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Abstract

We design approximation algorithms for a number of funda-

mental optimization problems in metric spaces, namely com-

puting separating and padded decompositions, sparse covers,

and metric triangulations. Our work is the first to empha-

size relative guarantees that compare the produced solution

to the optimal one for the input at hand. By contrast, the

extensive previous work on these topics has sought absolute

bounds that hold for every possible metric space (or for a

family of metrics). While absolute bounds typically translate

to relative ones, our algorithms provide significantly better

relative guarantees, using a rather different algorithm.

Our technical approach is to cast a number of metric

clustering problems that have been well studied—but almost

always as disparate problems—into a common modeling and

algorithmic framework, which we call the consistent labeling

problem. Having identified the common features of all of

these problems, we provide a family of linear programming

relaxations and simple randomized rounding procedures that

achieve provably good approximation guarantees.

1 Introduction

Metric spaces1 arise naturally in a variety of computa-
tional settings, and are commonly used to model diverse
data sets such as latencies between nodes in the Inter-
net, dissimilarity between objects such as documents and
images, and the cost of traveling between physical loca-
tions. Additionally, metric spaces are a useful technical
tool, for example when analyzing algorithms based on a
linear or semidefinite programming relaxation of Spars-
est Cut and other NP-hard problems.

Many useful computational tasks in metric spaces
revolve around different types of clustering problems. In
these problems, the goal is to produce, for a given metric
space (X, d), a collection S of subsets of X such that,
vaguely speaking, nearby points in X tend to appear in
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1We call (X, d) a metric space if X is a set of points and
d : X × X 7→ R is a distance function that is nonnegative,
symmetric, and satisfies the triangle inequality.

the same subset.
This paper makes two broad contributions to the

study of algorithms for metric clustering problems.
First, we study a number of basic metric clustering
problems from an optimization perspective, and de-
sign polynomial-time algorithms that provably achieve a
near-optimal clustering for every metric space. The large
literature on these metric clustering problems has fo-
cused exclusively on absolute (worst-case) bounds, seek-
ing guarantees that hold for every possible metric space
(or for every metric in a certain family). By contrast,
we emphasize relative guarantees, where the objective
is to compute a clustering that is close to optimal for
the given input. Most absolute bounds translate easily
to relative ones (in particular, they are efficiently com-
putable), but our algorithms provide significantly better
relative guarantees than those implied by the known ab-
solute results. At a high level, our work can be viewed
as a parallel to computing an optimal embedding of an
input metric space into Euclidean space using semidefi-
nite programming [LLR95], or the recent line of research
on computing embeddings with (approximately) mini-
mum distortion, initiated by Kenyon, Rabani, and Sin-
clair [KRS04]; for a recent account, see Badoiu, Indyk,
and Sidiropoulos [BIS07].

Why study relative guarantees? The quest for abso-
lute bounds has obviously been very fruitful, but these
bounds may not be very strong for a particular in-
stance at hand, which may admit a much better solution
than the worst-possible metric. A popular approach for
eluding worst-case absolute bounds is to impose addi-
tional structure on the input metric, such as planarity
or low-dimensionality, and then prove improved absolute
bounds for that restricted class of metrics. But given
an arbitrary distance matrix representing, say, latencies
in the Internet, it may be highly non-trivial to ascer-
tain whether the corresponding metric is close to one of
these families. In contrast, an approximation algorithm
guarantees a good solution provided only that one ex-
ists. Technically, this requires one to design a “unified”
algorithm that works regardless of the precise reason the
input admits an improved bound.

An approximation algorithm is also useful for inputs



where the known absolute bounds are non-constructive.
In this case, the approximation algorithm recovers, from
the existential proof, an efficient algorithm that achieves
nearly the same absolute guarantees. In a sense, this is
true for planar metrics,2 where, to date, no algorithm is
known to efficiently determine whether an input metric
is planar (or close to being planar). Consequently, the
decomposition algorithm for planar metrics by Klein,
Plotkin and Rao [KPR93] can only be applied if the
planar metric is accompanied by a planar graph that
realizes the metric. One immediate outcome from our
approximation algorithms is that several results that
rely on this decomposition, such as the low-distortion
embedding into normed spaces of [Rao99, KLMN05],
do not require a planar realization of the input metric
and hold under the weaker assumption that a planar
realization exists (or even that the input metric is close,
by means of distortion, to a planar metric).3

Moreover, our algorithms are based on linear pro-
gramming (LP) relaxations, and thus automatically gen-
erate a “certificate” of near-optimality (namely, the opti-
mal fractional solution). These simple certificates could
possibly be used to prove that a good solution does not
exist (e.g., by bounding the optimal fractional solution
using duality). Our relative guarantees prove that this
lower bound approach is universal, in the sense that a
near-optimal certificate always exists.

