J1, . . . , Jt) determine the
value of all random variables Ri,1, . . . , Ri,t. Equality (ii)
follows from (the proof of) Observation 1. The lemma
follows by using the above formula for t and for t − 1, and
the fact that ∪ts=1Ys \ ∪t−1

s=1Ys = Zt. �

Our goal is to bound the unconditioned variance of
the difference of a single step of the martingale, namely
Var[Mi,t − Mi,t−1]. Since {Mi,t}∞t=0 is a martingale,
E[Mi,t − Mi,t−1] = 0, and thus it suffices to bound
the second moment of the martingale difference. Observe
that x̃u,i ∈ [0, 1] by its definition, and hence |Zt| ≥∑

u∈Zt
x̃u,i ≥ 0 (with probability 1). Using Lemma 4.2,

it follows that Var[Mi,t−Mi,t−1] = E[(Mi,t−Mi,t−1)
2] is

upper bounded by

di,t , Pr [m(Jt) = i] · E
[
|Zt|2

∣∣∣m(Jt) = i
]
+

(4.3)

Pr [m(Jt) ̸= i] · E

(∑
u∈Zt

x̃u,i

)2 ∣∣∣m(Jt) ̸= i

 .

The above is correct since one can examine the two
different cases. If m(Jt) = i then by definition Ri,t = |Zt|
and we get that Mi,t − Mi,t−1 = |Zt| −

∑
u∈Zt

x̃u,i ≥
0, and therefore (Mi,t −Mi,t−1)

2 ≤ |Zt|2. Otherwise
m(Jt) ̸= i and in this case Ri,t = 0 and (Mi,t −Mi,t−1)

2
=(∑

u∈Zt
x̃u,i

)2
. The next lemma crucially provides an upper

bound on di,t.



LEMMA 4.3. For every 1 ≤ i ≤ ℓ and every t ≥ 1,

di,t ≤
2ki
k

(
1− 1

k

)t−1

2−(i−1)n2
1 .

Proof. We start by bounding the first term of di,t.

Pr [m(Jt) = i] · E
[
|Zt|2

∣∣∣m(Jt) = i
]
=

=
ki
k

∑
u,v∈V

Pr
[
u, v ∈ Zt

∣∣∣m(Jt) = i
]

=
ki
k

∑
u,v∈V

Pr
[
u, v /∈ ∪t−1

s=1Ys ∧ u, v ∈ Yt

∣∣∣m(Jt) = i
]

(i)
=

ki
k

∑
u,v∈V

Pr
[
u, v /∈ ∪t−1

s=1Ys

]
· Pr

[
u, v ∈ Yt

∣∣∣m(Jt) = i
]

(ii)
≤ ki

k

(
1− 1

k

)t−1

·
∑

u,v∈V

Pr
[
u, v ∈ Yt

∣∣∣m(Jt) = i
]

=
ki
k

(
1− 1

k

)t−1

· E
[
|Yt|2

∣∣∣m(Jt) = i
]

(iii)
≤ ki

k

(
1− 1

k

)t−1

· 2−2(i−1)n2
1 .

(4.4)

Equality (i) is derived from the fact that all iterations of
the algorithm are independent. Inequality (ii) follows from
Observation 2 and the fact that Pr

[
u, v /∈ ∪t−1

s=1Ys

]
≤

Pr
[
u /∈ ∪t−1

s=1Ys

]
. Finally, inequality (iii) holds since Yt

is chosen from mega-bucket i and must be of size at most
2−(i−1)n1.

We now upper bound the second term of di,t.

Pr [m(Jt) ̸= i] · E

(∑
u∈Zt

x̃u,i

)2 ∣∣∣m(Jt) ̸= i

 =

=
∑
r ̸=i

Pr [m(Jt) = r] · E

(∑
u∈Zt

x̃u,i

)2 ∣∣∣m(Jt) = r


=
∑
r ̸=i

kr
k

∑
u,v∈V

x̃u,ix̃v,i · Pr
[
u, v ∈ Zt

∣∣∣m(Jt) = r
]

(iv)
=
∑
r ̸=i

kr
k

∑
u,v∈V

[
x̃u,ix̃v,i · Pr

[
u, v /∈ ∪t−1

s=1Ys

]
·

Pr
[
u, v ∈ Yt

∣∣∣m(Jt) = r
] ]

(v)
≤
(
1− 1

k

)t−1∑
r ̸=i

kr
k

∑
u,v∈V

[
x̃u,ix̃v,i·

Pr
[
u ∈ Yt

∣∣∣m(Jt) = r
]
Pr
[
v ∈ Yt

∣∣∣u ∈ Yt,m(Jt) = r
] ]

