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Abstract. We introduce the following notion of compressing an undi-
rected graph G with (nonnegative) edge-lengths and terminal vertices
R ⊆ V (G). A distance-preserving minor is a minor G′ (of G) with pos-
sibly different edge-lengths, such that R ⊆ V (G′) and the shortest-path
distance between every pair of terminals is exactly the same in G and
in G′. We ask: what is the smallest f∗(k) such that every graph G with
k = |R| terminals admits a distance-preserving minor G′ with at most
f∗(k) vertices?
Simple analysis shows that f∗(k) ≤ O(k4). Our main result proves that
f∗(k) ≥ Ω(k2), significantly improving over the trivial f∗(k) ≥ k. Our
lower bound holds even for planar graphs G, in contrast to graphs G of
constant treewidth, for which we prove that O(k) vertices suffice.

1 Introduction

A graph compression of a graph G is a small graph G∗ that preserves certain
features (quantities) of G, such as distances or cut values. This basic concept was
introduced by Feder and Motwani [FM95], although their definition was slightly
different technically. (They require that G∗ has fewer edges than G, and that
each graph can be quickly computed from the other one.) Our paper is concerned
with preserving the selected features of G exactly (i.e., lossless compression), but
in general we may also allow the features to be preserved approximately.

The algorithmic utility of graph compression is readily apparent – the com-
pressed graph G∗ may be computed as a preprocessing step, and then further
processing is performed on it (instead of on G) with lower runtime and/or mem-
ory requirement. This approach is clearly beneficial when the compression can be
computed very efficiently, say in linear time, in which case it may be performed
on the fly, but it is useful also when some computations are to be performed
(repeatedly) on a machine with limited resources such as a smartphone, while
the preprocessing can be executed in advance on much more powerful machines.

For many features, graph compression was already studied and many results
are known. For instance, a k-spanner of G is a subgraph G∗ in which all pairwise
distances approximate those in G within a factor of k [PS89]. Another example,
closer in spirit to our own, is a sourcewise distance preserver of G with respect
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to a set of vertices R ⊆ V (G); this is a subgraph G∗ of G that preserves (exactly)
the distances in G for all pairs of vertices in R [CE06]. We defer the discussion
of further examples and related notions to Section 1.2, and here point out only
two phenomena: First, it is common to require G∗ to be structurally similar to
G (e.g., a spanner is a subgraph of G), and second, sometimes only the features
of a subset R need to be preserved (e.g., distances between vertices of R).

We consider the problem of compressing a graph so as to maintain the
shortest-path distances among a set R of required vertices. From now on, the
required vertices will be called terminals.

Definition 1. Let G be a graph with edge lengths ℓ : E(G) → R+ and a set of
terminals R ⊆ V (G). A distance-preserving minor (of G with respect to R) is
a graph G′ with edge lengths ℓ′ : E(G′) → R+ satisfying:

1. G′ is a minor of G; and
2. dG′(u, v) = dG(u, v) for all u, v ∈ R.

Here and throughout, dH denotes the shortest-path distance in a graph H. It
also goes without saying that the terminals R must survive the minor operations
(they are not removed, but might be merged with non-terminals, due to edge
contractions), and thus dG′(u, v) is well-defined; in particular, R ⊆ V (G′). For
illustration, suppose G is a path of n unit-length edges and the terminals are
the path’s endpoints; then by contracting all the edges, we can obtain G′ that
is a single edge of length n.

The above definition basically asks for a minor G′ that preserves all terminal
distances exactly. The minor requirement is a common method to induce struc-
tural similarity between G′ and G, and in general excludes the trivial solution
of a complete graph on the vertex set R (with appropriate edge lengths).

This definition may be viewed as a conceptual contribution of our paper.
Indeed, our main motivation is its mathematical elegance, but let us mention
one potential algorithmic application. Suppose we need to solve multiple TSP
instances involving altogether relatively few vertices in a large (perhaps planar)
graph; then it makes sense to reduce the graph (to a minor of it).

We raise the following question, which to the best of our knowledge was not
studied before. Its main point is to bound the size of G′ independently of the
size of G.

Question 1. What is the smallest f∗(k), such that for every graph G with k
terminals, there is a distance-preserving minor G′ with at most f∗(k) vertices?