The second contribution of the paper is to cast a
number of metric clustering problems that have been well
studied—but almost always as disparate problems—into
a common modeling and algorithmic framework, which
we call the Consistent Labeling problem. At a high level,
an instance of Consistent Labeling is described by a set
A of objects, a list La of allowable labels for each object
a ∈ A, and a collection C of subsets of A. The goal
is to assign each object few labels so that subsets are
consistent, in the sense that the objects of a subset are
all assigned a common label. The objects possessing a
given label can be viewed as a ”cluster” of objects (where
clusters can overlap because we allow multiple labels per
object), and the consistency constraint for a set S ∈ C
requires that at least one cluster contains all of the
objects of S (i.e. there is at least one label common to all
objects in S). In this paper, we show that many metric
clustering problems are special cases of different variants
of Consistent Labeling. We then provide a family of LP
relaxations for all of these problems, and design simple
randomized rounding procedures that achieve provably
good (relative) approximation guarantees.

2We call a metric planar if it can be derived from the shortest-
path distances in a planar graph with nonnegative edge weights.

3A similar argument can be made regarding the absolute guar-
antees of [CCG+98] for metrics that embed with small distortion
into a low-dimensional Euclidean space.

1.1 Metric Decompositions We now detail the op-
timization problems that we study. Let (X, d) be a finite
metric space on n = |X| points. A cluster is a subset of
the points S ⊆ X. The ball (in X) of radius r ≥ 0 cen-
tered at x ∈ X is B(x, r) = {y ∈ X : d(x, y) ≤ r}. The
diameter of a cluster C is diam(C) = maxx,y∈C d(x, y),
and its radius is rad(C) = minx0∈X maxz∈C d(x0, z); a
point x0 attaining the radius is called a center of C.

Perhaps the simplest genre of metric clustering prob-
lems asks for a partition of X into clusters of bounded
radius while separating “few” points. We address the
two fundamental variants of this notion: computing sep-
arating decompositions and padded decompositions. Both
of these are central tools in metric embeddings (e.g.,
for designing probabilistic embeddings into trees [Bar96,
FRT04] and embeddings into `2 [Rao99, KLMN05], re-
spectively) and are very useful in algorithmic applica-
tions. We note that earlier incarnations of these concepts
appeared e.g. in [AP90, LR88, LS93, GVY96].

Separating Decomposition. Formally, a decom-
position of X is a probability distribution µ over par-
titions of X. A partition separates a pair of points if
it assigns them to distinct clusters. A partition is ∆-
bounded if each of its clusters has radius at most ∆, and
a decomposition is ∆-bounded if every partition in its
support is ∆-bounded.4 A ∆-bounded decomposition µ
is called α-separating for α ≥ 0 if for all x, y ∈ X,

Pr P∈µ[P (x) 6= P (y)] ≤ α·d(x,y)
∆ (1.1)

or, equivalently,

Pr P∈µ[P (x) = P (y)] ≥ 1− α·d(x,y)
∆ . (1.2)

(Throughout, P (x) denotes the cluster to which the
partition P assigns the point x.)

We denote the minimum value α ≥ 0 satisfying (1.1)
by α∗(X, ∆). Bartal [Bar96] designed an algorithm that
for every n-point input metric X, achieves α = O(log n),
and showed that this general (worst-case) bound is tight.
Better absolute (in fact, constant) bounds are known
for planar metrics [KPR93, Rao99] and other restricted
classes of metrics [CCG+98, GKL03, KL06].

Our first result is a 2-approximation algorithm for
the problem of computing α∗(X, ∆) (and constructing a
corresponding decomposition). Somewhat surprisingly,
this problem was not studied before, and it can be
seen that the known decomposition algorithms [Bar96,
CCG+98, Rao99, CKR04, FRT04, GKL03, Bar04] are
unlikely to lead to an approximation ratio better than
O(log n); thus, obtaining a better relative guarantee
requires devising a new algorithmic approach.

4Previous literature sometimes uses diameter instead of radius.
Obviously the two quantities are within a factor of 2 of each other,
and for us the radius is more convenient.



To see how this problem relates to the Consistent
Labeling problem, take both the object set and the
label set to be the points X. The label set Lx for a
point x ∈ X is defined to be the points in the ball
B(x,∆). We also impose the restriction that each point
receives only one label. We can then interpret the set
of vertices with a given label z ∈ X as a cluster of
radius at most ∆ (centered at z), and these clusters form
a partition of X. There is one consistency constraint
for each pair of points; the constraint is satisfied if
and only if the points are given the same label (i.e.,
assigned to the same cluster). The goal is to produce a
distribution over feasible labelings such that the worst-
case probability of a set being labeled inconsistently (i.e.,
a pair x, y ∈ X being separated by the partition), with
suitable weighting by 1/d(x, y), is minimized.

Remark. Recently, [BK07] found another application
of the above approximation algorithm for separating de-
composition: a constant-factor approximation algorithm
for the problem of computing the least distortion embed-
ding of an input metric into a distribution of dominating
ultrametrics. This problem falls into the aforementioned
category of computing an embedding with approximately
minimum distortion [KRS04, BIS07].

Padded Decomposition. Using the definitions
above, a ∆-bounded decomposition µ is (β, q)-padded for
β, q > 0 if for all x ∈ X,

Pr P∈µ[B(x,∆/β) ⊆ P (x)] ≥ q. (1.3)

For a given q, we denote the smallest β > 0 satisfying
(1.3) by β∗(X, ∆, q). We can model computing a padded
decomposition as a Consistent Labeling problem in the
same way as for a separating decomposition, except that
now the collection C of consistency sets is not all pairs of
points, but rather all balls of radius ∆/β.

