1 Johnson-Lindenstrauss Lemma and Concentration of Measure

In the previous lecture we stated and proved the following theorem

Theorem 1 (Johnson-Lindenstrauss) For every subset $X \subseteq \ell_2$ and every $\epsilon \geq 0$ there is an embedding $f : X \hookrightarrow \ell_2^k$ with distortion $1 + \epsilon$ and dimension $k = O\left(\frac{1}{\epsilon^2} \log n\right)$.

In this lecture we will see a sketch of an alternative proof of the theorem with an emphasis on the phenomenon of concentration of measure.

Theorem 2 Let L be a random subspace of \mathbb{R}^n of dimension k and let $f : \mathbb{R}^n \mapsto L$ be an orthogonal projection onto L (here we think of L as a copy of \mathbb{R}^k). Then there exists a constant $c = c(n, k)$ s.t. for every $x, y \in \mathbb{R}^n$

$$\Pr \left[\frac{1 - \epsilon}{\|x - y\|} \leq \frac{\|f(x) - f(y)\|}{c} \leq 1 + \epsilon \right] \geq 1 - \frac{1}{n^3}$$

Sketch of Proof L is chosen by picking k orthogonal vectors from S^{n-1} s.t. each vector has a uniform distribution over S^{n-1}. Alternatively choose a random rotation $U : \mathbb{R}^n \mapsto \mathbb{R}^n$ and let $L = U(\text{span}\{e_1, \ldots, e_k\})$ where e_1, \ldots, e_k are the first k vectors of the canonical basis of \mathbb{R}^n. As in the previous class, it suffices to prove that for all $v \in S^{n-1}$

$$\Pr \left[\frac{1 - \epsilon}{\|x - y\|} \leq \frac{\|f(v)\|}{c} \leq 1 + \epsilon \right] \geq 1 - \frac{1}{n^3}$$

Denote $w = (w_1, \ldots, w_n) = U^{-1}v$ and note that the projection v onto L has the same length as that of w onto $U^{-1}(L) = \text{span}\{e_1, \ldots, e_k\}$ so

$$\|f(v)\| = \|(w_1, \ldots, w_k)\| = \sqrt{w_1^2 + \ldots + w_k^2}$$

Let μ denote the uniform probability measure on S^{n-1} (the Haar measure), then $w = U^{-1}v$ is distributed according to μ. We now ask what is the length of the projection of w on the first k coordinates.

Theorem 3 Let $g : S^{n-1} \mapsto \mathbb{R}$ be 1-Lipschitz i.e.

$$|g(x) - g(y)| \leq \|x - y\|$$
and let $m = m(g)$ be a median of g i.e.

$$
\Pr_{x \in \mu}[g(x) \geq m] \geq \frac{1}{2} \quad \text{and} \quad \Pr_{x \in \mu}[g(x) \leq m] \geq \frac{1}{2}
$$

then for all $\delta > 0$

$$
\Pr_{x \in \mu} [|g(x) - m| \geq \delta] \leq 4e^{-\delta^2 n/2}
$$

We can use theorem \ref{thm:median} to prove theorem \ref{thm:median}. It can be easily verified that $g(w) = \| (w_1, \ldots, w_k) \|$ is 1-Lipschitz. Applying theorem \ref{thm:median} gives us the following bound

$$
\Pr_w [m - \delta \leq g(w) \leq m + \delta] \geq 1 - 4e^{-\delta^2 n/2}
$$

We now choose $c = c(n, k) = m$ and $\delta = \epsilon m$ to get

$$
\Pr_f [1 - \epsilon \leq \frac{\|f(v)\|}{c} \leq 1 + \epsilon] = \\
\Pr_w [m(1 - \epsilon) \leq g(w) \leq m(1 + \epsilon)] \geq 1 - 4e^{-c^2 m^2 n/2}
$$

All that is left is to lower bound m. We observe that

$$
\mathbb{E}_{w \in \mu}[g(w)^2] = \mathbb{E}[w_1^2 + \ldots + w_k^2] = k\mathbb{E}[w_1^2] = \frac{k}{n}\mathbb{E}[w_1^2 + \ldots + w_k^2] = \frac{k}{n}
$$

where we have used the symmetry of the coordinates, all of the coordinates are identically distributed. We can use this to lower bound the median. Consider a parameter $t > 0$ we partition the integration into two parts $[0, (m + t)]$ and $[(m + t), 1]$ and upper bound each part

$$
\frac{k}{n} = \mathbb{E}[g(w)^2] \\
\leq \Pr[g(w)^2 \geq (m + t)^2] \cdot 1 + \Pr[g(w)^2 \leq (m + t)^2] \cdot (m + t)^2 \\
\leq 4e^{-t^2 n/2} + (m + t)^2
$$

By choosing $t = \sqrt{\frac{k}{5n}}$ we get $m \geq \Omega(\sqrt{\frac{k}{n}})$. Finally

$$
\Pr_f [1 - \epsilon \leq \frac{\|f(v)\|}{c} \leq 1 + \epsilon] \geq 1 - e^{-c^2 k c'} \geq 1 - \frac{1}{n^3}
$$

if $k \geq 100 \frac{1}{\epsilon^2} \log n$. \hfill \qed

How can we prove theorem \ref{thm:median}? The following isoperimetric inequalities provide an answer.

Theorem 4 (Paul Levy 1951) Let $A \subseteq S^{n-1}$ be a measurable set and let $B \subseteq S^{n-1}$ be a cap with $\mu(A) = \mu(B)$. Then for all $\epsilon > 0$, $\mu(A_{\epsilon}) \geq \mu(B_{\epsilon})$. Here

$$
A_{\epsilon} = \{ x \in S^{n-1} : d(x, A) \leq \epsilon \}
$$

and similarly for B_{ϵ}.
Remark: Here distance is Euclidean, i.e. measured according to \(\ell_2 \)-norm, but similar theorems can be proved for geodesic distance on the sphere.

Using Theorem 4 plus estimates on the volume of a spherical cap, one can obtain the following bound on the measure of \(A_\epsilon \). Such a bound can also be proved directly via the Brunn-Minkowski Theorem.

Theorem 5 Let \(A \subseteq S^{n-1} \) be a measurable set with \(\mu(A) \geq \frac{1}{2} \) then for all \(\epsilon > 0 \)

\[
\mu(A_\epsilon) \geq 1 - 2e^{-\epsilon^2 n/2}
\]

Consider cutting the sphere by a hyperplane passing through the origin. The sets on both sides have a measure of exactly \(\frac{1}{2} \). Applying the inequality to each one of these sets we see that almost all of the measure is concentrated on a thin strip around the equator. The total amount of measure outside is an exponentially small function of the dimension.

We now sketch the proof of theorem 3 using theorem 5.

Sketch of Proof Apply theorem 5 to \(A^- = \{ x \in S^{n-1} : g(x) \leq m \} \) and obtain a lower bound on \(\mu(A^-_\epsilon) \). Then do similarly for \(A^+ = \{ x \in S^{n-1} : g(x) \geq m \} \). ■