A Communication Complexity Perspective on Metric Spaces

Today we study the distance estimation problem in ℓ_1 from a communication complexity perspective. Along the way we shall find a (weak) analogue in ℓ_1 for the Johnson-Lindenstrauss dimension reduction lemma.

1 Setting

Assume Alice and Bob each have a private input of size n. They need to exchange enough information to be able to calculate a function of both values. We seek protocols that use the least possible communication in terms of:

1. Number of bits exchanged.
2. Number of communication rounds.

We focus on randomized protocols which are required to succeed with probability (say) $\geq \frac{2}{3}$ over public random coins. Another requirement is *simultaneousness* - Alice and Bob send only one message each to a referee, who calculates the output. Note that a simultaneous protocol is a particular case of a 1-round protocol (the referee can be simulated by one of the players, who is thus able to calculate the output after a single round).

2 Randomized Simultaneous Protocol for Equality Testing

We illustrate the concept of protocols with the problem of equality testing. We will use this protocol later.

Private inputs: $x, y \in \{0, 1\}^n$.

Output: Accept iff $x = y$.
Protocol: Alice and Bob choose \(r \in \{0, 1\}^n \) at random and send the referee \(\langle x, r \rangle, \langle y, r \rangle \), where \(\langle x, r \rangle = \sum_{i=1}^{n} x_i r_i \) (all calculations are modulo 2). The referee accepts iff \(\langle x, r \rangle = \langle y, r \rangle \).

Analysis: If \(x = y \) then \(\Pr[\text{accept}] = 1 \). If \(x \neq y \) then there exists an index \(j \) such that \(x_j \neq y_j \). The protocol accepts iff:

\[
0 = \langle x, r \rangle + \langle y, r \rangle = \sum_{i=1}^{n} (x_i + y_i) r_i = \sum_{i \neq j} (x_i + y_i) r_i + (x_j + y_j) r_j = \sum_{i \neq j} (x_i + y_i) r_i + 1 \cdot r_j
\]

By independence of the \(r_i \)'s this happens exactly with probability \(\frac{1}{2} \). This probability can be lowered by repeating the protocol.

3 The Distance Estimation Problem in \(\ell_1 \)

Private inputs: \(x, y \in \ell_1 \). Wlog we assume \(x, y \in \{0, 1\}^m \).

Output: For an approximation parameter \(\alpha \geq 1 \) and a threshold parameter \(R > 0 \), decide whether \(\|x - y\|_1 \leq R \) or \(\|x - y\|_1 > \alpha R \) (this is the decision version of the distance estimation within factor \(\alpha \)).

Theorem 1 [Kushilevitz, Ostrovsky & Rabani, 2000] For every \(0 < \epsilon < 1 \) and \(R > 0 \), there is a randomized simultaneous protocol for estimating the \(\ell_1 \)-distance within factor \(\alpha = 1 + \epsilon \) using \(O\left(\frac{1}{\epsilon^2} \right) \) bits of communication.

Proof

Protocol: Alice and Bob choose \(r \in \{0, 1\}^n \) such that \(r_i = 1 \) with probability \(\frac{1}{2R} \) and otherwise \(r_i = 0 \). As before they send the referee \(\langle x, r \rangle, \langle y, r \rangle \). This is repeated \(T = O\left(\frac{1}{\epsilon^2} \right) \) times. The referee accepts iff \(\langle x, r \rangle = \langle y, r \rangle \) in at least \(\beta \)-fraction of the \(T \) repetitions.

Analysis: We can think of \(r_i \) as if they were chosen in 2 independent steps: First, a random subset \(S \subseteq \{1, \ldots, n\} \) is selected by including each \(i \) independently with probability \(\frac{1}{R} \); Then, if \(i \notin S \) then \(r_i \) is set to 0, and if \(i \in S \) then \(r_i \) is set to be a fair coin, i.e. 1 with probability \(\frac{1}{2} \) and 0 otherwise. Denote by \(x_S \) (similarly \(y_S \)) the restriction of \(x \) to the positions in \(S \). Once \(S \) is selected, the probability to accept is exactly as in example 1:

\[
\Pr[\langle x, r \rangle = \langle y, r \rangle | S] = \Pr[\langle x_S, r_S \rangle = \langle y_S, r_S \rangle | S] = \begin{cases} 1 & x_S = y_S \\ \frac{1}{2} & \text{o.w.} \end{cases}
\]
By the law of total probability:

\[\Pr[(x, r) = (y, r)] = \frac{1}{2} \Pr[x_S = y_S] + \frac{1}{2} \]

Notice that \(\Pr[x_S = y_S] = (1 - \frac{1}{R})\|x - y\|_1 \), and so:

\[\|x - y\|_1 \leq R \implies P_{YES} := \Pr[x_S = y_S] \geq \left(1 - \frac{1}{R}\right)^R \]

\[\|x - y\|_1 > (1 + \epsilon)R \implies P_{NO} := \Pr[x_S = y_S] < \left(1 - \frac{1}{R}\right)^{(1+\epsilon)R} \]

An easy calculation shows that \(P_{YES} - P_{NO} = \Omega(\epsilon) \) (using the fact that \(P_{YES} \leq e^{-\epsilon} \) and the bound \(e^{-\epsilon} \leq 1 - \epsilon + \frac{\epsilon^2}{2} \), and assuming wlog \(R \geq 2 \)). Since we repeat everything \(T = O\left(\frac{1}{\epsilon^2}\right) \) times, with high probability the number of accepts will be concentrated around its expectation, which is \(T \left(\frac{1}{2}P_{YES} + \frac{1}{2}\right) \) if \(\|x - y\|_1 \leq R \) and \(T \left(\frac{1}{2}P_{NO} + \frac{1}{2}\right) \) if \(\|x - y\|_1 > (1 + \epsilon)R \). Therefore we choose \(\beta \) to be “in the middle” between the 2 expectations, i.e. \(\beta = \frac{1}{2} + \frac{P_{YES} + P_{NO}}{4} \). A success probability of \(\geq \frac{2}{3} \) can now be proved using Chernoff’s bound.

Corollary 2 Given \(n \) points \(x_1, \ldots, x_n \in \ell_1 \) and parameters \(0 < \epsilon < 1, R > 0 \), there is a map \(f : \ell_1 \rightarrow \{0, 1\}^T \) for \(T = O\left(\frac{1}{\epsilon^2 \log n}\right) \) such that for all \(i, j \):

\[\|x_i - x_j\|_1 \leq R \implies \|f(x_i) - f(x_j)\|_1 \leq \beta T \]

\[\|x_i - x_j\|_1 > (1 + \epsilon)R \implies \|f(x_i) - f(x_j)\|_1 > \beta T \]

In fact, the map \(f \) is constructed at random independently of the points, and thus we can derive a Near Neighbor Search algorithm for \(\ell_1^d \) with approximation \(1 + \epsilon \), query time \(O\left(\frac{1}{\epsilon^2 \log n + d}\right) \) and preprocessing \(dn^O\left(\frac{1}{\epsilon^2}\right) \), just by preparing in advance answers for all queries.

See Handout 7 for a lower bound on communication complexity and for research directions.