Computing near-optimal padded decompositions ap-
pears harder than separating decompositions, but we
use a more sophisticated rounding algorithm to compute
a ∆-bounded decomposition that is (2β∗, q/12)-padded,
where β∗ = β∗(X, ∆, q). This bicriteria guarantee is of-
ten as useful for applications as a true approximation; in
fact, in many applications of padded decomposition, the
parameter q is fixed to an arbitrary constant such as 1/2,
and relaxing it to q/12 is as good as any other constant.

The problem of computing a near-optimal padded
decomposition has not been studied previously, and
the absolute guarantees yield, at best, an O(log n)-
approximation. Also, while there is a relation be-
tween padded and separating decompositions of the
form α∗(X, ∆) ≤ 4β∗(X, ∆/2, 1/2) [LN03], in general
the two quantities can be very different (e.g., in m-
dimensional Euclidean space, α∗ = Θ(

√
m) and β∗ =

Θ(m) [CCG+98]).

1.2 Covering Problems Covering problems form a
second genre of metric clustering problems, where the
goal is to minimize the overlap between clusters subject
to some type of covering constraint. In the interest of
space, we describe one example in detail here, and treat
the other one in Section 4.

Sparse Cover. Consider an undirected graph G =
(V,E) with positive edge lengths and a list C1, . . . , Cp of
subsets of nodes. We will restrict out discussion to the
case p = n, which includes the typical case where the
subsets correspond to balls around the vertices. A sparse
cover [AP90] is a ∆-bounded set S of clusters, such that
every subset Ci is contained in some cluster of S. The
degree of a vertex v in S is the number of clusters of S
that contain v. Awerbuch and Peleg [AP90] use sparse
covers as a building block for a number of distributed
network algorithms, including a routing scheme with
small stretch and small storage at every node. The
maximum degree in the sparse cover determines the
nodes’ storage requirements, and the stretch of the
routing is proportional to ∆/ maxi rad(Ci). Awerbuch
and Peleg [AP90] give absolute bounds for computing a
sparse cover (in the typical case of p = n balls); their
bound on the maximum degree grows polynomially in
n, specifically as 2kn1/k where k = ∆/ maxi rad(Ci).
This immediately implies a similar relative guarantee of
2kn1/k.

We study the metric variant of this notion, when G
is a complete graph representing a metric space, which
is also called the Nagata dimension (see [Ass82, LS05]).5

We model the problem of computing a sparse cover
with minimum maximum degree (where ∆ > 0 is
given as part of the input) as a Consistent Labeling
problem and obtain an O(log n) approximation. We
can further prove (details omitted) that the problem
cannot be approximated better than (ln n)/3, unless
NP ⊆ DTIME(nO(log log n)).

In the Consistent Labeling formulation, both objects
and labels correspond to the vertices V , and a label
can only be assigned to an object if they correspond to
two vertices at distance at most ∆ in G. A ∆-bounded
clustering induces a feasible labeling, and the degree of
a vertex in the clustering is precisely the number of
labels the vertex is assigned. Finally, the constraint
of containing a set Ci in at least one cluster naturally
translates to a consistency constraint for the subset Ci.
It is easy to see that the opposite direction is also true,
i.e. a feasible labeling induces a sparse cover. Computing
a sparse cover with minimum maximum degree thus
translates to computing a feasible labeling that labels

5This variant measures all distances in the metric space, anal-
ogously to the so-called weak diameter variant. In the context
a graph with shortest-path distances, the construction of [AP90]
satisfies the more stringent strong diameter bound.



all the sets consistently while minimizing the number of
labels allowed at each object.

Metric Triangulation. We also consider finding
metric triangulations of small order [GS95, KSW04].
While this problem is quite different from the Sparse
Cover application above, we formulate and approximate
both in a common way.

1.3 Overview and Techniques We provide approx-
imation algorithms for the two decomposition problems
and the two covering problems mentioned above. A sum-
mary of our results appears in Table 1. We proceed with
an overview of our techniques.

At a high level, our algorithms follow the well-known
paradigm of solving a linear programming relaxation of
the problem and applying randomized rounding. We
thus start, in Section 2, by formulating LP relaxations
for several variants of the Consistent Labeling problem.

Section 3 gives approximation algorithms for the
problems of computing separating and padded decom-
positions. We model them as special cases of a max-
imization version of the Consistent Labeling problem,
where the goal is to maximize the fraction of consistent
sets while obeying an upper bound on the number of
labels assigned to every object. To round our linear pro-
gramming relaxations (given in Section 2) in a “coor-
dinated” way that encourages consistently labeled sets,
we build on a rounding procedure of Kleinberg and Tar-
dos [KT02]. This procedure was designed for the metric
labeling problem with the uniform label-metric (which,
in turn, is a modification of the multiway cut algorithm
of Calinescu, Karloff, and Rabani [CKR00]). The differ-
ences between our intended applications and the met-
ric labeling problem necessitate several extensions to
their analysis; for example, we require guarantees for
maximization rather than minimization problems, and
for general set systems rather than for graphs (i.e., for
pairs of points). Our extensions to the Kleinberg-Tardos
rounding algorithm and analysis lead, for example, to
a 2-approximation algorithm for the separating decom-
position problem. The padded decomposition problem
is significantly more challenging, and requires us to en-
hance this basic rounding algorithm in two ways: first,
we limit the number of rounding phases to control the
proliferation of different labels; second, we add two post-
processing steps that first weed out some problematic la-
bels and then expand the residual clusters to ensure the
padding properties. Overall, we see that the Kleinberg-
Tardos rounding procedure is much more widely appli-
cable than was previously realized.

