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Geometry of graphs
Geometric representations $ graph properties.
l Various relevant representations, e.g., low-distortion 

embeddings.

Dimension of a graph G
l Is the minimum d such that G has a d-dimensional 

representation (of certain type).

Thesis: Low-dimension $ large diameter.
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A dimensionality notion
Zd

1 := d-dimensional integer lattice with diagonals .
l Namely, the infinite graph whose vertex set is Zd and which 

has an edge (u,v) whenever ||u-v||1 = 1.

Let G=(V,E) be a (finite) graph and let n=|V|.
dim(G) := smallest d such that G occurs as a (not 
necessarily induced) subgraph of Zd

1.
l Always defined: dim(G) ≤ log n.

Why l1? 
l Balls of radius r contain ~(2r)d vertices.
l In l1 grid (no diagonals) degree is 2d << 2d vertices.
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A simple lower bound

The growth rate of G is 

where B(v,r) is a ball (in G) of radius r around v.

That is, 

For example, ρ(Zd
1) = Θ(d).

Corollary: dim(G) = Ω(ρG). (Volume argument.)

log| ( , )|
logmax{ : , 1}B v r

G r v V rρ = ∈ >

: min{ : ( , ) for all , 1}G B v r r v V rρρ ρ= ≤ ∈ >
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The dimensionality conjecture

Conjecture (Levin & [Linial,London,Rabinovich]):
For every graph G, dim(G) = Ο(ρG).

I.e., structure has no role (only volume)

Weaker form: Any bound in terms of ρG.

Previously known:
Holds for cubes and complete binary trees [LLR].

What about trees (even the weaker form)? [Linial]
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Another Variant
Equivalent formulation dim(G): 

Smallest d such that ∃embedding f:V→Zd with

1. Contractive: ||f(u)-f(v)||1 ≤ 1 for all (u,v)2 E.
2. Injective: f(u) ≠ f(v) for all u ≠ v.

A Euclidean analogue dim2(G), due to Linial:
Smallest d such that ∃embedding g:V→Rd with

1. ||g(u)-g(v)||2 ≤ 2 for all (u,v)2 E.
2. ||g(u)-g(v)||2 ≥ 1 for all u ≠ v.
Easy to see that dim2(G) = Ω(ρG).
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Our results

We resolve Levin s conjecture.

Upper bounds:
l dim(G) ≤ O(ρG) for trees (and chordal graphs etc.).

l dim(G) ≤ O(ρG) for graphs excluding a fixed minor.

l dim(G) ≤ O(ρG log ρG) for general graphs.

Lower bound:
l ∃graphs G where dim(G) ≥ Ω(ρG log ρG).

Extensions:
l Our results extend to dim2(G) and to metric spaces.

1
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dim(G) vs. dim2(G)
Direct relationship: dim(G) ≤ O(dim2(G) log dim2(G)).

But: dim(G) is equivalent to
1 . Contraction: For all (u,v)2E and j, |fj(u)-fj(v)| ≤ 1
2 . Injection: For all u ≠ v ∃j s.t. fj(u) ≠ fj(v)

If (2 ) holds actually for ≥ α-fraction of j s then
1 . ||f (u)-f(v)||22 ≤ d for all (u,v)2E
2 . ||f (u)-f(v)||22 ≥ αd for all u ≠ v

Giving also the dim2(G) result (up to scaling)

This is the case in our constructions.
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Related work
Numerous geometric representations (too many to list )
Similar-flavor embeddings:
l Nonexpansive hashing [Linial, Sasson], [Indyk, Motwani, 

Raghavan, Vempala]
l Network emulation by another network
l Bilipschitz embedding of snowflake metrics [Assouad]

A dual question to ours is Bandwidth:
l Injective embedding to Z with minimum edge-stretch

Growth-restricted metrics occur in practice:
l Data points on a manifold
l Networks: peer-to-peer, internet (?)
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1. Lower bound
Consider k-regular expander (e.g., random graph).
l ρG = O(log n / log logk n).
l Take k = O(log n) so ρG = O(log n / log log n).

Assume 9 f:V! Zd with d << ρG log ρG = O(log n).

n/log n n/log nFor every j:
l Project on jth coordinate.
l Remove the leftmost and

rightmost n/log n vertices.
l Remaining vertices are in O(logk log n)=O(1) interval.

Remaining  > n/2 vertices are mapped by f to [O(1)]d.
Since f is injective, d ≥ Ω(log n).
l In general d ≥ Ω(log n / log logk log n).
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Upper bounds

The general scheme: 
l Construct coordinates iteratively (one at a time).

l Each coordinate is contractive by definition.
l Every u,v2V are separated in at least one coordinate.