Before describing our results, let us provide a few initial observations, which
may well be folklore or appear implicitly in literature. Consider the naive method
depicted in Algorithm 1. It is straightforward to see that these steps reduce
the number of non-terminals without affecting terminal distances, and a simple
analysis proves that this algorithm always produces a minor with O(k4) vertices
and edges and runs in polynomial time (details omitted from this version). It
follows that f∗(k) exists, and furthermore

f∗(k) ≤ O(k4).



Algorithm 1 ReduceGraphNaive (graph G, required vertices R)

(1) Remove all vertices and edges in G that do not participate in any shortest-path
between terminals.

(2) Repeat while the graph contains a non-terminal v of degree two: merge v with
one of its neighbors (by contracting the appropriate edge), thereby replacing the
2-path w1 − v − w2 with a single edge (w1, w2) of the same length as the 2-path.

Moreover, if G is a tree then G′ has at most 2k− 2 vertices, and this last bound
is in fact tight (attained by a complete binary tree) whenever k is a power of 2.

1.1 Our Results

Our first and main result directly addresses Question 1, by providing the lower
bound f∗(k) ≥ Ω(k2). The proof uses only simple planar graphs, leading us to
study the restriction of f∗(k) to specific graph families, defined as follows.1

Definition 2. For a family F of graphs, define f∗(k,F) as the minimum value
such that every graph G = (V,E, ℓ) ∈ F with k terminals admits a distance-
preserving minor G′ with at most f∗(k,F) vertices.

Theorem 1. Let Planar be the family of all planar graphs. Then

f∗(k) ≥ f∗(k,Planar) ≥ Ω(k2).

Our proof of this lower bound uses a two-dimensional grid graph, which
has super-constant treewidth. This stands in contrast to graphs of treewidth 1,
because we already mentioned that

f∗(k,Trees) ≤ 2k − 2,

where Trees is the family of a all tree graphs. It is thus natural to ask whether
bounded-treewidth graphs behave like trees, for which f∗ ≤ O(k), or like planar
graphs, for which f∗ ≥ Ω(k2). We answer this question as follows.

Theorem 2. Let Treewidth(p) be the family of all graphs with treewidth at most
p. Then for all k ≥ p,

Ω(pk) ≤ f∗(k,Treewidth(p)) ≤ O(p3k).

We summarize our results together with some initial observations in the table
below.

1 We use (V,E, ℓ) to denote a graph with vertex set V , edge set E, and edge lengths
ℓ : E → R+. As usual, the definition of a family F of graphs refers only to the
vertices and edges, and is irrespective of the edge lengths.



Graph Family F Bounds on f∗(k,F)
Trees = 2k − 2 omitted
Treewidth p Ω(pk) O(p3k) Theorem 2
Planar Graphs Ω(k2) O(k4) Theorem 1
All Graphs Ω(k2) O(k4) Theorem 1

All our upper bounds are algorithmic and run in polynomial time. In fact,
they can be achieved using the naive algorithm described above.

1.2 Related Work

Coppersmith and Elkin [CE06] studied a problem similar to ours, except that
they seek subgraphs with few edges (rather than minors). Among other things,
they prove that for every weighted graph G = (V,E) and every set of k =

O(|V | 14 ) terminals, there exists a weighted subgraph G′ = (V,E′) with |E′| ≤
O(|V |), that preserves terminal distances exactly. They also show a nearly-
matching lower bound on |E′|.

Some compressions preserve cuts and flows in a given graph G rather than
distances. A Gomory-Hu tree [GH61] is a weighted tree that preserves all st-cuts
in G (or just between terminal pairs). A so-called mimicking network preserves
all flows and cuts between subsets of the terminals in G [HKNR98].

Terminal distances can also be approximated instead of preserved exactly.
In fact, allowing a constant factor approximation may be sufficient to obtain
a compression G∗ without any non-terminals. Gupta [Gup01] introduced this
problem and proved that for every weighted tree T and set of terminals, there
exists a weighted tree T ′ without the non-terminals that approximates all ter-
minal distances within a factor of 8. It was later observed that this T ′ is in fact
a minor of T [CGN+06], and that the factor 8 is tight [CXKR06]. Basu and
Gupta [BG08] claimed that a constant approximation factor exists for weighted
outerplanar graphs as well. It remains an open problem whether the constant
factor approximation extends also to planar graphs (or excluded-minor graphs in
general). Englert et al. [EGK+10] proved a randomized version of this problem
for all excluded-minor graph families, with an expected approximation factor
depending only on the size of the excluded minor.

