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Abstract
We provide evidence that computing the maximum flow value between every pair of nodes in a
directed graph on n nodes, m edges, and capacities in the range [1..n], which we call the All-Pairs
Max-Flow problem, cannot be solved in time that is faster significantly (i.e., by a polynomial
factor) than O(n2m). Since a single maximum st-flow in such graphs can be solved in time
Õ(m

√
n) [Lee and Sidford, FOCS 2014], we conclude that the all-pairs version might require time

equivalent to Ω̃(n3/2) computations of maximum st-flow, which strongly separates the directed
case from the undirected one. Moreover, if maximum st-flow can be solved in time Õ(m), then the
runtime of Ω̃(n2) computations is needed. This is in contrast to a conjecture of Lacki, Nussbaum,
Sankowski, and Wulf-Nilsen [FOCS 2012] that All-Pairs Max-Flow in general graphs can be solved
faster than the time of O(n2) computations of maximum st-flow.

Specifically, we show that in sparse graphs G = (V,E,w), if one can compute the maximum
st-flow from every s in an input set of sources S ⊆ V to every t in an input set of sinks
T ⊆ V in time O((|S||T |m)1−ε), for some |S|, |T |, and a constant ε > 0, then MAX-CNF-
SAT (maximum satisfiability of conjunctive normal form formulas) with n′ variables and m′

clauses can be solved in time m′O(1)2(1−δ)n′ for a constant δ(ε) > 0, a problem for which not
even 2n′

/poly(n′) algorithms are known. Such runtime for MAX-CNF-SAT would in particular
refute the Strong Exponential Time Hypothesis (SETH). Hence, we improve the lower bound
of Abboud, Vassilevska-Williams, and Yu [STOC 2015], who showed that for every fixed ε > 0
and |S| = |T | = O(

√
n), if the above problem can be solved in time O(n3/2−ε), then some

incomparable (and intuitively weaker) conjecture is false. Furthermore, a larger lower bound
than ours implies strictly super-linear time for maximum st-flow problem, which would be an
amazing breakthrough.

In addition, we show that All-Pairs Max-Flow in uncapacitated networks with every edge-
density m = m(n), cannot be computed in time significantly faster than O(mn), even for acyclic
networks. The gap to the fastest known algorithm by Cheung, Lau, and Leung [FOCS 2011] is a
factor of O(mω−1/n), and for acyclic networks it is O(nω−1), where ω is the matrix multiplication
exponent.
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20:2 Conditional Lower Bounds for All-Pairs Max-Flow

1 Introduction

The maximum flow problem is one of the most fundamental problems in combinatorial
optimization. This classic problem and its variations such as minimum-cost flow, integral
flow, and minimum-cost circulation, were studied extensively over the past decades, and
have become key algorithmic tools with numerous applications, in theory and in practice.
Moreover, techniques developed for flow problems were generalized or adapted to other
problems, see for example [6, 3, 5]. The maximum st-flow problem, which we shall denote
Max-Flow, asks to ship the maximum amount of flow from a source node s to a sink node t in
a directed edge-capacitated graph G = (V,E,w), where throughout, we denote n = |V | and
m = |E|, and assume integer capacities bounded by U . After this problem was introduced in
1954 by Harris and Ross (see [22] for a historical account), Ford and Fulkerson [12] devised
the first algorithm for Max-Flow, which runs in time O((n+m)F ), where F is the maximum
value of a feasible flow. Ever since, a long line of generalizations and improvements was
studied, and the current fastest algorithm for Max-Flow with arbitrary capacities is by Lee and
Sidford [20], which takes O(m

√
n logU) time. For the case of small capacities and sufficiently

sparse graphs, the fastest algorithm, due to Mądry [21], has a running time Õ(m10/7U1/7).
Here and throughout, Õ(f) denotes O(f logc f) for unspecified constant c > 0.

A very natural problem is to compute the maximum st-flow for multiple source-sink pairs
in the same graph G. The seminal work of Gomory and Hu [14] shows that in undirected
graphs, Max-Flow for all

(
n
2
)
source-sink pairs requires at most n− 1 executions of Max-Flow

(see also [15], where the n− 1 computations are all on the input graph), and a lot of research
aimed to extend this result to directed graphs, with several partial successes, see details in
Section 1.1. However, it is still not known how to solve Max-Flow for multiple source-sink
pairs faster than solving it separately for each pair, even in special cases like a single source
and all possible sinks. We shall consider the following problems involving multiple source-sink
pairs, where the goal is always to report the value of each flow (and not an actual flow
attaining it).

I Definition 1.1. (Single-Source Max-Flow) Given a directed edge-capacitated graph G =
(V,E,w) and a source node s ∈ V , output, for every t ∈ V , the maximum flow that can be
shipped in G from s to t.

IDefinition 1.2. (All-Pairs Max-Flow) Given a directed edge-capacitated graphG = (V,E,w),
output, for every pair of nodes u, v ∈ V , the maximum flow that can be shipped in G from u

to v.

I Definition 1.3. (ST-Max-Flow) Given a directed edge-capacitated graph G = (V,E,w)
and two subsets of nodes S, T ⊆ V , output, for every pair of nodes s ∈ S and t ∈ T , the
maximum flow that can be shipped in G from s to t.