How many coordinates are sufficient?
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Where is the problem?

Exploiting the growth-restriction

E.g., a complete binary tree of height h:
l ρ = Θ(h/log h).

l About 2h pairs of sibling leaves

l Seems to require ~h dimensions

l [Linial, London, Rabinovich]:
l Correlate all pairs at the same depth

In general:
l We wish to handle each locality separately,

l But we only have an upper bound on their total size!
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2. Trees naive approach
Construct a coordinate fj:
l Fix a root and map it to 0. 

l Assign each edge 1/+1 at random.

l Map vertices to their weighted distance from root.

Consider a specific scale r
l Let u,v2 V with d(u,v) = r.

l Pr[fj(u)=fj(v)] = O(r 1/2). ( Random walk )

l O(ρ) repetitions (i.e., coordinates) reduces the collision 
probability to O(r 8ρ).

l We cannot take union bound over all u,v with d(u,v) = r
because number of pairs u,v is huge! (depends on n)
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Trees local approach
Cut the tree every 2r levels. 

For every connected component (cluster) C: 
l C has radius ≤ 2r.

l C has ≤ (2r)ρ vertices.

l C has ≤ (2r)2ρ ≤ r4ρ pairs of vertices.
l So with high probability, every u,v2C with d(u,v)=r is 

separated (in the O(ρ) coordinates) at least once.

l The random-walk & union bound argument can be applied.

Glue these mappings:
l Assign the inter-cluster edges arbitrarily (say 0).
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Trees staggering
What about u,v that belong to different clusters?
l Construct another layer of cuts that is shifted , i.e., 

cut every 2r levels but start from level r.
l Every pair u,v with d(u,v) = r belongs to the same 

cluster in at least one layer.

We have 2 layers, each using O(ρ) coordinates.
l Their concatenation separates all u,v with d(u,v)=r.
l In fact, they handle all distances 2 [r1/2,r].

For all scales, we need O(ρ loglog n) coordinates!
l Can we handle different scales simultaneously?
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Trees reusing coordinates
(or not using all your ammo at once)

Observation: When a scale r is handled, edges between 
different clusters (of radius 2r) remain open .

Consider every other scale r1/4, r1/2, r, r2, r4, r8, r16, 
l Increases the dimension by a factor of 2.

Let s handle scale r (i.e., distances 2 [r1/2,r]) assuming 
scale r1/4 was already handled:
l There is an open edge every 2r1/4 edges

l Every path of length ≥ r1/2 contains ≥ r1/4/2 open edges

l Random assignment of the open edges will do!

Technicality: Induction interferes with staggering.
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3. Embedding via decomposition

Overview:
Fixing r, decompose G into clusters of diameter ≤ r4.
l Let m be the number of layers used

l Every u,v with d(u,v) = r are, in some layer, in the same cluster

Embed each cluster C such that:
l Every u,v2 C with d(u,v) = r are separated

l The boundary of C is mapped to 0 (to allow glueing ).

l Let q be the number of coordinates used.

Total number of coordinates O(mq loglog n).

Nest different r s to use only O(mq)=O(ρ3) dimensions.
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Naive embedding of a cluster C
C has diameter ≤r4 and thus ≤r4ρ vertices.
Inner decomposition:
l Decompose C into subclusters of diameter ≤ r1/4.
l Then every u,v2C with d(u,v)2[r1/2,r] are in different 

subclusters.

Suppose every subcluster was randomly mapped to a 
value 2 [0,r1/8].
l Then Pr[fj(u)=fj(v)] ≤ 1/r1/8.
l Pr[collision in O(ρ) repetitions] ≤ 1/r8ρ.

Number of vertex pairs in C is ≤ r8ρ .
So by union bound, WHP all these pairs are separated!
But how to glue the different subclsuters?
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Smooth embedding via padding

We decompose C using q layers s.t.
l Diameter: Every subcluster has diameter ≤ r1/4.
l Subcluster boundary is ∂(Ci) := {u2Ci adjacent in G to v∉Ci}. 

l This includes the boundary of the cluster C.

l Padding: Every v2C is r1/8-far from the boundary of its 
subcluster in at least one layer. 

Every layer yields a coordinate:
l Extend subcluster boundary (inwards) by a value 2 [0,r1/8].
l Map each vertex to its distance to the extended boundary.
l Thus Pr[fj(u)=fj(v)] ≤ 1/r1/8 so O(ρ) repetitions suffice etc. 
l Glueing is possible since all boundaries are mapped to 0.