The relevant information (features) in a graph can also be maintained by
a data structure that is not necessarily graphs. A notable example is Distance
Oracles – low-space data structures that can answer distance queries (often ap-
proximately) in constant time [TZ05]. These structures adhere to our main re-
quirement of “compression” and are designed to answer queries very quickly.
However, they might lose properties that are natural in graphs, such as the tri-
angle inequality or the similarity of a minor to the given graph, which may be
useful for further processing of the graph.



2 A Lower Bound of Ω(k2)

In this section we prove Theorem 1 using an even stronger assertion: there exist
planar graphs G such that every distance-preserving planar graph H (a planar
graph with R ⊆ V (H) that preserves terminal distances) has |V (H)| ≥ Ω(k2).
Since any minor G′ of G is planar, Theorem 1 follows.

Our proof uses a k × k grid graph with k terminals, whose edge-lengths are
chosen so that terminal distances are essentially “linearly independent” of one
another. We use this independence to prove that no distance-preserving minor
G′ can have a small vertex-separator. Since G′ is planar, we can apply the planar
separator theorem [LT79], and obtain the desired lower bound.

Theorem 3. For every k ∈ N there exists a planar graph G = (V,E, ℓ) (in
particular, the k × k grid) and k terminals R ⊆ V , such that every distance-
preserving planar graph G′ = (V ′, E′, ℓ′) has Ω(k2) vertices. In particular,
f∗(k,Planar) ≥ Ω(k2).

Proof. For simplicity we shall assume that k is even. Consider a grid graph G of
size k×k with vertices (x, y) for x, y ∈ [0, k−1]. Let the length function ℓ be such
that the length of all horizontal edges ((x, y), (x + 1, y)) is 1, and the length of
each vertical edge ((x, y), (x, y+1)) is 1+ 1

2x2 ·k
. Let R1 = {(0, y) : y ∈ [0, k

2 −1]},
and R2 = {(x, x) : x ∈ [k2 , k−1]}. Let the terminals in the graph be R = R1∪R2,
so |R| = k. See Figure 1 for illustration.
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Fig. 1. A grid graph G and terminals R.
Fig. 2. Terminals on different sides con-
nected by paths going through v ∈ S.

It is easy to see that the shortest-path between a vertex (0, y) ∈ R1 and a
vertex (x, x) ∈ R2 includes exactly x horizontal edges and x− y vertical edges.
Indeed, such paths have length smaller than x + (x − y)(1 + 1

k ) ≤ 2x − y + 1.
Any other path between these vertices will have length greater than 2x− y + 2.



Furthermore, the shortest path with x horizontal edges and x− y vertical edges
starting at vertex (0, y) makes horizontal steps before vertical steps, since the
vertical edge-lengths decrease as x increases, hence

dG((0, y), (x, x)) = 2x− y +
x− y

2x2 · k
. (1)

Assume towards contradiction that there exists a planar graph G′ with less

than k2

1600 vertices that preserves terminal distances exactly. Since G′ is planar,
by the weighted version of the planar separator theorem by Lipton and Tarjan
[LT79] with vertex-weight 1 on terminals and 0 on non-terminals, there exists
a partitioning of V ′ into three sets A1, S, and A2 such that w(S) ≤ |S| ≤
2.5 ·

√
k2

1600 < 3k
40 , each of A1 and A2 has at most 2k

3 terminals, and there

are no edges going between A1 and A2. Hence, for i ∈ {1, 2} it holds that
w(Ai ∪ S) ≥ k/3 and w(Ai) ≥ k

3 − 3k
40 > k

4 .
Without loss of generality, we claim that A1∩R1 and A2∩R2 each have Θ(k)

terminals. To see this, suppose without loss of generality that A1 is the heavier
of the two sets (i.e. w(A1) ≥ k

2 − 3k
40 and k

4 ≤ w(A2) ≤ k
2 ). Suppose also that

w(A2∩R2) ≥ w(A2∩R1). Then w(A2∩R2) ≥ k
8 , and w(A2∩R1) ≤ 1

2 ·w(A2) ≤ k
4 ,

implying that w(A1∩R1) ≥ w(R1)−(w(R1∩A2)+w(R1∩S)) ≥ k
2−(k4+

3k
40 ) =

k
5 .