Section 4 gives a family of approximation algorithms
that approximate, in particular, the the sparse cover and
metric triangulation problems.

2 Linear Programming Relaxations for
Consistent Labeling

Motivated by the breadth of applications in the Intro-
duction, we examine several variants of the Consistent
Labeling problem. This section formally defines these
variants and gives a family of linear programming relax-
ations for them. We omit the formal proofs that there
LPs are indeed relaxations for the corresponding opti-
mization problems.

In all cases, the input includes a set A of objects,
a set La of allowable labels for each object a (drawn
from a ground set L), and a collection C of subsets of
A. In some applications, we also allow each set S ∈ C to
have a nonnegative weight wS . A feasible labeling is an
assignment of each object a to a subset of La. Our two
main objectives are to minimize the number of labels
assigned to each object, and to maximize the number
(or total weight) of sets that are consistently labeled,
meaning that a common label is assigned to all of the
objects in the set.

The following constraints are common to all our
relaxations:

1 ≤
∑
i∈L

xai ≤ k for every object a ∈ A (2.4)

yiS ≤ xai for every set S ∈ C, label i ∈ L,
and object a ∈ S (2.5)

zS ≤
∑
i∈L

yiS for every set S ∈ C (2.6)

zS ≤ 1 for every set S ∈ C (2.7)
xai = 0 for every object a ∈ A

and label i /∈ La. (2.8)

Constraint (2.4) controls the number of (fractional) la-
bels assigned to each object. In some applications, k
will be a decision variable; in others, it will be part of
the problem input. The variable yiS and constraint (2.5)
encode the extent to which set S is consistently labeled
with the label i. The variable zS and constraints (2.6)
and (2.7) encode the extent to which set S is (fraction-
ally) consistently labeled. The fifth constraint enforces
the restriction that objects are assigned only to allowed
labels.

Maximization Version. In the MAXIMUM CON-
SISTENT LABELING (MAX CL) problem, the objec-
tive is to compute a feasible labeling that assigns at most
k labels to every object (k is part of the input) and max-
imizes the total weight of the consistently labeled sets.
Our LP relaxation for MAX CL is to simply optimize

max
∑
S∈C

wSzS (2.9)

subject to (2.4)–(2.8).



Problem Approximation factor Absolute guarantee
Separating Decomposition 2 [Theorem 3.4] O(log n) [Bar96]
Padded Decomposition O(1) bicriteria [Theorem 3.8] O(log n) [Bar96]
Sparse Cover (stretch k) O(log n) [Corollary 4.2] 2kn1/k [AP90]
(ε, ρ)-Triangulation O(ln 1

ε ) bicriteria [Corollary 4.4] n (trivial)

Table 1: Our approximation factors and those implied by previous work on absolute bounds.

Padded and separating decompositions motivate the
MAXIMUM FAIR CONSISTENT LABELING (MAX
FAIR CL) problem, where given an input as in MAX
CL, the goal is to compute a distribution over feasible la-
belings that assign at most k labels to every object (with
probability 1) and maximizes the minimum weighted
probability (over S ∈ C) that a set S is labeled consis-
tently. Computing both separating and padded decom-
positions are special cases of MAX FAIR CL with k = 1,
where the sets correspond to pairs of points, and to balls
of radius ∆/β around each point in the given metric
space, respectively. Our LP relaxation for this problem
maximizes a decision variable α subject to (2.4)–(2.8)
and

wSzS ≥ α for every set S ∈ C. (2.10)

Minimization Version. In the minimization ver-
sion of consistent labeling, we constrain (from below)
the fraction of consistently labeled sets and seek a label-
ing that uses as few labels per object as possible. (We
could also include set weights, but our applications do
not require them.) In the complete special case, we de-
mand that all sets are consistently labeled. Formally,
the MINIMUM COMPLETE CONSISTENT LABEL-
ING (MIN CCL) problem is, given the usual data, to
compute a feasible labeling that consistently labels all
sets and minimizes the maximum number of labels as-
signed to an object.

As noted in the Introduction, computing a sparse
cover of a network is a special case of MIN CCL. In our
LP relaxation for MIN CCL, we minimize the decision
variable k subject to (2.4)–(2.8) and the additional
constraint that (2.7) holds with equality for every set S ∈
C. Several extensions to the MIN CCL problem are easily
accommodated; we use Network Triangulation as a case
study in Section 4.

