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Geometry of graphs

® Geometric representations $ graph properties.

e Various relevant representations, e.g., low-distortion
embeddings.

@ Dimension of agraph G

e |sthe minimum d such that G has a d-dimensional
representation (of certain type).

® Thesis: Low-dimension $ large diameter.
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A dimensionality notion

® 79, :=d-dimensional integer lattice with diagonals .
e Namely, theinfinite graph whose vertex set is Z9 and which
has an edge (u,v) whenever |[u-v|; = 1.

® Let G=(V,E) bea(finite) graph and let n=|V|.

® dim(G) := smallest d such that G occurs as a (not
necessarily induced) subgraph of Z9, .

e Always defined: dim(G) £ log n.

® Why |, ?
e Ballsof radiusr contain ~(2r)d vertices.
e Inl, grid (no diagonals) degreeis 2d << 29 vertices.
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A simple lower bound
® Thegrowthrateof Gis

where B(v,r) isaball (in G) of radiusr around v.
® That Is,

® For example, r (Z9,) = Q(d).

@ Corollary: dm(G) = Wr ;). (Volume argument.)
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The dimensionality conjecture

Conjecture (Levin & [Linial,London,Rabinovich]):
For every graph G, dim(G) = O(r ).

® |.e, structure hasno role (only volume)

® Weaker form: Any bound intermsof r ..

Previously known:
® Holdsfor cubes and complete binary trees[LLR].
® What about trees (even the weaker form)? [Linial]
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Another Variant

® Equivalent formulation dim(G):
Smallest d such that $embedding f:V® Z9 with

1. Contractive: If(w-f(v)||; £1 foral (uv)2E.
2. Injective: f(u)yt f(v) foralu?! v.

@ A Euclidean analogue dim,(G), dueto Linial:

Smallest d such that $embedding g:V® R with
1. lo(u)-g(V)||, £ 2 for al (u,v)2 E.
2. lo(w-a(v)||,3 1 foralu?l v.

Easy to seethat dim,(G) = W ).
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Our results

We resolve Levin s conjecture.
® Upper bounds:

2

3

1

e dim(G) £ O(r ;) for trees (and chordal graphs etc.).
e dim(G) £ O(r ) for graphs excluding afixed minor.
e dm(G) £ O(rslogr ) for general graphs.
® Lower bound:
o $graphs G wheredim(G) 3 Wr;logr o).
® Extensions:
e Our results extend to dim,(G) and to metric spaces.
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dim(G) vs. dim,(G)

Direct relationship: dim(G) £ O(dim,(G) log dim,(G)).
® But: dim(G) isequivaent to

1 . Contraction: For al (u,v)2E and j, |f;(u)-f;(V)| £ 1
2 . Injection: Forallu® vgst.  fi(u)?® fi(v)

@ If (2) holds actually for 3 a-fraction of | s then
1 . |If (u-f(V)|,2£ d for all (u,v)2E

2 . |[f (u)-f(v)|,?® ad foralul v
@® Giving also the dim,(G) result (up to scaling)

@ Thisisthe case in our constructions.
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Related work

® Numerous geometric representations (too many to list )
® Similar-flavor embeddings:

e Nonexpansive hashing [Linial, Sasson], [Indyk, Motwani,
Raghavan, Vempal a]

e Network emulation by another network
e Bilipschitz embedding of snowflake metrics [Assouad]

@ A dual question to ours is Bandwidth:
e |njective embedding to Z with minimum edge-stretch

@ Growth-restricted metrics occur in practice:
e Data points on a manifold
e Networks. peer-to-peer, internet (?)
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1. Lower bound

@ Consider k-regular expander (e.g., random graph).
e I;=0(logn/loglog, n).
e Takek=0O(logn)sor;=0(logn/loglogn).

® Assume9f:V I Zdwithd<<rlogr ;= O(log n).

@ For every |: n/logn| n/log n
e Project on jth coordinate. ' ‘ ‘ '
e Remove the |leftmost and | | : ,

rightmost n/log n vertices. S -

e Remaining vertices are in O(log, log n)=0(1) interval.

® Remaining > n/2 vertices are mapped by f to [O(1)]4.

@® Sincef isinjective, d3 Wlog n).
e Ingeneral d2 Wlogn/loglog, logn).

_______________
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Upper bounds

® The genera scheme:
e Construct coordinates iteratively (one at atime).
e Each coordinate is contractive by definition.

e Every u,v2V are separated in at least one coordinate.