In conclusion, without loss of generality it holds that w(A1 ∩ R1) ≥ k
5 and

w(A2 ∩ R2) ≥ k
8 . Let Q1 ⊆ A1 ∩ R1 and Q2 ⊆ A2 ∩ R2 be two sets with the

exact sizes k
5 and k

8 .
Every path between a terminal in Q1 and a terminal in Q2 goes through

at least one vertex of the separator S. Overall, the vertices in the separator
participate in k

8 × k
5 paths between Q1 and Q2. See Figure 2 for illustration.

We will need the following lemma, which is proved below.

Lemma 1. Let G′, S, Q1 and Q2 be as described above. Then every vertex v ∈ S
participates in at most |Q1|+ |Q2| = k

5 + k
8 shortest paths between Q1 and Q2.

Applying Lemma 1 to every vertex in S, at most 3k
40 · 13k

40 = 39k2

1600 < k2

40
shortest paths between Q1 and Q2 go through S, which contradicts the fact that

all k
8 ·

k
5 = k2

40 shortest-paths between Q1 and Q2 in G′ go through the separator,
and proves Theorem 3. ⊓⊔

Proof (of Lemma 1). Define a bipartite graph H on the sets Q1 and Q2, with an
edge between (0, y) ∈ Q1 and (x, x) ∈ Q2 whenever a shortest path in G′ between
(0, y) and (x, x) uses the vertex v. We shall show that H does not contain an
even-length cycle. Since H is bipartite, it contains no odd-length cycles either,
making H a forest with |E(H)| < |Q1| + |Q2| = k

5 + k
8 , thereby proving the

lemma.
Let us consider a potential 2s-length (simple) cycle in H on the vertices

(0, y1), (x1, x1), (0, y2), (x2, x2), ..., (0, ys), (xs, xs) (in that order), for particular
(0, yi) ∈ Q1 and (xi, xi) ∈ Q2. Every edge ((0, y), (x, x)) ∈ E(H) represents a
shortest path in G′ that uses v, thus

dG((0, y), (x, x)) = dG′((0, y), v) + dG′(v, (x, x)). (2)



If the above cycle exists in H, then the following equalities hold (by convention,
let ys+1 = y1). Essentially, we get that the sum of distances corresponding
to “odd-numbered” edges in the cycle equals the one corresponding to “even-
numbered” edges in the cycle.

s∑
i=1

dG((0, yi), (xi, xi))
(2)
=

s∑
i=1

dG′((0, yi), v) +
s∑

i=1

dG′(v, (xi, xi))

=

s∑
i=1

dG′(v, (0, yi+1)) +

s∑
i=1

dG′((xi, xi), v)

(2)
=

s∑
i=1

dG((xi, xi), (0, yi+1)).

Plugging in the distances as described in (1) and simplifying, we obtain

s∑
i=1

(2xi − yi + (xi − yi) ·
1

2x
2
i · k

) =
s∑

i=1

(2xi − yi+1 + (xi − yi+1) ·
1

2x
2
i · k

),

or equivalently,
s∑

i=1

yi

2x
2
i

=
s∑

i=1

yi+1

2x
2
i

Suppose without loss of generality that x1 = min{xi : i ∈ [1, s]} (otherwise
we can rotate the notations along the cycle), and that y1 > y2 (otherwise we can
change the orientation of the cycle). Then we obtain

y1 − y2

2x
2
1

=
s∑

i=2

yi+1 − yi

2x
2
i

.

However, since y1 > y2, the lefthand side is at least 1

2x
2
1
, whereas the righthand

side is
∑s

i=2
yi+1−yi

2x
2
i

≤ (s − 1) · k

2(x1+1)2
≤ k2

2(x1+1)2
. Therefore it must hold that

22x1+1 ≤ k2. Since x1 ≥ k
2 , this inequality does not hold. Hence, for all s, no

cycle of size 2s exists in H, completing the proof of Lemma 1. ⊓⊔

3 Θ(k) Bounds for Constant Treewidth Graphs

In this section we prove Theorem 2, which bounds f∗(k,Treewidth(p)). The upper
and the lower bound are proved separately in Theorems 4 and 5 below.