Total number of coordinates = O(m q ρ loglog n).
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Further issues

Reusing coordinates
l Forced nesting

l Base case r =ρ

Decomposition
l Requirements

l Implementation

Techniques:
l Decomposition a la [Linial-Saks]

l Lovasz Local Lemma
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Reusing coordinates forced nesting
Observation: Edges between clusters are still open
l I.e., boundaries of different clusters can be mapped to different 

values.

Let us embed scale r (i.e., cluster of diameter ≤ r4)
l Suppose we already embedded smaller scales, say clusters of 

diameter ≤ r1/20. 
l Then every r1/8 path contains ≥ r1/16 edges that are open 

between clusters of diameter r1/20. 
l But these open edges might belong to clusters of even smaller 

diameter, e.g. r1/640.
l We thus shrink clusters (inwards) to avoid cutting smaller 

clusters (losing at most r1/20 of the r1/8 padding).
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The Lovasz local lemma

Let A1, ,An be events where each Ai is 
independent of all but at most d other events Aj.

Suppose that Pr[Ai] ≤ p for all i, and ep(d+1) ≤ 1.

Then Pr[∩i i] > 0.
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Forced nesting base case
Consider r ≤ ρ.

Assume first that n ≤ rO(ρ) ≤ ρO(ρ).
l Map the vertices injectively (or randomly) to {0,1}O(ρ log ρ).

For general n,
l Map the vertices randomly to {0,1}cρ log ρ for constant c.
l Let Ev = {f(v) is not unique within distance r from v}.

l Then Pr[Ev] ≤ rO(ρ)/ρcρ ≤ 1/ρc ρ.

l Degree of dependency is ≤ rO(ρ).
l So by the Local Lemma: Pr[none of Ev] > 0.
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Decomposition requirements
Inner decomposition (of a cluster C with |C| ≤ r4ρ ):
l Diameter of subclusters ≤ r1/4.
l Every u,v2C with d(u,v) ≤ r belong to the same cluster in at 

least one layer with (say) u being at least r1/8-far from 
boundary.

Outer decomposition (of V with |V|=n):
l Diameter of clusters ≤ r4.
l Every u,v2V with d(u,v) ≤ r belong to the same cluster in at 

least one layer with (say) u being at least r1/8-far from the 
boundary.

Nearly the same requirements! 
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Graphs excluding Ks,s-minor
We use the [Klein, Plotkin, Rao] decomposition.
l Take a BFS from an arbitrary vertex.
l Cut

1. Every r2/100 levels.
2. Every r2/100 levels starting at level r2/200.

l Repeat recursively until depth s to get 2s layers.

Our requirements holds: 
l Diameter of every cluster ≤ r2 by [KPR].
l Every u,v2V with d(u,v) ≤ r belong to the same cluster in at 

least one layer with (say) u being at least r1/8-far from the 
boundary.

Thus, dim(G) ≤ O(4s ρ).
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Inner decomposition
Let r > ρ and assume first that n ≤ rO(ρ).
We use a decomposition of [Linial,Saks],[Bartal].
l Fix an ordering of the vertices.
l Every vertex defines a ball whose radius is randomly chosen 

from exponential distribution with mean r2.
l WHP all radii are bounded by O(r2 log n).
l Define clusters:

l A vertex belongs to the first ball that contains it.
l Each cluster has weak diameter O(r2 log n) = O(r4). 
l Each cluster has size ≤ rO(ρ).

l Pr[a ball of radius r around u is cut] ≤ O(1/r).
l Pr[cutting such ball in O(ρ) repetitions] ≤ 1/rcρ.

Hence m = q = O(ρ).
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Outer decomposition
For general n we use the local lemma.
l Let Ev = {ball of radius r around u is cut in all O(ρ) layers of 

the decomposition}

l Then Pr[Ev] ≤ 1/rcρ.

l Degree of dependency graph is ≤ rO(ρ).
l So by the Local Lemma Pr[none of Ev] > 0.

We obtain m = O(ρ).

Total number of coordinates = O(ρ3).
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A tight upper bound

We can achieve O(ρ log ρ) by 
l Applying all these arguments on the same O(ρ)

coordinates,

l And arguing using Chernoff bounds that the desired 
event occurs in constant fraction of the coordinates.

l We need O(ρ log ρ) coordinates to handle the base 
case r =ρ.
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Conclusion
Is it true that dim(G) = Θ(dim2(G))?
Applications of these notions?
l Our embeddings actually map distance r > ρ to 

distance ∈[r1/2,r].

A dual question is Bandwidth:
l Density lower bound:  DG := max {|B(v,r)|/2r : 8 v, r}.
l What is the gap between them?

l Can be Ω(log n) (e.g., expander).
l At most polylog(n) [Feige].

l What is the tradeoff between dimension and stretch?
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