(vi)
=

1

k

(
1− 1

k

)t−1∑
r ̸=i

∑
u,v∈V

[
x̃u,ix̃v,ixu,r·

Pr
[
v ∈ Yt

∣∣∣u ∈ Yt,m(Jt) = r
] ]

(vii)
≤ 1

k

(
1− 1

k

)t−1∑
r ̸=i

2−(r−1)n1

∑
u∈V

x̃u,ixu,r

(viii)
≤ ki

k

(
1− 1

k

)t−1

2−(i−1)n2
1

∑
r ̸=i

2−(r−1) .(4.5)

As before, equality (iv) follows from the independence of
the algorithm’s iterations, and inequality (v) follows from
Observation 2 and the fact that Pr

[
u, v /∈ ∪t−1

s=1Ys

]
≤

Pr
[
u /∈ ∪t−1

s=1Ys

]
. Note that equality (vi) holds since Pr[u ∈

Yt | m(Jt) = r] = 1
kr

∑
j∈Wr

∑
S∈Fj :u∈S xS,j = 1

kr
xu,r.

Inequality (vii) is derived from x̃v,i ∈ [0, 1] and an upper
bound on the size of a set Yt chosen from mega-bucket Wr,
namely∑

v∈V

x̃v,i·Pr
[
v ∈ Yt

∣∣∣u ∈ Yt,m(Jt) = r
]
≤

E
[
|Yt|
∣∣∣u ∈ Yt,m(Jt) = r

]
≤ 2−(r−1)n1 .

Inequality (viii) is derived by considerable rearranging and
similar facts like x̃u,r ∈ [0, 1] and constraint (3.2), namely,∑

u∈V

x̃u,ixu,r =
∑
u∈V

xu,ix̃u,r

≤
∑
u∈V

xu,i

=
∑
j∈Wi

∑
S∈Fj

∑
u∈S

xS,j

=
∑
j∈Wi

∑
S∈Fj

(|S| · xS,j)

≤ki · 2−(i−1)n1 .

Combining the upper bounds (4.4) and (4.5) on di,t we
conclude that

di,t ≤
ki
k

(
1− 1

k

)t−1

· 2−2(i−1)n2
1+

ki
k

(
1− 1

k

)t−1

· 2−(i−1)n2
1 ·
∑
r ̸=i

2−(r−1)

=
ki
k

(
1− 1

k

)t−1

2−(i−1)n2
1

2−(i−1) +
∑
r ̸=i

2−(r−1)


≤ 2ki

k

(
1− 1

k

)t−1

2−(i−1)n2
1 .

�



4.3.3 Sums of Conditioned Variances of Martingale Dif-
ferences. We proceed to bound the sum, over all iterations
of the algorithm, of the conditioned variances of the martin-
gale differences for a fixed mega-bucket Wi.

LEMMA 4.4. For every i = 1, . . . , ℓ and αi > 1, let A be
the event that

∑
t≥1 Var[Mi,t − Mi−t−1|Y1, . . . , Yt−1] ≥

αi · ki · 2−(i−2)n2
1. Then,

Pr [A] ≤ 1

αi
.

Proof. Similarly to (4.3), we can bound

Var[Mi,t −Mi,t−1

∣∣∣Y1, . . . , Yt−1]

from above by

Di,t ,
(
Pr [m(Jt) = i] ·

E
[
|Zt|2

∣∣∣m(Jt) = i, {Yr}1≤r≤t−1

])
+(

Pr [m(Jt) ̸= i] ·

E

(∑
u∈Zt

x̃u,i

)2 ∣∣∣m(Jt) ̸= i, {Yr}1≤r≤t−1

) .

Notice that Di,t, in contrast to di,t, is a random variable
depending on Y1, . . . , Yt−1. By the law of total probability,
E[Di,t] = di,t, and thus, using linearity of expectation and
Lemma 4.3,

E
[∑
t≥1

Di,t

]
=
∑
t≥1

di,t

≤
∑
t≥1

2ki
k

(
1− 1

k

)t−1

2−(i−1)n2
1

= ki2
−(i−2)n2

1 .

Applying Markov’s inequality, we obtain a bound on the
upper tail of

∑
t≥1 Di,t, and the lemma follows. �

4.3.4 Martingale Concentration via Stopping Times.
For every mega-bucket Wi, 1 ≤ i ≤ ℓ, we are given a
martingale {Mi,t}∞t=0 with respect to {Yt}∞t=1. Additionally,
we know that except with a small probability (with the ap-
propriate choice of αi), Lemma 4.4 implies that the sum of
conditioned variances of the martingale differences is small.
How can one use this along with the martingale to obtain
a good concentration? Obviously one can condition on the
event that the sum of variances is small for all mega-buckets

(i.e., the algorithm repeats until this event happens). How-
ever, once conditioned on this event the sequence {Mi,t}∞t=0
is not guaranteed to be a martingale anymore. To overcome
this, we use a martingale concentration bound that depends
on stopping times, as stated below.