3.1 An Upper Bound of O(p3k)

Theorem 4. Every graph G = (V,E, ℓ) with treewidth p and a set R ⊆ V of
k terminals admits a distance-preserving minor G′ = (V ′, E′, ℓ′) with |V ′| ≤
O(p3k). In other words, f∗(k,Treewidth(p)) ≤ O(p3k).



The graph G′ can in fact be computed in time polynomial in |V | (see Remark
1).

Without loss of generality, we may assume that k ≥ p, since otherwise the
O(k4) bound mentioned in the introduction applies. To prove Theorem 4 we
introduce the algorithm ReduceGraphTW (depicted in Algorithm 2 below),
which follows a divide-and-conquer approach. We use the small separators guar-
anteed by the treewidth p, to break the graph recursively until we have small,
almost-disjoint subgraphs. We execute ReduceGraphNaive (Algorithm 1) on
each of these subgraphs with an altered set of terminals — the original termi-
nals in the subgraph, plus the separator (boundary) vertices which disconnect
these terminals from the rest of the graph — and we get many small distance-
preserving minors; these are then combined into a distance-preserving minor G′

of the original graph G.

Proof (of Theorem 4). The divide-and-conquer technique works as follows. Given
a partitioning of V into the sets A1, S and A2, such that removing S disconnects
A1 from A2, the graph G is divided into the two subgraphs G[Ai ∪ S] (the
subgraph of G induced on Ai∪S) for i ∈ {1, 2}. For each G[Ai∪S], we compute
a distance-preserving minor with respect to terminals set (R∩Ai)∪S, and denote

it Ĝi = (V̂i, Êi, ℓ̂i). The two minors are then combined into a distance-preserving
minor of G with respect to R, according to the following definition.

We define the union H1 ∪H2 of two (not necessarily disjoint) graphs H1 =
(V1, E1, ℓ1) and H2 = (V2, E2, ℓ2) to be the graph H = (V1 ∪ V2, E1 ∪ E2, ℓ)
where the edge lengths are ℓ(e) = min{ℓ1(e), ℓ2(e)} (assuming infinite length
when ℓi(e) is undefined). A crucial point here is that H1,H2 need not be disjoint
– overlapping vertices are merged into one vertex in H, and overlapping edges
are merged into a single edge in H.

Lemma 2. The graph Ĝ = Ĝ1 ∪ Ĝ2 is a distance-preserving minor of G with
respect to R.

Proof (of Lemma 2). Note that since the boundary vertices in S exist in both Ĝ1

and Ĝ2, they are never contracted into other vertices. In fact, the only minor-
operation allowed on vertices in S is the removal of edges (s1, s2) for two vertices
s1, s2 ∈ S, when shorter paths in G[A1 ∪ S] or G[A2 ∪ S] are found. It is thus
possible to perform both sequences of minor-operations independently, making
Ĝ a minor of G.

A path between two vertices t1, t2 ∈ R can be split into subpaths at every visit
to a vertex in R∪S, so that each subpath between v, u ∈ R∪S does not contain
any other vertices in R∪S. Since there are no edges between A1 and A2, each of
these subpaths exists completely inside G[A1 ∪S] or G[A2 ∪S]. Hence, for every
subpath between v, u ∈ R∪S it holds that dG(v, u) = dG[Ai∪S](v, u) = dĜi

(v, u)

for some i ∈ {1, 2}. Altogether, the shortest path in G is preserved in Ĝ. It is
easy to see that shorter paths will never be created, as these too can be split
into subpaths such that the length of each subpath is preserved. Hence, Ĝ is a
distance-preserving minor of G. ⊓⊔



The graph G has bounded treewidth p, hence for every nonnegative vertex-
weights w(·), there exists a set S ⊆ V of at most p+ 1 vertices (to simplify the
analysis, we assume this number is p) whose removal separates the graph into
two parts A1 and A2, each with w(Ai) ≤ 2

3w(V ). It is then natural to compute
a distance-preserving minor for each part Ai by recursion, and then combine the
two solutions using Lemma 2. We can use the weights w(·) to obtain a balanced
split of the terminals, and thus |R ∩ Ai| is a constant factor smaller than |R|.
However, when solving each part Ai, the boundary vertices S must be counted
as “additional” terminals, and to prevent those from accumulating too rapidly,
we compute (à la [Bod89]) a second separator Si with different weights w(·) to
obtain a balanced split of the boundary vertices accumulated so far.