I Definition 1.4. (Global Max-Flow) Given a directed edge capacitated graph G = (V,E,w),
output the maximum among all pairs u, v ∈ V , of the maximum flow value that can be
shipped in G from u to v.

I Definition 1.5. (Maximum Local Edge Connectivity) Given a directed graph G = (V,E),
output the maximum among all pairs u, v ∈ V , of the maximum number of edge-disjoint
uv-paths in G.

Note that in a graph with all edge capacities equal to 1, the problem of finding the
maximum local edge connectivity is equivalent to finding the global maximum flow.
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Table 1 Known algorithms for multiple-pairs Max-Flow. In this table, T (n,m) is the fastest time
to compute maximum st-flow in an undirected graph, ω is the matrix multiplication exponent, and
γ = γ(G) is a topological property of the input network that varies between 1 and Θ(n). In planar
graphs, γ is the minimum number of faces required to cover all the nodes (i.e., every node is adjacent
to at least one such face) over all possible planar embeddings [13].

Directed Class Problem Runtime Reference
No General All-Pairs (G-H Tree) (n− 1)T (n,m) [14]
No Uncapacitated Networks All-Pairs (G-H Tree) Õ(mn) [7]
No Genus bounded by g All-Pairs (G-H Tree) 2O(g2)n log3 n [8]
Yes Sparse All-Pairs O(n2 + γ4 log γ) [4]
Yes Constant Treewidth All-Pairs O(n2) [4]
Yes Uncapacitated All-Pairs O(mω) [11]
Yes Uncapacitated DAG Single-Source O(nω−1m) [11]
Yes Planar Single-Source O(n log3 n) [19]

1.1 Prior Work

We start with undirected graphs, where the All-Pairs Max-Flow values can be represented
in a very succint manner, called nowdays a Gomory-Hu tree [14]. In addition to being
very succint, it allows the flow values and the corresponding cuts (vertex partitions) to be
quickly retrieved. See Table 1 for a list of previous algorithms for multiple pairs maximum
st-flow, see Table 1. For directed graphs, no current algorithm computes the maximum flow
between any k = ω(1) given pairs of nodes faster than the time of O(k) separate Max-Flow
computations. However, some results are known in special settings. It is possible to compute
Max-Flow for O(n) pairs in the time it takes for a single Max-Flow computation [16] and this
result is used to find a global minimum cut. However, these pairs cannot be specified in the
input.

For directed planar graphs, there is an O(n log3 n) time algorithm for the Single-Source
Max-Flow problem [19], which immediately yields an O(n2 log3 n) time algorithm for the
All-Pairs version, that is much faster than the time of O(n2) computations of planar Max-Flow,
a problem that can be solved in time O(n logn) [9]. Based on these results, it was conjectured
in [19] that also in general graphs, All-Pairs Max-Flow can be solved faster than the time
required for computing O(n2) separate maximum st-flows.

Several hardness results are known for multiple-pairs variants of Max-Flow [2]. For
ST-Max-Flow in sparse graphs (m = O(n)) and |S| = |T | = O(

√
n), there is an n3/2−o(1)

lower bound assuming at least one of the Strong Exponential Time Hypothesis (SETH),
3SUM, and All-Pairs Shortest-Paths (APSP) conjectures is correct (for a comprehensive
survey on them, see [23]). In addition, they show that Single-Source Max-Flow on sparse
graphs requires n2−o(1) time, unless MAX-CNF-SAT can be solved in time 2(1−δ)npoly(m)
for some fixed δ > 0, and in particular SETH is false.

We will mostly rely on SETH, a conjecture introduced by [17], and on some weaker
assumption related to its maximization version, MAX-CNF-SAT. In more detail, SETH
states that for every fixed ε > 0 there is an integer k ≥ 3 such that k-SAT on n variables
and m clauses cannot be solved in time 2(1−ε)npoly(m), where poly(m) refers to O(mc) for
unspecified constant c. By the sparsification lemma [18], in order to refute SETH it can
be assumed that the number of clauses is O(n). The MAX-CNF-SAT problem asks for
the maximum number of clauses that can be satisfied in an input CNF formula. Most

ICALP 2017



20:4 Conditional Lower Bounds for All-Pairs Max-Flow

of our conditional lower bounds are based on the assumption that for every fixed δ > 0,
MAX-CNF-SAT cannot be solved in time 2(1−δ)npoly(m), where currently even 2n/poly(n)
algorithms are not known for this problem [2]. Note that this is a weaker assumption than
SETH, since a faster algorithm for MAX-CNF-SAT would imply a faster algorithm for
CNF-SAT and refute SETH. Different assumptions regarding the hardness of CNF-SAT have
been the basis for many lower bounds, including for the runtime of solving NP-hard problems
exactly, parametrized complexity, and problems in P. See the Introduction in [1] and the
references therein.

