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Proximity Oblivious Testing

Paper by: O. Goldreich & D.Ron




Proximity Oblivious Testing?

e A tester with additional constraints
— Must work in repeated basic rounds

— Sees a constant number of locations each round
— Each round is executed with random locations

<

— Rejects if one of the rounds rejects
— Accepts if all rounds accept
— Forgets everything between rounds




Formal Definition

Let [1 = U,,en 11, (I1,, - instances if size n)
Let p: (0,1] — (0,1] (success given €)

T is a Proximity-Oblivious tester with detection
probability p when:

—feM,>PrT W) =1] =1
—f¢ll, = Pr[T (n) = 0] > p(5nn(f))

———
€

We will assume T has constant query complexity



Properties we’d look at

* Query Complexity
— Note that it will always be a constant

* The detection probability p
 Comparison to regular testers




Testing graph properties under the
adjacency matrix model

* The tested function f:[N] X [N] — {0,1} is
the adjacency matrix

* Being e-far means having to change € fraction
of the table entries




Example — Clique Collection

* Detecting if the graph is a single clique
— Requires a single query
— p(e) =€
* Detecting if the graph is complete bipartite
— Requires three queries
- p(e) =€
* Generalizing CC=¢ forc = 3
: c+1 :
- Usmg( 5 )querles
_ p(E) — Ec+1+o(1)

— Can’t do better than p(e) = w(e72)
— Regular testers are superior!



Is everything obliviously testable?

No!

Testing bi-partiteness is not obliviously
testable!

But bi-partiteness is very easy to test in the
old fashioned way! 7

Proof on board...




What is obliviously testable?

* Theorem: Il has a proximity oblivious tester if
and only if 3 constant ¢ and an infinite
sequence F = {Fn}nen such that
— Each Fy contains graphs of size at most ¢
— [Iy equals the set of N-vertex Fy-free graphs

* Characterizes proximity-oblivious testers for
the adjacency matrix model



Proof idea

The proof uses results from 2 other papers
Is in fact very intuitive

A proximity oblivious tester actually decides
everything based on possible constant views

ldentical to looking for forbidden subgraphs

Looking for forbidden sub-graphs of constant
size is clearly proximity-oblivious

Specifies a minimal detection probability!



A special case — graph freeness

* Consider the special case in which 7, = F,, ;1

* Can achieve better complexity

— Using (;) gueries

— Detection Probability p«

* Any other tester has detection probability
Q(pr)



Testing graph properties under the
bounded degree model

All degrees are bounded by the constant d

The tested function f: [N] x [d] - {0, ..., N}
Is the adjacency list

Being e-far means having to change € of the
entries (similar to the previous case)

Good for sparse graphs




Is there a difference?

* Surprisingly, there is!

 The bounded degree model achieves a very
interesting characterisation

* Provides more power than the dense model




Characterisation of the bounded
degree model

A marked graph is a graph in which every
vertex is marked with either full, semi-full or
partial

* Instead of looking for forbidden sub-graphs —
look for a forbidden embedding - 1\5
&3
o)
&
* Asub-graph (induced or not) is a special case
of embedding



What is an embedding?

e Full

Soe%e o
¢ o%

O
* Partial Q
O



Characterisation of the bounded
degree model (cont.)

The property I1 is c_aIIed local if 3s and an
infinite sequence F = {Fy}nyen such that VN

— Fy is a set of marked graphs of size at most s
— [Ty cannot have an F € Fy, embedded into it

In this case, we say I1 is F-local
Being Fy-free is also local!

So, is being local the charactrisation of the
bounded degree model?



Characterisation of the bounded
degree model (cont.)

* Proof requires an additional property to exist

* The property is non-propagation (shall be
defined soon)

 Still remains an open problem whether
locality implies “non-propagatation”




Non-propagating condition

* Foragraph G = ([N|,E), wesay B c |N]
covers Fy in G if VF € Fy for every
embedding of F in G, at least one vertex of F
Is mapped to a vertex in B

e Can think of B as the ""inescapable set”




Non-propagating condition (cont.)

e We say that F is non-propagating if there
exists a non-decreasing function
7:(0,1] = (0,1] such that:
— Ve > 03B suchthat t(B) < €
— For every graph G = (|N],E) and every B c [N]

that covers G, either G is T(lBl/N)-dOSE to being
Fy free, or there are no N-vertex graphs that are
Fy-free.



Interesting observations

* For every bounded degree d = 3 we can find
an F that is not non-propagating
— Proof on the board... (if time permits)

* Induced subgraph freeness is non-propagating

— Proof on the board... (if time permits)

* Can find non-hereditary properties that are
non-propagating

— Proof on board... (if time permits)



Main Theorem

* Theorem: A graph property Il has a constant
query proximity oblivious tester if and only if
Il is local and non-propagating

o




Proof idea

* = Being 7(f)-far implies poly(f) fraction of
the possible choices makes the tester reject.

* & A proximity-oblivious tester can be
converted to test constant surroundings that
are equivalent to a non propagating sequence.



Sum things up...

* In the adjacency matrix model we saw:
— A proximity-oblivious tester might be inferior

— A proximity-oblivious tester may not even exist (while
still being testable the ordinary way)

— Characterisation of being proximity-oblivious testable

* |nthe bounded degree model we saw:

— Charactarisation of being proximity-testable is very
special

— The bounded degree model contains the adjacency
matrix model

— Can test non-hereditary properties
— Poses an interesting open question



Thank you!