Algorithm ReduceGraphTW receives, in addition to a graph H and a set
of terminals R ⊆ V (H), a set of boundary vertices B ⊆ V (H). Note that a
terminal that is also on the boundary is counted only in B and not in R, so that
R ∩B = ∅.

The procedure Separator(H,U) returns the triple ⟨A1, S, A2⟩ of a separator
S and two sets A1 and A2 such that |S| ≤ p, no edges between A1 and A2 exist
in G, and |A1 ∩U |, |A2 ∩U | ≤ 2

3 |U |, i.e., using w(·) that is unit-weight inside U
and 0 otherwise.

Algorithm 2 ReduceGraphTW (graph H, required vertices R, boundary
vertices B)

1: if |R ∪B| ≤ 18p then
2: return ReduceGraphNaive(H,R ∪B) (see Algorithm 1)
3: ⟨A1, S,A2⟩ ← Separator(H,R)
4: for i = 1, 2 do
5: ⟨A1

i , S
i, A2

i ⟩ ← Separator(H[Ai ∪ S], (B ∩Ai) ∪ S)
6: Ri ← R \ (S ∪ Si)
7: Bi ← B ∪ S ∪ Si

8: for j = 1, 2 do
9: Ĝj

i ← ReduceGraphTW(H[Aj
i ∪ Si], Ri ∩Aj

i , B
i ∩ (Aj

i ∪ Si))
10: return (Ĝ1

1 ∪ Ĝ2
1) ∪ (Ĝ1

2 ∪ Ĝ2
2).

See Figure 3 for an illustration of a single execution. Consider the recursion
tree T on this process, starting with the invocation ofReduceGraphTW(G,R, ∅).
A node a ∈ V (T ) corresponds to an invocationReduceGraphTW(Ha, Ra, Ba).
The execution either terminates at line 2 (the stop condition), or performs 4
additional invocations bi for i ∈ [1, 4], each with |Rbi | ≤ 2

3 |Ra|. As the pro-
cess continues, the number of terminals in Ra decreases, whereas the number
of boundary vertices may increase. We show the following upper bound on the
number of boundary vertices Ba.

Lemma 3. For every a ∈ V (T ), the number of boundary vertices |Ba| < 6p.

Proof (of Lemma 3). Proceed by induction on the depth of the node in the
recursion tree. The lemma clearly holds for the root of the recursion-tree, since



Fig. 3. The separators S (from line 3) and S1 (from line 7), and the subgraphH[A1
1∪S1]

to be processed recursively (in line 11).

initially B = ∅. Suppose it holds for an execution with values Ha, Ra, Ba. When
partitioning V (Ha) into A1, S, and A2, the separator S has at most p vertices.
From the induction hypothesis, |Ba| < 6p, making |Ba ∪ S| < 7p.

The algorithm constructs another separator, this time separating the bound-
ary vertices Ba ∪ S. For i = 1, 2 and j = 1, 2 it holds that, |Si| ≤ p, |Aj

i | ≤
2
3 · |Ba ∪ S| ≤ 2

3 · 7p = 14
3 p, and so |Aj

i ∪ Si| ≤ 14
3 p + p < 6p. The execution

corresponding to the node a either terminates in line 2, or invokes executions
with the values Aj

i ∪ Si for i, j = 1, 2, hence all new invocations have less than
6p boundary vertices. ⊓⊔

We also prove the following lower bound on the number of terminals Ra.

Lemma 4. Every a ∈ V (T ) is either a leaf of the tree T , or it has at least two
children, denoted b1, b2, such that |Rb1 |, |Rb2 | ≥ p.

Proof (of Lemma 4). Consider a node a ∈ V (T ). If this execution terminates at
line 2, a is a leaf and the lemma is true. Otherwise it holds that |Ra∪Ba| ≥ 18p.
Since Lemma 3 states that |Ba| ≤ 6p it must holds that |Ra| ≥ 12p.

When performing the separation of V (Ha) into A1, S, and A2, the vertices Ra

are distributed between A1, S, and A2, such that |Ra∩(Ai∪S)| ≥ 1
3 |Ra| = 4p for

i = 1, 2. Since |S| ≤ p it must holds that |(Ra \S)∩Ai| = |(Ra∩ (Ai∪S))\S| ≥
3p. When the next separation is performed, at most p of these 3p terminals
belong to Si, while the remaining terminals belong to Ri and are distributed
between A1

i and A2
i . At least one of these sets, without loss of generality A1

i ,
gets |Ri ∩A1

i | ≥ 1
22p = p. This is a value of Rb for a child b of a in the recursion

tree. Since this holds for both A1 and A2, at least two invocations b1, b2 with
|Rbi | ≥ p are made. ⊓⊔

The following observation is immediate from Lemma 3.