1.2 Our Contribution
We present conditional runtime lower bounds for both uncapacitated and capacitated networks.
The proofs appear in sections 2 and 3, respectively, where the order reflects increasing level
of complication. All our lower bounds hold even when the input G is a DAG and has a
constant diameter, and in the case of general capacities, they can be easily modified to apply
also for graphs with constant maximum degree. In addition, for integer k ≥ 1 we use the
notation [k] to denote the range {1, ..., k}.

Capacitated Networks

Our main result is that for every set sizes |S| and |T |, the ST-Max-Flow cannot be solved sig-
nificantly faster than O(|S||T |m) (i.e., polynomially smaller runtime), unless a breakthrough
in MAX-CNF-SAT is achieved, and consequently in SETH.

I Theorem 1.6. If for some fixed ε > 0 and some (possibly functions of n) set sizes |S| and
|T |, ST-Max-Flow can be solved in graphs with n nodes, m = O(n) edges and capacities in
[n] in time O((|S||T |m)1−ε), then for some δ(ε) > 0, MAX-CNF-SAT on n′ variables and
O(n′) clauses can be solved in time 2(1−δ)n′poly(n′), and in particular SETH is false.

This result improves the aforementioned n3/2−o(1) lower bound of [2], as for their setting
of |S| = |T | = O(

√
n) our lower bound is n2−o(1), although their lower bound is based on an

incomparable (and intuitively weaker) conjecture, that at least one of the SETH, 3SUM, and
APSP conjectures is correct. In fact, if there was a reduction from SETH that implied a
larger runtime lower bound for ST-Max-Flow, then the (single-pair) Max-Flow problem would
require a strictly super-linear time under it, but such a reduction is not possible unless the
non-deterministic version of SETH (abbreviated NSETH) is false [10]. And anyway, such a
lower bound for Max-Flow would be an amazing breakthrough.

The next theorem is an immediate corollary of Theorem 1.6, by assigning |S|, |T | = Θ(n).

I Theorem 1.7. If for some fixed ε > 0, All-Pairs Max-Flow in graphs with n nodes, m = O(n)
edges, and capacities in [n] can be solved in time O((n2m)1−ε), then for some δ(ε) > 0,
MAX-CNF-SAT on n′ variables and O(n′) clauses can be solved in time 2(1−δ)n′poly(n′),
and in particular SETH is false.

This conditional lower bound (see Figure 1) shows that All-Pairs Max-Flow requires time
that is equivalent to Ω(n3/2) computations of Max-Flow, which strongly separates the directed
case from the undirected one (where a Gomory-Hu tree can be constructed in the time of
n− 1 computations). If Max-Flow takes Õ(m) time, which is currently open but plausible,
then the running time of Ω̃(n2) computations of Max-Flow is needed. This is in contrast to
the aforementioned conjecture of Lacki, Nussbaum, Sankowski, and Wulf-Nilsen [19] that
All-Pairs Max-Flow in general graphs can be solved faster than the time of O(n2) computations
of maximum st-flow.
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our lower bound

runtime of Θ(n2) executions

of Max-Flow using [20]

m = |E|
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n2

n4

n3

n2.5

n3.5

n4.5
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Time
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our lower bound (which

algorithm of [11] when

ω = 2.37 and ω = 2

algorithm of [11] for DAGs

when ω = 2.37 and ω = 2

applies also to DAGs )

Capacitated Networks Uncapacitated Networks

Figure 1 State of the art bounds for All-Pairs Max-Flow in directed networks. Conditional lower
bounds are depicted in dashed lines, and known algorithms in solid lines.

Uncapacitated Networks

For the case of uncapacitated networks, we show that for every m = m(n), All-Pairs Max-Flow
cannot be solved significantly faster than O(mn). Here we introduce a new technique to
design reductions from SETH to graphs with varying edge densities, rather than the usual
reductions that only deal with sparse graphs. Our technique is based on partitioning the
variables set of CNF-SAT to different sizes.

I Theorem 1.8. If for some fixed ε > 0 and some m = m(n) ∈ [n, n2], All-Pairs Max-Flow
in uncapacitated graphs with n nodes and m edges can be solved in time O((nm)1−ε), then
for some δ(ε) > 0, MAX-CNF-SAT on n′ variables and O(n′) clauses can be solved in time
2(1−δ)n′poly(n′), and in particular SETH is false.

Hence, a certain additional improvement to the O(mω) time algorithm of [11] (and
similarly to the O(nωm) time for DAGs, where our lower bounds apply too) is not likely. We
now present conditional lower bounds for ST-Max-Flow, which are functions of |S| and |T |.

I Theorem 1.9. If for some fixed ε > 0 and some (possibly functions of n) set sizes |S| and
|T |, ST-Max-Flow on uncapacitated graphs with n nodes and O((|S| + |T |)n) edges can be
solved in time O((|S||T |n)1−ε), then for some δ(ε) > 0, MAX-CNF-SAT on n′ variables and
O(n′) clauses can be solved in time 2(1−δ)n′poly(n′), and in particular SETH is false.