THEOREM 4.2. (FREEDMAN’S INEQUALITY [FRE75])
Let {Xn}∞n=1 be a martingale difference with respect
to {Yn}∞n=1, namely, E [Xn|Y1, . . . , Yn−1] = 0 for
every n ≥ 1. Assume in addition that |Xn| ≤ 1
(with probability 1). Let Sn ,

∑n
i=1 Xi and

Tn ,
∑n

i=1 Var[Xi|Y1, . . . , Yi−1]. Then

Pr [Sn ≥ γ and Tn ≤ δ for some n] ≤ e−
γ2

2(γ+δ) ,

for every γ, δ > 0.

The following theorem shows that the algorithm outputs
a partition that deviates from the desired capacities by at
most a constant factor. Its proof uses Freedman’s inequality.

THEOREM 4.3. If the instance is b-nice for a large enough
constant b, then with a constant probability, the partition
∪ℓi=1Wi reported by the algorithm deviates from the capacity
bounds by at most a constant factor.

Proof. We will use Freedman’s inequality for each of the
non-empty megabuckets. Recall that since the instance is
b-nice, there is a sequence of integers 1 = p1, . . . , pl such
that kpi2

−(pi−1)n1 ≥ b · kpi−12
−(pi−1−1)n1 for all i ≥ 2,

and these are the only non-empty mega-buckets. It follows
that

kpi2
−(pi−1) ≥ bi−1, ∀i > 1.

We will show that with a constant probability, the multiplica-
tive deviations of all the martingales corresponding to non-
empty mega-buckets are upper bounded by a constant.

Given a fixed mega-bucket Wpi we choose the following
parameters for Freedman’s inequality, where C,α > 1 are
absolute constants to be determined later:

Xi,t ,
Mpi,t −Mpi,t−1

n1

γi , C · kpi · 2−(pi−1)

δi , C · αi · kpi · 2−(pi−1) .

Let us verify that all the conditions of Freedman’s in-
equality (Theorem 4.2) are satisfied. First, note that
E [Xi,t|Y1, . . . , Yt−1] = 0 since {Mpi,t}

∞
t=0 is a martingale

with respect to {Yt}∞t=1. Second, by Lemma 4.2 and the fact
that 0 ≤ x̃u,pi ≤ 1,

|Mpi,t −Mpi,t−1| ≤

{
|Zt| if m(Jt) = pi;∑

u∈Zt
x̃u,pi if m(Jt) ̸= pi.



In the first case, |Zt| ≤ 2−(pi−1)n1 ≤ n1. In the second
case,

∑
u∈Zt

x̃u,pi ≤ |Zt| ≤ n1, since x̃u,pi ≤ 1 by
definition and n1 is an upper bound on the size of all buckets.
Therefore, it is always the case that |Xi,t| = |Mi,t −
Mi,t−1|/n1 ≤ 1. Hence, all the conditions of Freedman’s
inequality are satisfied.

By Lemma 4.4, we can bound the sum of conditioned
variances of {Xi,t}t≥1 as follows:

Pr
[∑
t≥1

Var[Xi,t | Y1, . . . , Yt−1] ≥ δi

]
≤ 2

Cαi
.

Let Bi be the event in the above expression. Applying
Freedman’s inequality to the martingale difference sequence
{Xi,t}t≥1 gives,

Pr
[∑
t≥1

Xi,t ≥ γi ∧ Bi

]
≤ exp

(
− γ2

i

2(γi + δi)

)
=exp

(
− C · kpi2

−(pi−1)

2(1 + αi)

)
≤ exp

(
− Cbi−1

2αi

)
,

and together we have

Pr
[∑
t≥1

Xi,t ≥ γi

]
≤Pr[Bi] + Pr

[∑
t≥1

Xi,t ≥ γi ∧ Bi

]
≤ 2

Cαi
+ exp

(
− Cbi

2αi

)
.

Let us set α = 2, b = 8 and C = 4. Plugging these in
and summing up over all i, we get:

Pr
[
∃1 ≤ i ≤ ℓ,

∑
t≥1

Xi,t ≥ γi

]
≤

≤
l∑

i=1

Pr
[∑
t≥1

Xi,t ≥ γi

]

≤
l∑

i=1

1

2 · 2i
+

l∑
i=1

exp
(
− 2 · 8(i−1)

2i

)
<0.9 .