3 Maximum Consistent Labeling

This section gives a generic approximation algorithm for
the MAX CL and MAX FAIR CL problems. We then re-
fine the algorithm and its analysis to give an approxima-
tion algorithm for computing a separating decomposition
(Theorem 3.4). Subsequently, we enhance the algorithm
to handle the more difficult task of approximating an

optimal padded decomposition (Theorem 3.8).
Approximation Algorithm for MAX CL

and MAX FAIR CL. We first give a Θ(1/fmax)-
approximation algorithm for weighted MAX CL and
MAX FAIR CL, where fmax = maxS∈C |S| denotes the
largest cardinality of a set of C. We build on a round-
ing procedure that was designed by Kleinberg and Tar-
dos [KT02] for the metric labeling problem with uniform
metric, even though our context is quite different. First,
we wish to maximize the consistency probability, as in
(1.2), rather than minimize the probability for inconsis-
tency, as in (1.1). Second, an object may get multiple
labels (k) rather than one label (k = 1). Third, the no-
tion of consistency is not as simple, as it involves a subset
S (whose size may be bigger than 2) and each object in
S has k labels (where k may be bigger than 1). Fourth,
we may want to produce a distribution (in MAX FAIR
CL) rather than only one solution. It is thus a pleas-
ant surprise that the algorithm in [KT02] lends itself to
our setting; in fact, our algorithm can be easily seen to
generalize theirs from k = 1 labels to general k.

Our approximation algorithm is shown in Figure 1.
After solving the appropriate LP relaxation, the round-
ing algorithm is the same for both problems: we repeat-
edly choose a label i ∈ L and a threshold t ∈ [0, 1] inde-
pendently and uniformly at random, and for all objects
a with x∗ai larger than the threshold t, we add i to the set
of labels assigned to a. (If i is already assigned to a, then
this assignment is redundant.) The algorithm terminates
when every object has been assigned a label in at least
k iterations (not necessarily distinct labels). To respect
the constraint on the number of labels, each object re-
tains only the first k labels that it was assigned. This
final step, together with the LP constraint (2.8), ensures
that the output of the algorithm is a feasible labeling.

Our analysis hinges on the following lemma (proved
in the full version). This lemma lower bounds the prob-
ability that a set is consistently labeled by our rounding
algorithm. We will also use the lemma in Section 4 for
minimization versions of Consistent Labeling.

Lemma 3.1. Let (x∗, y∗, z∗) be a feasible solution



Input: an instance of MAX CL or MAX FAIR CL.
1. Solve the appropriate LP relaxation: for MAX CL, maximize (2.9) subject to (2.4)–(2.8); for MAX FAIR CL,

maximize α subject to (2.4)–(2.8) and (2.10). Let (x∗, y∗, z∗) denote the optimal LP solution.
2. Repeat until every object has been assigned at least k labels (counting multiplicities):
3. Choose a label i ∈ L and a threshold t ∈ [0, 1] uniformly at random.
4. For each object a ∈ X, if x∗

ai > t, then add i to the set of labels assigned to a.
5. For each object, retain the first k labels received.

Figure 1: The MAX CL and MAX FAIR CL algorithms.

to (2.4)–(2.8). For every set S ∈ C,

Pr [S consistently labeled] ≥ 1−
(

1− z∗S
k|S|

)k

.

Using this lemma, linearity of expectation, and the
(crude) inequality (1− a

k )k ≤ e−a ≤ 1− a + a2

2 ≤ 1− a
2

for a ∈ (0, 1), we obtain the approximation bounds for
the MAX CL and MAX FAIR CL problems.

Theorem 3.2. There are randomized polynomial-time
(1/2fmax)-approximation algorithms for weighted MAX
CL and MAX FAIR CL.

The bound 1/2fmax in Theorem 3.2 can be sharpened;
for example, it is 1/fmax when k = 1.

Theorem 3.2 does not immediately give a useful
approximation algorithm for computing separating or
padded decompositions; we next give the necessary
refinements.

Separating Decomposition. Theorem 3.2 gives
an approximation guarantee for the maximum consis-
tency probability (as in (1.2)), rather than for the min-
imum inconsistency probability (as in (1.1)). These two
objectives are equivalent for exact optimization, but not
for approximation. We now show how to modify our
LP relaxation and analysis for MAX FAIR CL (but us-
ing the same rounding algorithm), to obtain an fmax-
approximation for the latter objective. Choosing the
weight wS of a set S = {x, y} to be ∆/d(x, y), we will im-
mediately get a 2-approximation algorithm for comput-
ing an optimal separating decomposition, which matches
the integrality gap for our LP relaxation (as we show in
the full version).

We address the problem of minimizing the inconsis-
tency probability using LP (3.11) below. This LP differs
from the one used for MAX FAIR CL in that we fix
k = 1, and that now yiS and zS measure the fractional
inconsistency (rather than consistency) of a set S; we
then bound these from above (rather than from below)
using α.

Min α
s.t.

∑
i∈L xai = 1 ∀a ∈ A

yiS ≥ xai − xa′i ∀S ∈ C; a, a′ ∈ S
zS ≥ 1

|S|
∑

i∈L yiS ∀S ∈ C
xai = 0 ∀a ∈ A; i /∈ La

α ≥ wSzS ∀S ∈ C.

(3.11)

It is straightforward to verify that this LP is indeed a
relaxation for the problem of minimizing inconsistencies
(in fact, for |S| = 2 the LP is essentially equivalent
to the previous one); as such, it is also a relaxation
for the problem of computing an optimal separating
decomposition with objective (1.1). Let (x∗, y∗, z∗, α∗)
be the optimal fractional solution; then α∗ is a lower
bound on the value of an optimal solution. We shall now
apply the rounding algorithm of Figure 1. The following
lemma is similar to Lemma 3.1 (and also to the analysis
in [KT02]).