Finally, we present a conditional lower bound for computing the Maximum Local Edge
Connectivity of a sparse graph, which is the same as Global Max-Flow if all the capacities are
1, which is indeed the case in our reduction. In the Orthogonal Vectors problem the input is
two sets U and V , each of n vectors from {0, 1}d, and the goal is to determine whether there
are u ∈ U and v ∈ V such that

∑d
i=1 ui · vi = 0. An equivalent version of the problem has

U = V . For d = ω(logn), Williams [24] proved that SETH implies the non-existence of a
truly subquadratic (in n) algorithm for the problem. The next result, proved in Section 4,
was obtained together with Bundit Laekhanukit and Rajesh Chitnis, and we thank them for
their permission to include it here.

ICALP 2017
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I Theorem 1.10. If for some fixed ε > 0, the Maximum Local Edge Connectivity in graphs
with n nodes and Õ(n) edges can be found in time O(n2−ε), then for some δ(ε) > 0, the
Orthogonal Vectors problem on n′ vectors and every d = polylog(n′) can be solved in time
O(n′2−δ), and in particular SETH is false.

2 Reduction to Multiple-Pairs Max-Flow with Unit Capacity

In this section we prove Theorems 1.8 and 1.9. We start with a general lemma which is the
heart of the proofs.

I Lemma 2.1. Let a ∈ [0, 1] and b ∈ [0, 1− a]. Then MAX-CNF-SAT on n variables and
m clauses can be reduced to O(m) instances of ST-Max-Flow with |S| = 2an and |T | = 2bn
in graphs with Θ(2an + 2(1−a−b)nm + 2bn) nodes, Θ((2an + 2bn) · 2(1−a−b)nm) edges, and
capacities in {0, 1}.

Proof. Given a CNF-formula F on n variables and m clauses {Ci}i∈[m] as input for MAX-
CNF-SAT, a ∈ [0, 1], and b ∈ [0, 1 − a], we split the variables into three sets U1, U2, and
U3, where U1 is of size an, U2 is of size (1 − a − b)n, and U3 is of size bn, and enumerate
all their 2an, 2(1−a−b)n, and 2bn partial assignments (with respect to F ), respectively, when
the objective is to find a triple α, β, γ of assignments to U1, U2, and U3 respectively, that
satisfies the maximal number of clauses. We will have an instance Gp of ST-Max-Flow for
each value p ∈ [m], in which by one call to ST-Max-Flow we check if there exists a triple α,
β, and γ that satisfies at least p clauses, as follows.

We construct a graph Gp for every p ∈ [m] on N nodes V1 ∪ V2 ∪ V3, where V1 contains a
node α for every assignment α to U1, V2 contains 2m+ 1 + (p− 1) = 2m+ p nodes for every
assignment β to U2, that are βli and βri for every i ∈ [m], β′, and the set {β′i}i∈[p−1], and V3
contains a node γ for every assignment γ to U3. We use the notation α for nodes in V1 and
for assignments to U1, β for assignments to U2, and γ for nodes in V3 and assignments to
U3. However, it will be clear from the context. Now, we have to describe the edges in the
network. In order to simplify the reduction, we partition the edges into blue and red colors,
as follows.

For every α, β, and i ∈ [m], we add a blue edge from α to βli if both of α and β do not
satisfy the clause Ci (do not set any of the literals to true), and otherwise we add a red edge
from α to βri . We further add, for every β, γ, and i ∈ [m], a blue edge from βli to γ if γ does
not satisfy Ci. For every β, γ, and j ∈ [p− 1], we add a red edge from every β′j to every γ.
For every β and i ∈ [m], we add a red edge from βli to βri and from βri to β′, and finally for
every β and j ∈ [p− 1], we add a red edge from β′ to β′j , where all edges are of capacity 1.

The graph we built has 2an + 2 · 2(1−a−b)nm + 2(1−a−b)n + 2(1−a−b)n(p − 1) + 2bn =
Θ(2an + 2(1−a−b)nm + 2bn) nodes, 2an · 2(1−a−b)nm + 2bn · 2(1−a−b)nm + 2 · 2(1−a−b)nm+
(p− 1)2(1−a−b)n + 2bn · (p− 1)2(1−a−b)n = Θ((2an + 2bn) · 2(1−a−b)nm) edges, with capacities
in {0, 1} (see Figure 2), and its construction time is asymptotically the same as the time it
takes to construct its edges set.

For every α, β, and γ, we denote by Gα,β,γp the graph induced from Gp on the nodes

(α, β′, γ) ∪
( ⋃
y∈{l,r}
i∈[m]

βyi

)
∪

( ⋃
j∈[p−1]

β′j

)
.