It follows that with a probability of at least a constant,
all mega-buckets have their capacity violated by at most a
constant factor of C. Since each cut Zt added to mega-
bucket pi has size at most 2−(pi−1)n1, it is easy to check
that the repeated merging of small pieces in steps 10-12 of
the algorithm produces kpi pieces of size at most (C + 1) ·
2−(pi−1)n1. Thus all capacities are violated by at most a
factor of C + 1 = 5. �

Proof. [of Theorem 1.1] Follows from Theorem 2.1, Theo-
rem 3.1 (and its subsequent discussion in Section 3), Theo-
rem 4.1, and from Theorem 4.3. �

5 Solving the Configuration LP
In this section we prove Theorem 3.1. In principle, all we
need is an approximate separation oracle for the dual of
(P). However, since (P) is a mixed packing and covering
program, the dual’s objective function contains negative
terms, and it is a little more tricky to approximate its overall
value (rather than approximating the positive and negative
terms separately). We follow the method of Chakrabarty
and Swamy [CS11, Lemma 3.3 in the arxiv version], where
the dual LP is “massaged”, scaling some variables and
constraints by small fudge factors a, b ≥ 1. Section 5.2
proves Theorem 3.1 by describing such an algorithm and its
analysis.2 Section 5.3 gives an alternative proof of the same
theorem by using (with some needed modifications) Young’s
iterative method [You01] for quickly solving fast packing
and covering problems. We note that a black-box application
of Young’s technique does not provide the guarantee we
need, and a different rescaling of the objective packing
constraint (once the problem is reduced to a feasibility
question) is needed.

5.1 Weighted Unbalanced Cut. We require an algorithm
for the following problem:

DEFINITION 5.1. An instance of the WEIGHTED UNBAL-
ANCED CUT problem is given by (G, r, y, Y ), where G =
(V,E) is an undirected graph with non-negative weights on
the edges, a capacity parameter r, a non-negative weight
function on the vertices y : V → R+ and a weight parame-
ter Y . The goal is to find a cut S ⊆ V subject to |S| ≤ r and
y(S) ≥ Y that minimizes δ(S).

The following lemma is implicit in the work of Räcke [R0̈8].

LEMMA 5.1. There is an efficient algorithm that given an
instance (G, r, y, Y ) of WEIGHTED UNBALANCED CUT
and any absolute constant α > 1, finds a cut S such that
|S| ≤ r, y(S) ≥ Y/α and δ(S) ≤ L · δ(S∗) for some
optimal solution S∗, where L = O(log n).

5.2 Solving the LP via a Separation Oracle for the Dual.
The dual of (P), our configuration LP, is given by the
following LP:

(D) max
∑
v∈V

yv −
k∑

j=1

zj

s.t.
∑
v∈S

yv − zj ≤ δ(S) ∀j = 1, . . . , k, ∀S ∈ Fj

yv ≥ 0, zj ≥ 0 ∀v ∈ V, ∀j = 1, . . . , k

2The proof here was suggested to us by an anonymous reviewer. Our
original proof follows the same outline, and is similar except that the fudge
factors manipulation is slightly more specialized to our context.



Given values (yv : v ∈ V ) (or similarly y : V → R+),
define for S ⊂ V its aggregate value y(S) ,

∑
v∈S yv .

Now, for d ∈ R and a, b ≥ 1, define the following polytope
(feasibility LP):

D′(d, a, b) ,{
y(V )− a

k∑
j=1

zj ≥ d,

y(S)− 1
2b δ(S) ≤ zj ∀j = 1, . . . , k, ∀S ∈ Fj ,(5.6)

yv ≥ 0, zj ≥ 0, ∀v ∈ V, ∀j = 1, . . . , k
}
.

Observe that OPT(D), the optimum (objective value) of
(D), equals the maximum d such that D′(d, 1, 1) is non-
empty. Througout, we set a , (1 + ε)2 and b , aL (where
ε is from Theorem 3.1 and L is from Lemma 5.1).

LEMMA 5.2. There is a polynomial-time procedure that
given d and vectors y⃗, z⃗, either reports a constraint of
D′(d, a, b) violated by (y⃗, z⃗), or determines that (y⃗, az⃗) ∈
D′(d, 1, 1).

