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1 Johnson-Lindenstrauss Lemma and Concentration of Mea-
sure

In the previous lecture we stated and proved the following theorem

Theorem 1 (Johnson-Lindenstrauss) For every subset X C {y and every e > 0 there
is an embedding f : X — Zé’ with distortion 1 + € and dimension k = O(%2 logn).

In this lecture we will see a sketch of an alternative proof of the theorem with an
emphasis on the phenomenon of concentration of measure.

Theorem 2 Let L be a random subspace of R™ of dimension k and let f : R® — L be an
orthogonal projection onto L (here we think of L as a copy of R¥). Then there exists a
constant ¢ = c¢(n, k) s.t. for every x,y € R”
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Sketch of Proof L is chosen by picking k orthogonal vectors from S"~! s.t. each vector
has a uniform distribution over S"~!. Alternatively choose a random rotation U : R s R"

and let L = U(span{ey,...,er}) where eq,...,ex are the first k vectors of the canonical
basis of R”. As in the previous class, it suffices to prove that for all v € S*~1
P1r[1—<5§wél+e]21—i
f c n3
Denote w = (w1, .. .,wy,) = U~ 1v and note that the projection v onto L has the same length

as that of w onto U1(L) = span{es, ..., ex} so
IF @) = ll(ws, . we) | = \Jwi + .. +wp
Let u denote the uniform probability measure on S"~! (the Haar measure), then w =

U~y is distributed according to p. We now ask what is the length of the projection of w
on the first k& coordinates.

Theorem 3 Let g: S"~ !+ R be 1-Lipschitz i.e.
lg(z) —g9(W)| < =z —yll
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and let m = m(g) be a median of g i.e.

Prlg(z) > m] >

1
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then for all 5 > 0

Pr[|g(z) — m| > 0] < de0/2
TEN

We can use theorem 3 to prove theorem 2. It can be easily verified that g(w) =
(w1, ..., wg)| is 1-Lipschitz. Applying theorem 3 gives us the following bound

Prim —§ < g(w) <m+4] >1 — 4 0n/2

We now choose ¢ = ¢(n, k) = m and 6 = em to get

1f ()]
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Prim(1 —€) < g(w) < m(1+€)] > 1 — de=<™*n/2

w

All that is left is to lower bound m. We observe that

k k
Euweulg(w)’] = Elwf + ... + wi] = kE[wi] = “Elw] + ...+ wi] = ~

where we have used the symmetry of the coordinates, all of the coordinates are identically
distributed. We can use this to lower bound the median. Consider a parameter ¢t > 0 we
partition the integration into two parts [0, (m + t)] and [(m + t), 1] and upper bound each
part

N Elg(wy)

< Prlg(w)?® > (m +)°] - 14 Prlg(w)® < (m +t)%] - (m + 1)
<4e P2 4 (m 4 t)?

By choosing t = \/% we get m > Q(\/%) Finally

/ 1
Pr[l—egwgl—del—e*“ch >1-—
f c n

if k> 100}2 logn. A

How can we prove theorem 37 The following isoperimetric inequalities provide an an-
swer.

Theorem 4 (Paul Levy 1951) Let A C S™ 1 be a measurable set and let B C S* ! be a
cap with pw(A) = u(B). Then for all e > 0, u(Ae) > u(Be). Here

Ac={zeS" ! d(x, A) <€}

and similarly for Be.
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Remark: Here distance is Euclidean, i.e. measured according to fo-norm, but similar theo-
rems can be proved for goedesic distance on the sphere.

Using Theorem 4 plus estimates on the volume of a spherical cap, one can obtain the
following bound on the measure of A.. Such a bound can also be proved directly via the
Brunn-Minkowski Theorem.

Theorem 5 Let A C S"~! be a measurable set with ji(A) > § then for all € >0
w(Ag) >1— 2N/

Consider cutting the sphere by a hyperplane passing through the origin. The sets on both
sides have a measure of exactly % Applying the inequality to each one of these sets we see
that almost all of the measure is concentrated on a thin strip around the equator. The total
amount of measure outside is an exponentially small function of the dimension.

We now sketch the proof of theorem 13| using theorem 5.
Sketch of Proof Apply theorem 5/to A~ = {z € S""1: g(z) < m} and obtain a lower
bound on u(A7). Then do similarly for AT = {z € S"1: g(z) >m}. &