We claim that for every α and γ, the maximum flow from α to γ can be bounded by
the sum, over all β, of the maximum flow between them in Gα,β,γp . This claim follow easily
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α

γ̃

β′

βl
1

βl
2

βl
3

βr
1

βr
2

βr
3

β̃′

β̃l
1

β̃l
2

β̃l
3

β̃r
1

β̃r
2

β̃r
3

β′1

β′2

β̃′1

β̃′2α̃

γ

Figure 2 An illustration of part of the reduction. Here, U1, U2, and U3 have 2 assignments each,
α and α̃ to U1, β and β̃ to U2, and γ and γ̃ to U3. Blue edges are dashed. For simplicity, only the
edges of Gα,β,γ̃3 ∪Gα,β̃,γ̃3 are presented. In this illustration, α does not satisfy anything, β satisfies
C2 and C3, β̃ satisfies C1, and γ̃ satisfies C1. Note that the assignment comprised of α, β, and γ̃
satisfies all the clauses, and indeed the maximum flow from α to γ is 2 · 3− 1 = 5.

because the intersection Gα,β1,γ
p ∩ Gα,β2,γ

p for β1 6= β2 is exactly the source and the sink
{α, γ}, no edge passes between these two graphs, and

(⋃
β G

α,β,γ
i

)
consists of all nodes that

are both reachable from α and γ is reachable from them.
We now prove that if there is an assignment to F that satisfies at least p clauses then

the graph Gp we built has a triple α, β, γ with maximum flow from α to γ in Gα,β,γp at most
m − 1. Since for every β̃, m is the number of outgoing edges from α in Gα,β̃,γp , m is also
an upper bound for the maximum flow from α to γ in it, and hence in Gp it is at most
2(1−a−b)nm− 1. Otherwise, we will show that every triple α, β, γ has a maximum flow from
α to γ in Gα,β,γp of size at least m, and so in Gp it is at least 2(1−a−b)nm. Hence, by simply
picking the maximal j ∈ [m] such that the maximum flow in Gj of some pair α, γ is at most
2(1−a−b)nm− 1, and then iterating over all assignments β to U2 with α and γ fixed as the
assignments to U1 and U3, we can also find the required triple α, β, γ.

For the first direction, assume that F has an assignment that satisfies at least p clauses,
and denote such assignment by Φ. Let αΦ, βΦ, and γΦ be the assignments to U1, U2, and
U3, respectively, that are induced from Φ. Since a blue path from αΦ through βΦ

l
i for

some i ∈ [m] to γΦ corresponds to αΦ, βΦ, and γΦ all do not satisfy Ci, in GαΦ,βΦ,γΦ
p there

are at most m − p (internally) disjoint blue paths from α to γ. As the only way to ship
flow in GαΦ,βΦ,γΦ

p that is not through a blue path is through the node β′Φ, and the total
number of edges going out of this node is p− 1, we conclude that the total maximum flow
in GαΦ,βΦ,γΦ

p from αΦ to βΦ is bounded by m − p + (p − 1) = m − 1. Since for every β,
the maximum amount of flow that can be shipped in GαΦ,β,γΦ

p from αΦ to γΦ is at most
m, summing over all β we get that the total flow in Gp from αΦ to γΦ is bounded by
(2(1−a−b)n − 1)m+ (m− 1) ≤ 2(1−a−b)nm− 1, as required.

For the second direction, assume that every assignment to F satisfies at most p−1 clauses.
In order to show that the maximum flow from every α to every γ is at least 2(1−a−b)nm,

ICALP 2017
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we first fix α, β, and γ. Then, by passing flow in two phases we show that m units of flow
can be passed in Gα,β,γp from α to γ. As this argument applies for every β, we can add up
the respective flows without violating capacities, concluding the proof. By the assumption,
there exist m − (p − 1) = m − p + 1 i’s, such that α, β, and γ do not satisfy Ci, and we
denote a set with this amount of such i’s by Iβ . Each of these i’s induces a blue path
(α→ βli → γ) from α to γ in Gα,β,γp , and so we ship a unit of flow through every one of them
according to Iβ , in what we call the first phase. In the second phase, we ship additional
m− (m−p+ 1) = p−1 units in the following way. Let A1 := {i ∈ [m]\ Iβ : α 2 Ci∧β 2 Ci},
and A2 := ([m] \ Iβ) \A1 = {i ∈ [m] \ Iβ : α � Ci ∨ β � Ci}, where α � Ci denotes that the
assignment α satisfies Ci (as defined earlier), and α 2 Ci denotes that it does not satisfy Ci.
Let f : A1 ∪A2 → [m− |Iβ |] be a bijective function such that the range of A1 is [|A1|] and
the range of A2 is [m− |Iβ |] \ [|A1|]. Clearly, there exists such bijection and it is easy to find
one. For every i ∈ A1 we ship flow through the path (α→ βli → βri → β′ → β′j → γ), and
for every i ∈ A2 through the path (α→ βri → β′ → β′j → γ), in both cases with j = f(i).

Since we defined the flow in paths, we only need to show that the capacity requirements
hold, and we start with blue edges. Indeed, edges of the form (α, βli) are used in the first
phase, with flow that is determined uniquely by β and i ∈ Iβ , and in the second phase
uniquely according to β and i ∈ [m] \ Iβ , and so they cannot be used twice. Edges of the
form (βli, γ) are only used in the first phase, and their flow is uniquely determined according
to β and i ∈ Iβ , and so are good too. We now proceed to red edges, which were used only in
the second phase.