Proof. Given d and vectors y⃗, z⃗, first check the first and last
sets of constraints used to define D′(d, a, b). If any of these
constraints is violated, we can report it; so assume henceforth
they are satisfied. Next, to check constraints (5.6), do the
following for each j = 1, . . . , k. Start by exhaustively
checking the constraint for all singletons, i.e, S ⊂ V with
|S| = 1. Again, if any of these constraints is violated, we
can report it; so assume henceforth they are satisfied. It
follows that y(V ) ≤ nzj + 2w(E). Whenever y(S) ≤ zj ,
the corresponding constraint is surely satisfied; thus, we
only need to check subsets S where y(S) ∈ [zj , nzj +
2w(E)]. Apply Lemma 5.1 with α = 1 + ε and every
Y ∈ [ 1

1+ε zj , nzj + 2w(E)] that is a power of 1 + ε. If,
for any of those Y values, the obtained set T ⊂ V satisfies
y(T )− 1

2b δ(T ) > zj , then we have a constraint ofD′(p, a, b)
violated by (y⃗, z⃗), and we can report it. Otherwise, we know
that for every subset S with y(S) ∈ [Y, (1 + ε)Y ],

y(S)− 1
2 δ(S) ≤ α(1 + ε)y(T )− 1

2L δ(T )

= [y(T )− 1
2b δ(T )]

≤ azj .

If we have not found a violated constraint for any of
the Y values, then we know that all S ∈ Fj satisfy
y(S) − 1

2b δ(S) ≤ azj , and since we have checked all
other constraints explicitly, we can determine that (y⃗, az⃗) ∈
D′(p, 1, 1).

Finally, this entire procedure runs in polynomial time
because the number of Y values that are examined for each
j = 1, . . . , k is at most O( 1ε log(n+ w(E)/zj)). �

We now continue the proof of Theorem 3.1. Using
the Ellipsoid algorithm and Lemma 5.2 as an approximate
separation oracle, we can solve the following in polynomial
time: Given p ∈ R, either find some (y⃗, az⃗) ∈ D′(d, 1, 1)
or determine that D′(d, a, b) = ∅. Now perform a binary
search on d until reaching additive precision γ > 0 (set
to be exponentially small in the input size), and let d∗ be
the largest d for which the former outcome is obtained. In
particular, we have found some (y⃗∗, az⃗∗) ∈ D′(d∗, 1, 1),
implying thatD has a feasible solution (y⃗∗, az⃗∗) and optimal
value OPT(D) ≥

∑
v y

∗
v − a

∑
j z

∗
j ≥ d∗.

For value d = d∗ + γ, the Ellipsoid algorithm produced
a polynomial-size collection of constraints that certifies the
emptiness of D′(d, a, b). It follows that that the “compact-
dual”, which seeks to maximize y(V ) − a

∑
j zj subject

to that polynomial-size subset of (5.6) and nonnegativity
constraints, has value smaller than d = d∗ + γ. Since γ is
exponentially small in the input size (recall (P) is succinctly
represent using G and n1, . . . , nk), it is also exponentially
small relative to the size of our compact-dual, the said
maximum (of the compact-dual) must be at most d∗. The
LP dual of the compact-dual is similar to our original primal
(P), except that (i) it has only polynomially many variables
xS,j ; (ii) the objective function coefficients are 1

2b δ(S); and
(iii) the righthand side of (3.2) is a. This LP has polynomial
size and by duality its optimal value is at most d∗. Now solve
this LP and interpret the solution found as a solution to (P)
by setting the remaining xS,j variables to zero (implicitly).
Overall, our algorithm runs in polynomial time and computes
an approximate solution for (P) in the sense that its value
is at most bd∗ ≤ aLOPT(D) ≤ O(log n)OPT(P) and
constraints (3.2) are violated by at most factor a = (1+ ε)2.
This completes the proof of Theorem 3.1.

5.3 Solving the LP by Young’s Iterative Method. For
simplicity, let us reduce (P) to a feasibility problem. Con-
sider the following polytope Q parameterized by M :

Q(M) =
{ k∑

j=1

∑
S∈Fj :u∈S

xS,j ≥ 1 ∀u ∈ V ,(5.7)

∑
S∈Fj

xS,j ≤ 1 ∀j = 1, . . . , k ,(5.8)

1

M · L

k∑
j=1

∑
S∈Fj

δ(S) · xS,j ≤ 1(5.9)

xS,j ≥ 0 ∀j = 1, . . . , k,∀S ∈ Fj

}
M is our guess for the value of an optimal solution to the
NON-UNIFORM GRAPH PARTITIONING instance we have
(which can be guessed in polynomial time up to a constant
be rescaling of the edge weights and then applying binary
search). Denote by C the matrix of the covering constraints



of Q, namely (5.7), and by P the matrix of the packing
constraints of Q, namely (5.8) and (5.9). It is important
to note that we scaled the objective constraint (5.9) by an
additional factor of L as to compensate for the loss in the
solution of WEIGHTED UNBALANCED CUT.