Lemma 3.3. For every set S ∈ C,

Pr [S is not consistently labeled] ≤ |S|z∗S .

This inequality immediately implies an fmax-
approximation for minimizing the (weighted) inconsis-
tency probability of all sets. In particular, we obtain the
following theorem.

Theorem 3.4. There is a randomized polynomial-time
2-approximation algorithm for computing a separating
decomposition.

Padded Decomposition. Building on these tech-
niques, we now design an algorithm for padded decom-
position; the precise statement of the guarantees appears
in Theorem 3.8. Recall that the input is a metric space
(X, d) and a parameter q > 0. We shall use the LP
formulation below, motivated by modeling our problem
as a MAX FAIR CL as follows: objects correspond to
points in X, labels represent cluster centers (generally
all of X), and the consistency sets C corresponds to all
balls of radius ∆/β. The LP has nonnegative variables
xij , which represent an assignment of point j ∈ X to a



cluster centered at i ∈ X (i.e. labeling an object), and
variables yij , which represent the consistency of the ball
around j with respect to the cluster centered at i (i.e.
consistency of a set).

∑
i∈X xij ≤ 1 ∀j ∈ X

yij ≤ xij′ ∀i, j ∈ X; j′ ∈ B(j, ∆/β)
xij = 0 ∀j ∈ X; i ∈ X \B(j, ∆)∑

i∈X yij ≥ q ∀j ∈ X

(3.12)

We omit the proof that this is a valid relaxation.

Lemma 3.5. LP (3.12) is a relaxation of padded decom-
position, namely, it is feasible whenever β ≤ β∗(X, ∆, q).

The algorithm’s first step then is to find the smallest
β > 0 such that the LP above is feasible, which can be
done e.g. by binary search over the at most

(
n
2

)
distance

values appearing in the input metric. (Note that β is not
a variable of the LP.)

The rounding procedure for LP (3.12) has three
steps. First, use a procedure similar to the Kleinberg-
Tardos rounding [KT02], except that exactly n assign-
ment rounds are performed to obtain a collection of dis-
joint clusters {Ci : i ∈ X} (this is not a partition,
since some points might not be assigned at all). Next,
check for which points j ∈ X the ball B(j, ∆/β) meets
more than one cluster Ci, and remove all these points
(simultaneously) from the clustering. Finally, expand
each of the (non-empty) clusters at hand to its ∆/2β-
neighborhood, and output the partition induced by these
clusters (where a point that belongs to no cluster forms a
singleton cluster). A formal description of this procedure
is given in Figure 2.

Lemma 3.6. The algorithm in Figure 2 always outputs
a ∆-bounded partition of X.

We omit the straightforward proof of Lemma 3.6.

Lemma 3.7. Denote by µ the decomposition produced by
the algorithm in Figure 2. Then for every j ∈ X,

Pr P∈µ[B(j, ∆/2β) ⊆ P (j)] ≥ q/12.

Proof. Fix a point j ∈ X. It suffices to show that
Pr [j ∈ ∪i∈XC ′

i] ≥ q/12, since once j ∈ C ′
i, the entire

ball B(j, ∆/2β) will end up inside the cluster C ′′
i . The

event j ∈ ∪i∈XC ′
i is the disjoint union of the events

j ∈ C ′
i∗ over all i∗ ∈ X. Thus,

Pr [j ∈ ∪i∈XC ′
i] =

∑
i∗∈X

Pr [j ∈ Ci∗ ] (3.13)

We next examine the n iterations over steps 4–5, and
refine our earlier analysis of the randomized assignment

procedure. Fix i∗ ∈ F . For the event j ∈ C ′
i∗ to occur,

we should have j ∈ Ci∗ and also j /∈ D∗, the latter
meaning that B(j, ∆/β) is disjoint of ∪i 6=i∗Ci. For the
purpose of a lower bound on Pr [j ∈ Ci∗ ], it suffices to
consider the case that i∗ ∈ X is chosen in exactly one
of these n iterations, which happens with probability(
n
1

)
1
n (1 − 1

n )n−1 ≥ 1
e . In the iteration i∗ is chosen,

we need the random threshold T to be smaller than
yi∗j , which occurs with probability yi∗j . In each of the
remaining n − 1 iterations, we need the chosen center
i 6= i∗ to capture no point in B(j, ∆/β), which happens
with probability 1−max{yij′ : j′ ∈ B(j, ∆/β)} ≥ 1−xij

(using the second LP constraint). Recalling that i 6= i∗

is chosen uniformly at random, we obtain (for a fixed i∗)

Pr [j ∈ Ci∗ ] ≥
1
e
· yi∗j ·

(∑
i 6=i∗

1− xij

n− 1

)n−1

. (3.14)

Finally, using the first LP constraint, we know that∑
i 6=i∗ xij ≤ 1. Combining this inequality with (3.13)

and (3.14), and using the last constraint of the LP, we
obtain (assuming n ≥ 3)

Pr [j ∈ ∪i∈XC ′
i] ≥

∑
i∗∈X

(
1
e
· yi∗j ·

(
1− 1

n− 1

)n−1
)

≥
∑

i∗∈X

(
1
e
· yi∗j ·

1
4

)
≥ q

12
.