Edges of the forms (α, βri ), (βli, βri ) and (βri , β′) have flow that is uniquely determined by
β and i ∈ [m] \ Iβ , and so are not used more than once. Edges of the form (β′, β′j) have flow
that is uniquely determined by β and j = f(i) ∈ [p− 1], and since f is a bijection, every j
has at most one i such that f(i) = j, and so these edges are also used at most once. As a
byproduct, and since every edge of the form (β′j , γ) has only the edge (β′, β′j) as its source
for flow, edges of the form (β′j , γ) are also used at most once. Altogether, we have bounded
the total flow in all edges that were used in both phases, and so the capacity requirements
follow, which completes the proof of the second direction and of Lemma 2.1. J

Proof of Theorem 1.8. We apply Lemma 2.1 in the following way. By setting a = b ∈
[1/3, 1/2] we get graphs G = (V,E,w) with |V | = Θ(2an) (|V | = Θ(2an)m if a = 1/3) and
|E| = 2(1−a)nm. Hence, |E| = O(|V |1/a−1) and we get our desired bound for every |E|
between |V | and |V |2 and Theorem 1.8 follows. J

Proof of Theorem 1.9. Here we apply Lemma 2.1 a bit differently. By setting a, b ≤ 1/3 we
get graphs G = (V,E,w) with |V | = Θ(2(1−a−b)nm) and |E| = Θ((2an + 2bn)2(1−a−b)nm).
By setting |S| = |V |a/(1−a−b) and |T | = nb/(1−a−b) we get our lower bound for |E| =
O((|S|+ |T |)|V |) and Theorem 1.9 follows. J

3 Reduction to Multiple-Pairs Max-Flow in Capacitated Networks

In this section we prove Theorems 1.6 and 1.7. We proceed to prove our main technical
lemma.

I Lemma 3.1. MAX-CNF-SAT on n variables and m clauses {Ci}i∈[m] can be reduced to
O(m) instances of ST-Max-Flow, each with the property that S ∩ T = ∅, and all of them are
in graphs with N = Θ(2n/3m) nodes, O(2n/3m) = O(N) edges, and with capacities in [N ].
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Proof. Given a CNF-formula F on n variables and m clauses as input for MAX-CNF-SAT,
we split the variables into three sets U1, U2, and U3 of size n/3 each and enumerate all 2n/3
partial assignments (with respect to F ) to each of them, when the objective is to find a triple
(α, β, γ) of assignments to U1, U2, and U3, that satisfy the maximal number of clauses. We
will have an instance Gp of ST-Max-Flow with the mentioned property for each value p ∈ [m],
in which by one call to ST-Max-Flow we check if there exists a triple (α, β, γ) that satisfies at
least p clauses, as follows.

We construct the graph Gp on N nodes V1 ∪ V2 ∪ V3 ∪A∪B ∪ {vB}, where V1 contains a
node α for every assignment α to U1, V2 contains 3m+ 1 nodes for every assignment β to U2,
that are βli, βci , βri , for every i ∈ [m], and β′, V3 contains a node γ for every assignment γ to
U3, A contains two nodes C�

i and C2
i for every clause Ci, and B contains a node Ci for every

clause Ci. We use the notation α for nodes in V1 and assignments to U1, β to assignments to
U2, γ for nodes in V3 and assignments to U3, and Ci for nodes in B and clauses. However, it
will be clear from the context. Now, we have to describe the edges in the network. In order
to simplify the reduction, we partition the edges into red and blue colors, as follows.

For every α and i ∈ [m] we add a red edge of capacity 2n/3 from α to C�
i if α � Ci, and

a blue edge of the same capacity from α to C2
i otherwise. We further add, for every β, a red

edge of capacity 1 from C�
i to βci , a blue edge of capacity 1 from C2

i to βli, a blue edge of
capacity 1 from βli to βri if β 2 Ci, a red edge of capacity 1 from βci to β′, and a blue edge of
capacity 1 from βri to Ci. For every β we add a red edge of capacity p − 1 from β′ to vB.
For every γ we add a red edge of capacity 2n/3(p − 1) from vB to γ ∈ V3, and finally, for
every γ and i ∈ [m] we add a blue edge of capacity 2n/3 from Ci to γ if γ 2 Ci.

The graph we built has N = 2n/3 + 2m+ 2n/3 · 3m+ 2n/3 + 1 +m+ 2n/3 = Θ(2n/3m)
nodes, at most 2n/3m+2n/3 ·2m+2n/3 ·2m+2n/3m+2n/3 +1+2n/3m+2n/3m = O(2n/3m)
edges, all of its capacities are in [N ], and its construction time is O(Nm) (see Figure 3).

We proceed to prove that if there is an assignment to F that satisfies at least p clauses
then the graph Gp we built has a pair α, γ with maximum flow from α to γ at most 2n/3m−1,
and otherwise, every α, γ has a maximum flow of size at least 2n/3m. Hence, by simply
picking the maximal j ∈ [m] such that the maximum flow in Gj of some pair α, γ is at
most 2n/3m− 1, and then iterating over all assignments β to U2 with α and γ fixed as the
assignments to U1 and U3, we can also find the required triple α, β, γ.