® How many coordinates are sufficient?
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Where is the problem?

@ Exploiting the growth-restriction
@® E.g., acomplete binary tree of height h:

o I =Q(h/logh).

e About 2" pairs of sibling leaves

e Seemsto require ~h dimensions

e [Linial, London, Rabinovich]:

e Correlate all pairs at the same depth /\ /\ A

@® |n general:

e We wish to handle each locality separately,
e But we only have an upper bound on their total size!
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2. Trees naive approach

@ Construct a coordinate f;:
e Fix aroot and map it to O.
e Assign each edge 1/+1 at random.
e Map verticesto their weighted distance from root.

® Consider aspecific scaler
o Letu,v2V withd(uv) =r.
o Pr[f,(w=f(v)] =O(r ¥2). ( Random walk )
e O(r) repetitions (i.e., coordinates) reduces the collision
probability to O(r 8r).
e \We cannot take union bound over al u,v with d(u,v) =r
because number of pairsu,v ishuge! (depends on n)
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Trees local approach

® Cut thetreeevery 2r levels. /\

@ For every connected component (cluster) C: / \
e Chasradius£ 2r. / \
e Chas£ (2r)" vertices.
e Chas£ (2r)% £ r# pairs of vertices. / \

e S0 with high probability, every u,v2C with d(u,v)=r is
separated (in the O(r ) coordinates) at least once.
e The random-walk & union bound argument can be applied.

® Glue these mappings:
e Assign the inter-cluster edges arbitrarily (say 0).
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Trees staggering

® What about u,v that belong to different clusters?

e Construct another layer of cutsthat is shifted , i.e,
cut every 2r levels but start from level r.

e Every pair u,v with d(u,v) = r belongs to the same
cluster in at least one layer.

® We have 2 layers, each using O(r ) coordinates.

e Thelr concatenation separates all u,v with d(u,v)=r.
e Infact, they handle all distances 2 [rY2r].

@ For all scales, we need O(r loglog n) coordinates!
e Can we handle different scales simultaneously?
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Trees reusing coordinates
(or not using all your ammo at once)

@ Observation: When ascaler is handled, edges between

different clusters (of radius 2r) remain open .

® Consider every other scale rt/4, ¥¥2 r 2, r4 x8, ris,
e |Increases the dimension by afactor of 2.

® Let shandlescaler (i.e., distances 2 [rY2,r]) assuming

scale r4 was already handled:

e Thereisan open edge every 2r/4 edges
e Every path of length 3 r2 contains 3 r4/2 open edges
e Random assignment of the open edges will do!

@ Technicality: Induction interferes with staggering.
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3. Embedding via decomposition

Overview:

@ Fixing r, decompose G into clusters of diameter £ r+.
e Let m bethe number of layers used
e Every u,v with d(u,v) =r are, in some layer, in the same cluster

® Embed each cluster C such that:
e Every u,v2 Cwith d(u,v) =r are separated
e The boundary of Cismapped to O (to allow glueing ).
e L et gbethe number of coordinates used.

@ Total number of coordinates O(mg loglog n).
® Nest different r s to use only O(mq)=0O(r 3) dimensions.
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Naive embedding of a cluster C

@ C hasdiameter £r4 and thus £r# vertices.

@ |nner decomposition:

e Decompose C into subclusters of diameter £ rl/4,
e Then every u,v2C with d(u,v)2[rV2r] arein different
subclusters.

@® Suppose every subcluster was randomly mapped to a
value 2 [0,rV8],

e Then Pr[f;(u)=f,(v)] £ L,
e Pr[collisionin O(r) repetitions] £ 1/rr.
® Number of vertex pairsin Cis£ ré" .
@ S0 by union bound, WHP all these pairs are separated!

@ But how to glue thedifferent subclsuters?
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Smooth embedding via padding

® We decompose C using g layerssit.

e Diameter: Every subcluster has diameter £ rV/4,
e Subcluster boundary is f(C) := {u2C, adjacentin Gtovl C}.
e Thisincludes the boundary of the cluster C.

e Padding: Every v2C isr¥8-far from the boundary of its
subcluster in at least one layer.

@ Every layer yields a coordinate:
e Extend subcluster boundary (inwards) by avalue 2 [0,rV].
e Map each vertex to its distance to the extended boundary.
e Thus Pr[f,(u)=f,(v)] £ L/r8 so O(r ) repetitions suffice etc.
e Glueingispossible since al boundaries are mapped to O.
@ Total number of coordinates=O(m g r loglog n).