�

The lemmas above immediately yield the following.

Theorem 3.8. There is a randomized polynomial-time
algorithm that, given (X, d), ∆, and q, produces a ∆-
bounded (β′, q/12)-padded decomposition, where β′ ≤
2β∗(X, ∆, q).

4 Minimum Consistent Labeling

This section gives two approximation algorithms for the
minimization version of Consistent Labeling, where the
goal is to consistently label a prescribed fraction of
the sets while using as few labels as possible. The
first algorithm is tailored to the MIN CCL problem,
where all of the sets must be consistently labeled. Our
algorithm achieves an O(log(n + |C|))-approximation for
the general problem (see Theorem 4.1). Applying this
result to the case of Sparse Cover in a distributed
network (where |C| = n), we immediately obtain an
O(log n) approximation (see Corollary 4.2). Our second
algorithm computes, for given 0 < ε < 1/4, a solution
that consistently labels a (1 − 3ε)-fraction of the sets
using at most O(ln 1

ε ) times more labels per object than
the minimum necessary to consistently label at least
an (1 − ε)-fraction of the sets. (The constant 3 is



Input: an instance of padded decomposition
1. Find the smallest β > 0 such that LP (3.12) is feasible
2. Initialize a cluster Ci = ∅ for every i ∈ X.
3. Repeat n times
4. Choose uniformly at random i ∈ X and threshold T ∈ [0, 1]
5. Add to cluster Ci every yet unclustered point j ∈ X for which T < yij

6. Let D∗ = {j ∈ X : B(j, ∆/β) meets more than one cluster Ci}
7. For every i ∈ X, let C′

i = Ci \D∗

8. For every i ∈ X, let C′′
i = {j ∈ X : d(j, C′

i) ≤ ∆/2β}
9. Output the partition induced by {C′′

i : i ∈ X} (i.e. adding singletons when necessary)

Figure 2: The Padded Decomposition algorithm.

quite arbitrary, and we make no no attempt to optimize
it.) This bicriteria guarantee is particularly appropriate
for the Network Triangulation application, where one
typically permits a small fraction of pairs of points to
have inaccurate distance estimates.

Complete Consistent Labeling and Sparse
Cover. Our approximation algorithm for MIN CCL is
shown in Figure 3. The only difference between this al-
gorithm and that for MAX CL and MAX FAIR CCL is
the stopping condition: instead of explicitly controlling
the number of labels assigned to each object, we stop
once we have obtained a feasible solution (i.e., every set
is consistently labeled).

Theorem 4.1. The algorithm for MIN CCL in Figure 3
computes, with high probability, an O(log(n + |C|))-
approximation in polynomial time.

Proof. Let (x∗, y∗, z∗, k∗) denote the optimal LP solution
and consider a set S ∈ C. Let xmin

i denote mina∈S x∗ai.
The probability that S is consistently labeled in a given
iteration equals

1
n

∑
i∈L

xmin
i ≥ 1

n

∑
i∈L

y∗iS ≥ z∗S
n

=
1
n

,

with the inequalities following from the LP constraints.
On the other hand, constraint (2.4) ensures that the

probability that an object a ∈ A receives a label in a
given iteration is

1
n

∑
i∈L

x∗ai ≤
k∗

n
.

Applying Chernoff bounds, it follows that with high
probability, the algorithm of Figure 3 terminates
in O(n log |C|) iterations with each object receiving
O(log n + k∗ log |C|) labels. �

Modeling the Sparse Cover problem as MIN CCL,
as explained in the Introduction, the following corollary
is immediate.

Corollary 4.2. There is a randomized polynomial-
time algorithm that, given an instance of Sparse Cover
with n subsets of vertices, outputs a feasible cover
whose maximum degree is, with high probability, at most
O(log n) times that of optimal.

Bicriteria Guarantee. For a consistent labeling
instance and α ∈ (0, 1), let kOPT (α) be the smallest
k > 0 for which there is a feasible labeling that assigns
as most k labels per object and is consistent for an α
fraction of the sets. The following theorem achieves a
bicriteria guarantee that is often reasonable for α close
to 1, but other tradeoffs are also possible.

Theorem 4.3. There is a randomized polynomial time
algorithm that, given a consistent labeling instance and
ε > 0, computes with high probability a labeling that uses
at most O(ln 1

ε ) · kOPT (1 − ε) labels per object and is
consistent for a (1− 3ε) fraction of the sets.

Proof. We use our algorithm for MAX CL and MAX
FAIR CL (Figure 1). More precisely, modify step 1 and
solve the LP relaxation which minimizes k subject to the
constraints (2.4)–(2.8) and to

∑
S zS ≥ (1− ε)|C|. After

solving the LP relaxation, proceed as in Figure 1 but
with the threshold k replaced by ` = 16k∗ ln 1

ε , where k∗

is the optimal LP value. We can assume without loss of
generality that ε < 1/4.