For the first direction, assume that F has an assignment that satisfies at least p clauses,
and denote such assignment by Φ. Let αΦ, βΦ, and γΦ be the assignments to U1, U2, and U3,
respectively, that are induced from Φ. We will show that there exists an (αΦ, γΦ) cut whose
capacity is at most 2n/3m − 1, hence by the Min-Cut Max-Flow theorem, the maximum
flow from αΦ to γΦ is bounded by this number, concluding the proof of the first direction.
We define the cut in a way that for every β 6= βΦ, the cut will have m cut edges that are
contributed from nodes related to β, and nodes related to βΦ will be carefully added to either
side of the cut so that they will contribute capacity of only m− 1 to the cut. To be more
precise, we define a suitable cut as follows.

S = {αΦ, β
′
Φ} ∪ {C�

i : αΦ � Ci} ∪ {C2
i : αΦ 2 Ci} ∪ {βΦ

c
i : i ∈ [m]}

∪ {Ci, βΦ
l
i, βΦ

r
i : γΦ � Ci} ∪ {βΦ

l
i : γΦ 2 Ci ∧ βΦ � Ci}

I Claim 3.2. The cut (S, V \ S) = (S, T ) has capacity 2n/3m− 1.

Proof of Claim. We will go over all the nodes in S, and count the total capacity leaving to
nodes in T for each of them. αΦ ∈ S and all nodes C�

i and C2
i that are adjacent to it are

in S too, hence it does not contribute anything. For every i ∈ [m], we have two cases for

ICALP 2017



20:10 Conditional Lower Bounds for All-Pairs Max-Flow
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Figure 3 An illustration of part of the reduction, with p = m. Here, U1, U2, and U3 have 2
assignments each; α and α̃ to U1, β and β̃ to U2, γ and γ̃ to U3. Bolder edges correspond to edges
of higher capacity (specified wherever they are bigger than 1), and blue edges are dashed. For
simplicity, only the edges relevant to α and γ̃ are presented. In this illustration, α satisfies C3, β
satisfies C1, β̃ satisfies C3, and γ̃ satisfies C2. Note that the assignment comprised of α, β, and γ̃
satisfies all the clauses, and indeed the maximum flow from α to γ is 2 · 3− 1 = 5.

nodes in A. If αΦ � Ci then C2
i ∈ T and hence C2

i does not contribute anything. However,
C�
i has 2n/3 outgoing edges, where all except βΦ

c
i are in T . Hence, it contributes 2n/3 − 1

to the cut. Else, if αΦ 2 Ci then C�
i ∈ T and hence C�

i does not contribute anything. But
C2
i has 2n/3 outgoing edges, of which 2n/3 − 1 are cut edges as their targets are in T , and

the one incoming to βΦ
l
i is a cut edge if and only if βΦi 2 Ci and also γΦ 2 Ci (equivalently,

βΦ
l
i ∈ T ), and in our current case it means that Φ 2 Ci. Hence, for every i ∈ [m], the nodes

in {C�
i , C

2
i } contribute 2n/3 − 1 to the cut if Φ � Ci, and 2n/3 otherwise. Since there are at

most m− p clauses that are not satisfied by Φ, summing over all i ∈ [m] would yield a total
of at most p(2n/3 − 1) + (m− p)(2n/3) = 2n/3m− p cut edges for vertices with origin in A.

For every β 6= βΦ, all nodes in V2 that are associated with β, vB, and γΦ, are in T and
hence will not contribute anything to the cut. However, the node βΦ

′ is always in S, with vB
its sole target, and hence the edge (βΦ

′, vB) is in the cut and βΦ
′ contributes an additional

amount of p− 1, to a current total of at most 2n/3m− p+ (p− 1) = 2n/3m− 1. In addition,
βΦ
′ is the only target of βΦ

c
i , and thus βΦ

c
i will not contribute to the cut.

We will show that the rest of the nodes, i.e., nodes in V2 that are associated with βΦ,
and the nodes in B, contribute nothing to the cut. For every i ∈ [m], βΦ

l
i ∈ S if and only

if either βΦ � Ci or γΦ � Ci. It always happens that βΦ
c
i ∈ S, and βΦ

r
i ∈ T if and only if
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γΦ 2 Ci, but in such case it must be that βΦ � Ci, which implies that the edge (βΦ
l
i, βΦ

r
i ) is

not in the graph, thus the total contribution of βΦ
l
i is zero.

For every i ∈ [m], it is easy to verify that each of the following four implies the rest.
βΦ

r
i ∈ S, γΦ � Ci, Ci ∈ S, and the edge (Ci, γΦ) is not in the graph. In the case where Ci

and βΦ
r
i are in T it is clear that they do not contribute anything, so we will focus on the

other case. Since Ci is the only target of βΦ
r
i , βΦ

r
i will not increase the cut capacity. In

addition, since the edge (Ci, γΦ) is not in the graph, Ci does not increase the capacity of the
cut either. Altogether we have bounded the total capacity of the cut by 2n/3m− 1, finishing
the proof of Claim 3.2. J

Proceeding with the proof of Lemma 3.1, we now focus on the second direction. Assume
that every assignment to F satisfies at most p− 1 clauses. We remind that we need to prove
that the maximum flow from every α to every γ is at least 2n/3m, and to do this we first
fix α and γ. By the assumption, for every β there exist m− (p− 1) = m− p+ 1 i’s, such
that α, β, and γ do not satisfy Ci, and we denote a set with this amount of such i’s by Iβ .
Each of these i’s induces a blue path (α→ C2

i → βli → βri → Ci → γ) from α to γ, and so
we pass a unit of flow through every one of them according to Iβ , and for all β, in what we
call the first phase. We note that so far, the flow sums up to 2n/3(m − p + 1), and so we
carry on with shipping the second phase of flow through paths that are not entirely blue.