The intrinsic dimensionality of graphs 19




Further iIssues

@® Reusing coordinates
e Forced nesting
e Basecaser =r
® Decomposition
e Requirements
e Implementation
@® Techniques:.
e Decomposition ala[Linial-Saks]
e Lovasz Local Lemma
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Reusing coordinates forced nesting

® Observation: Edges between clusters are still open

e |.e., boundaries of different clusters can be mapped to different
values.

@ Let usembed scaler (i.e., cluster of diameter £ r4)

e Suppose we already embedded smaller scales, say clusters of
diameter £ r/20,

e Then every r® path contains3 r16 edges that are open
between clusters of diameter rl/20,

e But these open edges might belong to clusters of even smaller
diameter, e.g. rl/640,

e We thus shrink clusters (inwards) to avoid cutting smaller
clusters (losing at most r20 of the r8 padding).
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The Lovasz local lemma

@LetA,, ,A beeventswhereeach A, Is
Independent of all but at most d other events A;.

@® Suppose that Pr[A.] £ pfor al I, and ep(d+1) £ 1.
® Then Pr[C, ] >0.
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Forced nesting base case

Considerr£r.
® Assumefirst that n £ ro) £ r (),

e Map the verticesinjectively (or randomly) to {0,1} O logr),

@ For generad n,
e Map the vertices randomly to {0,1} ¢ 1997 for constant c.
e LetE, = {f(v) isnot unique within distancer from v}.
e ThenPr[E,] £ rO")/rer £ 1rer,
e Degree of dependency is £ ror),
e S0 by the Local Lemma: Pr[none of E,| > 0.
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Decomposition requirements

@ |Inner decomposition (of acluster C with |C| £ r#):

e Diameter of subclusters £ ri/4,

e Every u,v2C with d(u,v) £ r belong to the same cluster in at
least one layer with (say) u being at least r8-far from
boundary.

@ Outer decomposition (of V with [V|=n):

e Diameter of clusters £ r4.

e Every u,v2V with d(u,v) £ r belong to the same cluster in at
least one layer with (say) u being at least r8-far from the
boundary.

@ Nearly the same requirements!
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Graphs excluding K -minor

® We usethe [Klein, Plotkin, Rao] decomposition.
e Take aBFSfrom an arbitrary vertex.
o Cut
1. Every r2/100 levels.
2. Every r?/100 levels starting at level r2/200.
e Repeat recursively until depth sto get 28 layers.

@ Our requirements holds:

e Diameter of every cluster £ r2 by [KPR].

e Every u,v2V with d(u,v) £ r belong to the same cluster in at
least one layer with (say) u being at least r8-far from the
boundary.

® Thus, dm(G) £ O(4sr).
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Inner decomposition

® Letr >r and assumefirst that n £ ro(),

® We use adecomposition of [Linial,Saks],[Bartal].
e Fix an ordering of the vertices.

e Every vertex defines a ball whose radius is randomly chosen
from exponential distribution with mean r2.

e WHP al radii are bounded by O(r? log n).

e Define clusters:
e A vertex belongsto thefirst ball that containsit.
e Each cluster has weak diameter O(r? log n) = O(r4).
e Each cluster has size £ ro(),

e Pr[aball of radiusr around u is cut] £ O(1/r).
e Pr[cutting such ball in O(r) repetitions| £ 1/rc .
@® Hencem=q =O(r).
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Outer decomposition

@® For general n we use the local lemma.

o LetE, = {ball of radiusr around uiscutinall O(r) layers of
the decomposition}

e Then Pr[E,] £ 1/rc.
e Degree of dependency graphis £ ror),
e S0 by the Local Lemma Pr[none of E,| > 0.

® Weobtanm=0O(r).
® Tota number of coordinates = O(r 3).
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A tight upper bound

® We can achieve O(r logr) by

e Applying all these arguments on the same O(r )
coordinates,

e And arguing using Chernoff bounds that the desired
event occursin constant fraction of the coordinates.

e We need O(r logr) coordinatesto handle the base
caser =r.
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Conclusion

@ Isit true that dim(G) = Q(dim,(G))?
@® Applications of these notions?

e Our embeddings actually map distancer >r to
distancel [r¥2r].
@® A dual question is Bandwidth:
e Density lower bound: Dg := max {|B(v,r)[/2r: 8 v, r}.
e What isthe gap between them?
e Can be WMlog n) (e.g., expander).
e At most polylog(n) [Feige].
e \What isthe tradeoff between dimension and stretch?
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