It is easy to verify that this LP is indeed a relaxation.
Hence, in the LP solution k∗ ≤ kOPT (1 − ε), and by
construction, the algorithm always uses at most ` =
O(ln 1

ε ) · kOPT (1 − ε) labels per object. Now, call a
set S good if z∗S ≥ 1

4 in the optimal LP solution. At
least (1 − 2ε)|C| sets are good, or otherwise

∑
S z∗S <

(1− 2ε)|C| · 1 + (2ε)|C| · 1
4 < (1− ε)|C|, contradicting the

last LP constraint. For every good set S, by a calculation
similar to Lemma 3.1, the probability that S will not be
consistently labeled is at most(

1− z∗S
k∗|S|

)`

≤
(

1− 1
8k∗

)`

≤ e−`/8k∗
≤ ε2.



Input: an instance of MIN CCL.
1. Minimize k subject to constraints (2.4)–(2.8) and in addition that (2.7) holds with equality for every set S ∈ C.

Let (x∗, y∗, z∗, k∗) denote the optimal LP solution.
2. Repeat until every set is consistently labeled:
3. Choose a label i ∈ L and a threshold t ∈ [0, 1] uniformly at random.
4. For each object a ∈ X, if x∗

ai > t, then add i to the set of labels assigned to a.

Figure 3: The MIN CCL algorithm.

Thus, among the good sets, the expected fraction of not
consistently labeled sets is at most ε2, and by Markov’s
inequality, the probability that this fraction exceeds ε
is at most ε. In other words, with probability at least
1 − ε ≥ 3/4, the number of consistently labeled sets is
at least (1 − ε) · (1 − 2ε)|C| ≥ (1 − 3ε)|C|. Naturally,
we can amplify the success probability by independent
repetitions. �

Metric Triangulation. Network triangulation is a
heuristic for estimating distances in a network, initially
suggested by Guyton and Schwartz [GS95]. Motivated
by the practical success of this heuristic, Kleinberg,
Slivkins, and Wexler [KSW04] initiated a theoretical
study of triangulation in metric spaces, formally defined
as follows. A triangulation of a metric (X, d) assigns
for every x ∈ X a collection of beacons Sx ⊆ X. The
triangulation has order k if max{|Sx| : x ∈ X} ≤ k. We
are interested in low-order triangulations in which the
distance between every x, y ∈ X can be estimated from
their distances to Sx ∩ Sy using the triangle inequality.
Formally, define

D+(x, y) = min
b∈Sx∩Sy

[d(x, b) + d(b, y)]

D−(x, y) = max
b∈Sx∩Sy

|d(x, b)− d(b, y)|.

The triangulation is called an (ε, ρ)-triangulation (for
0 ≤ ε ≤ 1 and ρ ≥ 1) if for all but an ε fraction
of the pairs x, y ∈ X we have D+(x, y) ≤ ρ · d(x, y)
and D−(x, y) ≥ d(x, y)/ρ. Let kOPT (X, ε, ρ) denote
the smallest k > 0 such that (X, d) admits an (ε, ρ)-
triangulation of order k.

The problem of computing a near-optimal metric tri-
angulation, i.e. computing kOPT (X, ε, ρ), has not been
studied before, although several absolute guarantees are
known. In [KSW04], it is shown that doubling met-
rics admit an (ε, ρ)-triangulation whose order is upper
bounded independently of n (namely, the bound de-
pends only on ε, ρ and the doubling constant), and ad-
ditional bounds are proved in [Sli05b, Sli05a]. However,
in some metrics triangulation requires a very high order
(e.g. Ω(n) in uniform metrics and nΩ(1) in tree metrics
[Kra07], for fixed ε, ρ), and thus absolute bounds cannot
yield any nontrivial approximation ratio.

Modeling this Metric Triangulation problem as a
consistent labeling problem and using Theorem 4.3, we
give for it below a bicriteria approximation algorithm.
We will actually require a slight generalization of the
consistent labeling problem (and our algorithm), as
follows: For every set S ∈ C, there may be (in the
input) a restricted set LS of labels that can be used to
consistently label S. Accommodating this generalization
in our algorithms (Theorems 4.1 and 4.3) requires only
changing the index set on the right-hand side of (2.6)
from “i ∈ L” to i ∈ LS”; no other changes to our
algorithm or their proofs are required.

Corollary 4.4. There is a randomized polynomial-
time algorithm that, given a metric triangulation in-
stance (including ρ and ε), outputs a (1 − 3ε, ρ)-
triangulation of order O(ln 1

ε ) · kOPT (X, ε, ρ).

Proof. We first model the metric triangulation problem
as a slight generalization of MIN CCL. Objects corre-
spond to the points X and labels correspond to bea-
cons (generally all of X). For every pair of nodes x, y
we want a consistency constraint that reflects our de-
sire that x, y have at least one beacon in Sx ∩ Sy at-
taining D+(x, y), and similarly at least one common
beacon attaining D−(x, y). We model this by using
set-dependent allowable labels LS , and furthermore re-
placing the set of constraints (2.6) by two sets of con-
straints, one with allowable label set L+(x, y) = {b ∈ X :
d(x, b)+d(b, y) ≤ ρ·d(x, y)} and one with allowable label
set L−(x, y) = {b ∈ X : |d(x, b) − d(b, y)| ≥ d(x, y)/ρ};
the extra set of constraints only increases the hidden
constants in our analysis. The correspondence between
this variant of consistent labeling and network triangu-
lation is immediate, and we can thus use our algorithm
from Theorem 4.3 to obtain a bicriteria bound for Metric
Triangulation. �
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