We claim that for every β, we can pass an additional amount of m− (m− p+ 1) = p− 1
units through β′, which would add up to a total flow of 2n/3(m−p+1)+2n/3(p−1) = 2n/3m,
concluding the proof. Indeed, for every β, we ship flow in the following way. For every
i ∈ [m] \ Iβ , if α 2 Ci then send a unit through (α→ C2

i → βli → βci → β′ → vB → γ), and
otherwise send a unit through (α→ C�

i → βci → β′ → vB → γ).
Since we defined the flow in paths, we only need to show that the capacity constraints are

satisfied, starting with edges of color blue. Edges of the forms (βli, βri ), (βri , Ci), and (Ci, γ)
are only used in the first phase, where the flow in the first two is uniquely determined by β
and i ∈ Iβ , and so at most 1 unit of flow is passed through them, and the flow in the latter
kind is determined by i ∈ Iβ , and the same i ∈ Iβ can have at most |{βri }β | = 2n/3 units of
flow passing in (Ci, γ), and so the flow in it is also bounded. The flow in edges of the form
(C2

i , β
l
i) in the first phase is uniquely determined by β and i ∈ Iβ , and in the second phase

uniquely according to β and i ∈ [m] \ Iβ , and so will not be used twice, and the flow in edges
of the form (α,C2

i ) is determined in the first phase by i ∈ Iβ and in the second phase by
i ∈ [m] \ Iβ , and so will be used at most

∑
β |Iβ ∩ {i}|+

∑
β |([m] \ Iβ) ∩ {i}| ≤ 2n/3 times.

We now proceed to prove that red edges too do not have more flow than their capacity,
and for this we only need to consider the second phase. Edges of the forms (C�

i , β
c
i ), (βli, βci ),

and (βci , β′) has flow that is uniquely determined by β and i ∈ [m] \ Iβ and so are not used
more than once, edges of the form (β′, vB) has flow that is determined by β and thus have
flow |{βci }i∈[m]\Iβ

| = |[m] \ Iβ | = p − 1 and hence are properly bounded, and edges of the
form (vB , γ) have flow of size (p − 1)|{β′}β |2n/3 = (p − 1)2n/3. Finally, edges of the form
(α,C�

i ) have flow that is determined by i ∈ [m] \ Iβ and so are used at most |{βci }β | = 2n/3
times. Altogether, we have bounded the total flow in all the edges that were used in both
phases, and so the capacity requirements follow, which completes the proof of the second
direction and of Lemma 3.1. J

Proof of Theorem 1.6. We use Lemma 3.1 in the following way. Assume that for some |S′|
and |T ′| there is an algorithm for ST-Max-Flow that runs in time O((|S′||T ′|m)1−ε), and
consider the version of ST-Max-Flow with S′′ and T ′′ such that S′′ ∩ T ′′ = ∅. Applying such
an algorithm repeatedly with S′ and T ′ iterate over respective partitions of S′′ and T ′′ of sizes
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|S′′|/|S′| and |T ′′|/|T ′|, respectively, would solve S′′ and T ′′’s version of ST-Max-Flow and
take time (|S′′|/|S′|)(|T ′′|/|T ′|)O(|S′||T ′|m)1−ε) = O((|S′′||T ′′|m)1−ε′) for some ε′ = ε′(ε),
and Theorem 1.6 follows. J

4 Global Max-Flow

Proof of Theorem 1.10. Let U and V be an instance of the Orthogonal Vectors problem,
where |U | = |V | = n′, and all the vectors are from {0, 1}d for some d = polylog(n′). We
construct a graph G = (U ′, V ′, D) as follows. U ′ contains a node u for every vector u ∈ U ,
V ′ contains a node v for every v ∈ V , and D contains three nodes c0,0, c0,1, and c1,0 for
every coordinate c ∈ [d]. For every u ∈ U ′ and c ∈ D, we add an edge from u to c0,0 and c0,1
if u[c] = 0, and an edge from u to c1,0 otherwise. Similarly, for every v ∈ U ′ and c ∈ D, we
add an edge from v to c0,0 and c1,0 if v[c] = 0, and an edge from v to c0,1 otherwise. This
graph has n = n′ + n′ + 3d = O(n′) nodes and at most n′ · 2d+ n′ · 2d = Õ(n′) edges. For
every u ∈ U ′, v ∈ V ′, and c ∈ [d], there is exactly one path (of length 2) from u to v through
nodes associated with c if and only if u[c] · v[c] = 0, and no paths through them otherwise.
Hence, the number of edge disjoint paths from u to v is d if their inner product is 0, and less
than d otherwise, and so an algorithm for Maximum Local Edge Connectivity with strictly
subquadratic runtime implies an algorithm for the Orthogonal Vectors problem with similar
runtime, completing the proof. J
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