Following the footsteps of Young [You01], we define
the following smooth approximations of the max and min
functions for any vector x⃗ = (xS,j)1≤j≤k,S∈Fj

indexed by
j = 1, . . . , k and S ∈ Fj :

lmax(P · x⃗) , ln

R(x⃗) +

k∑
j=1

z(x⃗, j)


lmin(C · x⃗) , − ln

(∑
u∈V

y(x⃗, u)

)
,

where,

R(x⃗) , exp

 N

M · L

k∑
j=1

∑
S∈Fj

δ(S) · xS,j


z(x⃗, j) , exp

N
∑
S∈Fj

xS,j


y(x⃗, u) , exp

−N k∑
j=1

∑
S∈Fj :u∈S

xS,j

 .

N is a scaling parameter to be chosen later and L is the ap-
proximation factor from Lemma 5.1. Note that R(x⃗) corre-
sponds to the packing constraint (5.9), z(x⃗, j) corresponds
to the packing constraint (5.8), and y(x⃗, u) corresponds to
the covering constraint (5.7).

The reader should keep in mind while reading the algo-
rithm and its proof that:

lmax(P · x⃗) ≥ N ·max

{
1

M · L

k∑
j=1

∑
S∈Fj

δ(S) · xS,j ,

(5.10)

∑
S∈F1

xS,1 , . . . ,
∑
S∈Fk

xS,k

}

lmin(C · x⃗) ≤ N ·min
u∈V

{
k∑

j=1

∑
S∈Fj :u∈S

xS,j

}
.

(5.11)

The above follows immediately from the definition of lmax
and lmin. Intuitively, as the free coefficient of all constraints
inQ(M) is 1, lmax(P ·x⃗) is at most N times the value of the
worst packing constraint (the one closest to being violated).
On the other hand, lmin(C · x⃗) is at least N times the value

of the worst covering constraint (the one furthest from being
satisfied).

Let us describe now the algorithm of finding a point in
Q(M), where β > 1 is an arbitrary absolute constant and
γ > 0 is a small step size to be determined later. The
algorithm starts with x⃗ = 0 and increases it as long as x⃗
violates at least one of the covering constraints.

1: x⃗← 0.
2: while ∃u ∈ V s.t.

∑k
j=1

∑
S∈Fj :u∈S xS,j < 1 do

3: r ← 0.
4: Y ←

∑
u∈V y(x⃗, u).

5: ∀1 ≤ j ≤ k use Lemma 5.1 to approximately solve
(G,nj , {y(x⃗, u)}u∈V , Y ) and obtain Sj,r.

6: while

min1≤j≤k

{ ∑
u∈V y(x⃗,u)

R(x⃗)+
∑k

j′=1
z(x⃗,j′)

·
1

M·LR(x⃗)δ(Sj,r)+z(x⃗,j)∑
u∈Sj,r

y(x⃗,u)

}
>αβ

do
7: Y ← Y/β.
8: r ← r + 1.
9: Let j be the index for which

∑
u∈V y(x⃗,u)

R(x⃗)+
∑k

j′=1
z(x⃗,j′)

·
1

M·LR(x⃗)δ(Sj,r)+z(x⃗,j)∑
u∈Sj,r

y(x⃗,u)
≤αβ .

10: x⃗← x⃗+ γ · 1Sj,r,j .

11: Return x⃗.

LEMMA 5.3. If M is at least the value of an optimal so-
lution to NON-UNIFORM GRAPH PARTITIONING, then for
every iteration of the big while loop (step (2)) with x⃗, there
exists a j and an r such that Sj,r satisfies:∑

u∈V y(x⃗, u)

R(x⃗) +
∑k

j′=1 z(x⃗, j
′)
·

1
M ·LR(x⃗)δ(Sj) + z(x⃗, j)∑

u∈Sj
y(x⃗, u)

≤ αβ .

Proof. Consider the following problem:

(∗) min
1≤j≤k

min
S∈Fj

{ ∑
u∈V y(x⃗, u)

R(x⃗) +
∑k

j′=1 z(x⃗, j
′)
·

1
MR(x⃗)δ(S) + z(x⃗, j)∑

u∈S y(x⃗, u)

}
,

and let j∗ and S∗ be an optimal solution to it. It it important
to note that this optimization problem is different from what
appears in the theorem, as the coefficient of δ(S) is 1

MR(x⃗)
and not 1

M ·LR(x⃗). Our proof has two steps. In the first, we
prove that (∗) has value at most 1, namely that plugging j∗

and S∗ into (∗) results in value which is at most 1. In the
second step we show that the algorithm, in the worst case,
finds an approximate solution to (∗), thus proving the lemma.



Let us start with the first step. Define the following two
vectors z⃗ and y⃗ indexed by 1 ≤ j ≤ k and S ∈ Fj :

zS,j ,
1
MR(x⃗)δ(S) + z(x⃗, j)

R(x⃗) +
∑k

j′=1 z(x⃗, j
′)

yS,j ,
∑

u∈S y(x⃗, u)∑
u∈V y(x⃗, u)

.