Observation 1. Every node a ∈ V (T ) such that |Ra| < p has |Ra ∪ Ba| ≤ 7p,
thus is a leaf in T .

To bound the size of the overall combined graph G′ returned by the first call
to ReduceGraphTW, we must bound the number of leaves in T . To do that,
we first consider the recursion tree T ′ created by removing those nodes a with



|Ra| < p; these are leaves from Observation 1. From Lemma 4 every node in
this tree (except the root) is either a leaf (with degree 1) or has at least two
children (with degree at least 3). Since the average degree in a tree is less than 2,
the number of nodes with degree at least 3 is bounded by the number of leaves.
Every leaf b in the tree T ′ has |Rb| ≥ p. These terminals do not belong to any
boundary, so for every other leaf b′ in T ′ it holds that Rb ∩ (Rb′ ∪Bb′) = ∅ and
these p terminals are unique. There are k terminals in G, so there are O(k/p)
such leaves, and O(k/p) internal nodes.

From Lemma 4, invocations are performed only by internal vertices in T ′.
Each internal vertex has 4 children, hence there are O(k/p) invocations over-
all. Each leaf in T has |Ra ∪ Ba| ≤ O(p), hence the graph returned from
ReduceGraphNaive(Ha) is a distance-preserving minor with O(p4) vertices.
Using Lemma 2, the combination of these graphs is a distance-preserving minor
Ĝ of G with respect to R. The minor Ĝ has O(k/p · p4) = O(k · p3) vertices,
proving Theorem 4. ⊓⊔

Remark 1. Every action (edge or vertex removals, as well as edge contractions)
taken by ReduceGraphTW, is actually performed during a call to Reduce-
GraphNaive, and an equivalent action to it would have been taken in executing
the naive algorithm directly on G with respect to terminals R. Therefore, the
naive algorithm returns distance-preserving minors of size O(k ·p3) to any graph
with treewidth p. (When p > k this statement holds by the O(k4) bound.)

3.2 A Lower Bound of Ω(pk)

Theorem 5. For every p and k ≥ p there is a graph G = (V,E, ℓ) with treewidth
p and k terminals R ⊆ V , such that every distance-preserving minor G′ of G with
respect to R has |V ′| ≥ Ω(k · p). In other words, f∗(k,Treewidth(p)) ≥ Ω(pk).

Proof. Consider the bound shown in Theorem 3. The graph used to obtain this
bound is a k × k grid, and has treewidth k. The following corollary holds.

Corollary 1. For every p ∈ N there exists a graph G with treewidth p and p
terminals R ⊆ V , such that every distance-preserving minor G′ of G with respect
to R has |V ′| ≥ Ω(p2).

Let the graph G consist of k
p disjoint graphs Gi with p terminals, treewidth

p, and distance-preserving minors with |V ′| ≥ Ω(p2) as guaranteed by Corollary
1. Any distance-preserving minor of the graph G must preserve (in disjoint com-
ponents) the distances between the terminals in each Gi. The graph G has k ter-
minals, treewidth p, and any distance-preserving minor of it has |V ′| ≥ Ω(k · p),
thus proving Theorem 5. ⊓⊔

4 Concluding Remarks

The algorithms mentioned in this paper (including the naive one) actually sat-
isfy a stronger property: They output a minor G′ = (V ′, E′, ℓ′) where V ′ ⊂ V



(meaning that every vertex in G′ can be mapped back to a vertex in G) and

dG′(u, v) ≥ dG(u, v) ∀u, v ∈ V ′. (3)

However, it is not hard to construct instances G (say, using Euclidean distances
between random points in the plane, which yields in particular a planar graph),
for which every distance-preserving minor G′ satisfying the stronger property
(3) must have Ω(k4) vertices. Therefore, narrowing the gap between the current
bounds Ω(k2) ≤ f∗(k) ≤ O(k4), might require, even for planar graphs, breaking
away from the above paradigm.
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