Again, it is important to note that in the definition of zS,j
to coefficient of δ(S) is only 1

MR(x⃗). Since M is at least
the value of an optimal solution to NON-UNIFORM GRAPH
PARTITIONING, denoting by x⃗∗ such an integral optimal
solution implies that:

k∑
j=1

∑
S∈Fj

δ(S) · x∗
S,j ≤M .

Consider z⃗ · x⃗∗:

z⃗ · x⃗∗ =
k∑

j=1

∑
S∈Fj

1
MR(x⃗)δ(S) · x∗

S,j + z(x⃗, j) · x∗
S,j

R(x⃗) +
∑k

j′=1 z(x⃗, j
′)

≤
R(x⃗) +

∑k
j=1 z(x⃗, j)

R(x⃗) +
∑k

j′=1 z(x⃗, j
′)

= 1 .

The inequality is derived from the above assumption on
M and the fact that x⃗∗ is feasible, and in particular∑

S∈Fj
x∗
S,j ≤ 1 for every 1 ≤ j ≤ k. Consider now y⃗ · x⃗∗:

y⃗ · x⃗∗ =
k∑

j=1

∑
S∈Fj

x∗
S,j ·

∑
u∈S y(x⃗, u)∑

u∈V y(x⃗, u)

=

∑
u∈V y(x⃗, u) ·

∑k
j=1

∑
S∈Fj :u∈S x∗

S,j∑
u∈V y(x⃗, u)

≥
∑

u∈V y(x⃗, u)∑
u∈V y(x⃗, u)

= 1 .

The second equality is just a change in the summation order,
and the inequality is derived from the fact that x∗ is feasible,
and in particular

∑k
j=1

∑
S∈Fj :u∈S x∗

S,j ≥ 1 for every
u ∈ V .

We proved that z⃗ · x⃗∗ ≤ 1 ≤ y⃗ · x⃗∗. Since all the vectors
x⃗∗, z⃗ and y⃗ are in the non-negative orthant, there must be
some coordinate that corresponds to some j and S ∈ Fj in
which zS,j ≤ yS,j . This implies that (∗) ≤ 1, concluding
the first step of the proof.

Fix an iteration of the big while loop (step (2)) and
consider the first time that Y <

∑
u∈S∗y(x⃗,u), which implies

that Y ≥
∑

u∈S∗y(x⃗,u) /β by the definition of the algorithm.
When this happens, denote by S̃ the cut the algorithm obtains
when it uses Lemma 5.1 to approximately solve the instance

(G,nj∗ , {y(x⃗, u)}u∈V , Y ) of WEIGHTED UNBALANCED
CUT. Lemma 5.1 implies that

|S̃| ≤ nj∗ and
∑
u∈S̃

y(x⃗, u) ≥ Y/α ≥
∑
u∈S∗

y(x⃗, u)/(αβ) ,

and that δ(S̃) ≤ L ·δ(S∗). Therefore, using all these one can
bound:∑

u∈V y(x⃗, u)

R(x⃗) +
∑k

j′=1 z(x⃗, j
′)
·

1
M ·LR(x⃗)δ(S̃) + z(x⃗, j∗)∑

u∈S̃ y(x⃗, u)
≤

≤ αβ ·
∑

u∈V y(x⃗, u)

R(x⃗) +
∑k

j′=1 z(x⃗, j
′)
·

1
MR(x⃗)δ(S∗) + z(x⃗, j∗)∑

u∈S∗ y(x⃗, u)

≤ αβ .

The last inequality is derived from the last step of the proof.
This concludes the proof. �

LEMMA 5.4. For every 0 < ε ≤ 1 and γ > 0 such that
γ ≤ ε and γ ≤ εM/δ(S) for all 1 ≤ j ≤ k and S ∈ Fj:

lmax (P · (x⃗+ γ · 1S,j))− lmax (P · x⃗) ≤(5.12)

γ · (1 + ε) ·N ·
1

M ·LR(x⃗)δ(S) + z(x⃗, j)

R(x⃗) +
∑k

j′=1 z(x⃗, j
′)

lmin (C · (x⃗+ γ · 1S,j))− lmin (C · x⃗) ≥(5.13)

γ · (1− ε/2) ·N ·
∑

u∈S y(x⃗, u)∑
u∈V y(x⃗, u)

.

Lemma 5.4 can be derived immediately from Lemma 1 in
[You01].

LEMMA 5.5. For every 0 < ε ≤ 1, γ > 0 satisfying the
conditions as in Lemma 5.4, and scaling parameter N =
ε−1 · ln (k + 1), the output x⃗ of the algorithm satisfies:

k∑
j=1

∑
S∈Fj :u∈S

xS,j ≥ 1 ∀u ∈ V(5.14)

∑
S∈Fj

xS,j ≤ (1 +O(ε)) · αβ ∀j = 1, . . . , k(5.15)

1

M · L

k∑
j=1

∑
S∈Fj

δ(S) · xS,j ≤ (1 +O(ε)) · αβ(5.16)

Proof. By the stopping condition of the big while loop of
the algorithm, it is clear that the covering constraint holds as
in (5.14). Let us now consider both the packing constraints
(5.15) and (5.16). Initially, since x⃗ = 0, the starting value
of lmax(P · x⃗) is ln (k + 1). Lemma 5.4 implies that in
every iteration, if S ∈ Fj for some j was chosen to be added



fractionally to x⃗, then:

∆lmax(P · x⃗)
∆lmin(C · x⃗)

≤ 1 + ε

1− ε/2
·

∑
u∈V y(x⃗, u)

R(x⃗) +
∑k

j′=1 z(x⃗, j
′)
·

1
M ·LR(x⃗)δ(Sj) + z(x⃗, j)∑

u∈Sj
y(x⃗, u)

.

The algorithm’s choice of the cut S added to x⃗ gives that:

∆lmax(P · x⃗)
∆lmin(C · x⃗)

≤ αβ · 1 + ε

1− ε/2
.

Therefore, since as long as the algorithm does not terminate
lmin(C · x⃗) < N (by inequality (5.11)), and inequality
(5.10) provides that:

N ·max

{
1

M · L

k∑
j=1

∑
S∈Fj

δ(S) · xS,j ,

∑
S∈F1

xS,1 , . . . ,
∑
S∈Fk

xS,k

}
≤

≤ lmax(P · x⃗)

≤ ln (k + 1) + αβ · 1 + ε

1− ε/2
·N+

max

{
1, max

1≤j≤k
max
S∈Fj

{δ(S)/M}
}
γ

≤ ln (k + 1) + αβ · 1 + ε

1− ε/2
·N + ε .

The last inequality is derived by the conditions on γ. Since
N = ε−1 · ln (k + 1) and α, β > 1, we can conclude that:

max

{
1

M · L

k∑
j=1

∑
S∈Fj

δ(S) · xS,j ,

∑
S∈F1

xS,1 , . . . ,
∑
S∈Fk

xS,k

}
≤ (1 +O(ε)) · αβ .

This concludes the proof as (5.15) and (5.16) hold. �

LEMMA 5.6. There is a choice of γ that satisfies the con-
ditions in Lemma 5.4 such that the algorithm that outputs x⃗
runs in polynomial time.

Proof. First, Lemma 5.3 implies that the algorithm never
gets stuck. Second, let us bound the total number of big
while iterations the algorithm makes. Consider the following
potential function:

∑k
j=1

∑
S∈Fj

xS,j . Its initial value is 0,
and its final value is at most (1 + O(ε)) · αβ · k by Lemma
5.5. In each iteration its value increases by γ, hence, after
(1+O(ε)) ·αβ ·k/γ big while iterations the algorithm stops.

Next, we prove that the running time of each iteration
is polynomially bounded. We achieve this by bounding r,

the number of internal while iterations (in step (6) of the
algorithm), for every single big while iteration. From the
proof of Lemma 5.3, we need to wait until the first time Y
drops below

∑
u∈S∗ y(x⃗, u). Recall that at any moment, for

any vertex u ∈ V , y(x⃗, u) = e−N ·γ·ru , where ru is the
number of big while iterations in which a cut S that contains
u was chosen. Thus,

y(x⃗, u) =e−N ·γ·ru

=e− ln (k+1)·γ/ε·ru

≥
(

1

ln (k + 1)

)ru

≥
(

1

ln (k + 1)

)(1+O(ε))·αβ·k/γ

.

We used that N = ε−1 · ln (k + 1), γ ≤ ε and that ru
can be bounded by the total number of big while iterations.
Therefore,

r ≤ ln (n) + (1 +O(ε)) · αβ · k/γ · ln ln (k + 1)

ln (β)
,

as initially Y ≤ n. All that is left to prove is that one
can choose γ ≥ 1/poly(n). The only restriction is that
γ ≤ ε · min {1,M/δ(S)} for every S ∈ Fj and for every
1 ≤ j ≤ k. If the graph is unweighted it is obviously true
that one can choose γ ≥ 1/poly(n), and standard rescaling
techniques of the edge weights work. For example, one
can throw away all edges of weight M/n3 and rescale the
remaining edge weights to be between 1 and n3. �

Proof. [of Theorem 3.1] Follows immediately from Lemmas
5.5 and 5.6. �
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