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Definitions
Properties

A property π

A property of a distribution is a function π : Dn → R, where Dn is
the set of probability distributions on [n].

A binary property πba

A property π and pair of real numbers a < b induce a binary
property πba : Dn → {”yes”, ”no”,∅} defined by:

πba (p) =


”yes” if π(p) > b
”no” if π(p) < a
∅ otherwise
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Definitions
A tester

Let πba be a binary property on Dn.

A tester

An algorithm T is a “πba−tester with sample complexity k(·)”
if, given a sample of size k(n) from a distribution p ∈ Dn,
algorithm T will:

accept with probability greater than 2
3 if πba (p) = ”yes”, and

reject with probability greater than 2
3 if πba (p) = ”no”, and

The tester’s behavior is unspecified when πba (p) = φ, i.e. when
a ≤ π(p) ≤ b.
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Definitions
Symmetry, (ε, δ)−weak continuity

A Symmetric Property

A property π is symmetric if for all distributions p and all
permutations σ we have π(p) = π(p ◦ σ).

An (ε, δ)-weakly continuous property

A property π is (ε, δ)-weakly continuous if for all distributions
p+, p− satisfying |p+ − p−| ≤ δ we have |π(p+)− π(p−)| ≤ ε.

|x − y | denotes the L1 distance.
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Example
Distance from the uniform distribution

Theorem

Distance from the uniform distribution is a symmetric and
(δ, δ)-weakly continuous property.

Proof.

Let Un be the uniform distribution on [n].

Let π(p) = |Un − p| for p ∈ Dn.

Let p+, p− ∈ Dn be such that |p+ − p−| < δ.

Assume WLOG that π(p+) ≥ π(p−).

|π(p+)− π(p−)| = |Un − p+| − |Un − p−|
≤ |Un − p−|+ |p+ − p−| − |Un − p−|
= |p+ − p−| ≤ δ
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Example
Entropy

Theorem

The entropy is a symmetric and
(

1, 1
2 log n

)
-weakly continuous

property.

Proof.

Easy.
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The Canonical Tester
Canonical Tester T θ for πb

a

Consider a sample of size k from distribution p over [n]. Let hi be
the number of appearances of i in the sample.

The Canonical Tester with parameter θ

1 Insert the constraint
∑

i pi = 1.

2 For each i such that hi > θ insert the constraint pi = hi
k .

Otherwise insert the constraint pi ∈ [0, θk ].

3 Let P be the set of solutions to these constraints.

4 If the set πba (P) (the image of elements of P under πba )
contains only “yes” and ∅ return “yes”. If it contains only
“no” and ∅ return “no”. Otherwise answer arbitrarily.
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The Canonical Tester
Canonical Tester T θ for πb

a

It seems plausible that the canonical tester behaves correctly
for the high frequency elements.

The tester effectively discards all information regarding the
low frequency elements.

If we can show that no tester can extract information from
these elements then it will follow that the canonical tester is
almost optimal.
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The Canonical Testing Theorem We Wish For

Not True Theorem

Given a symmetric (ε, δ)-weakly continuous property π : Dn → R
and two thresholds a < b, such that the Canonical Tester T θ for
θ = 600 log n/δ2 on πba fails to distinguish between π > b and
π < a in k samples, then no tester can distinguish between π > b
and π < a in k samples.

Sadly, this is not true.
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Canonical Testing Theorem

Theorem

Given a symmetric (ε, δ)-weakly continuous property π : Dn → R
and two thresholds a < b, such that the Canonical Tester T θ for
θ = 600 log n/δ2 on πba fails to distinguish between π > b + ε and
π < a− ε in k samples, then no tester can distinguish between
π > b − ε and π < a + ε in k · δ3

no(1)
samples.
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Low Frequency Blindness

The crux is to prove that the canonical tester does the “right
thing” (i.e., nothing!) for the low frequency elements.

Low Frequency Blindness Theorem

Let π be a symmetric property on distributions on [n] that is
(ε, δ)-weakly continuous.
Let p+, p− be two distributions that are identical for any index
occurring with probability at least θ

k in either distribution, where

θ = 600 log n
δ2

.
If π(p+) > b and π(p−) < a , then no tester can distinguish

between π > b − ε and π < a + ε in k · δ3

no(1)
samples.

If we could show that such p+ and p− exist whenever the canonical
tester fails than this would imply the canonical testing theorem.
Example: Entropy
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Low Frequency Blindness ⇒ Canonical Testing Theorem

Lemma

Given a distribution p and a parameter θ, if we draw k random
samples from p then with probability at least 1− 4

n the set P
constructed by the Canonical Tester will include a distribution p̂

such that |p − p̂| ≤ 24
√

log n
θ .

If θ = 600 log n/δ2 then this reads |p − p̂| ≤ δ.

Proof.

“The proof is elementary: use Chernoff bounds on each index i
and then apply the union bound to combine the bounds.”
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Low Frequency Blindness ⇒ Canonical Testing Theorem

Reminder: the canonical testing theorem states that if the
canonical tester fails with k samples then any slightly weaker tester
also fails.

Proof: Canonical Testing Theorem

Assume canonical tester says “no” with probability 1/3 to
some p for which π(p) > b + ε (so it should have said yes).

⇒ with probability 1/3 there exists p− ∈ P such that
π(p−) < a.

By the lemma, P contains some p+ such that |p − p+| < δ
with probability 1− 4/n. π(p+) > b by continuity.

⇒ there exists a single P with both of these properties.

⇒ there exist p− and p+ with the same θ-high-frequency
elements such that π(p−) < a and π(p+) > b.

⇒ the theorem follows by application of low frequency
blindness.
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Fingerprints
Definition

Histogram

The histogram h of a vector v = (v1, . . . , vk) is a vector such that
hi is the number of components of v with value i .

Fingerprint

A fingerprint f of a vector v is the histogram of the histogram of v .
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Fingerprints
Example

Example

Let v = (3, 1, 2, 2, 5, 1, 2). Then:

Its histogram is h = (2, 3, 1, 0, 1).

Its fingerprint is f = (2, 1, 1).

We omit the zero component of f .

A tester for a symmetric distribution π may consider just the
fingerprint of the sample and discard the rest of the information.
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Poisson Moments Vector

Definition

Let p be a distribution on [n].

Let the sample size be k .

ki := E[hi ] = k · pi .

Let λa :=
∑

i poiki (a).
Then λ = {λa}∞a=1 is the Poisson moments vector of p for
sample size k .

p has histogram h and fingerprint f .

The distribution of hi is well approximated by poiki (·).

E[fa] =
∑

i P[hi = a] ≈ λa.
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Coffee Break
Coffee Break

Coffee Break

Coffee Break
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Low Frequency Blindness

Theorem

Let π be a symmetric property on distributions on [n] that is
(ε, δ)-weakly continuous.
Let p+, p− be two distributions that are identical for any index
occurring with probability at least θ

k in either distribution, where

θ = 600 log n
δ2

.
If π(p+) > b and π(p−) < a , then no tester can distinguish

between π > b − ε and π < a + ε in k · δ3

no(1)
samples.
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Low Frequency Blindness
(simplified)

We’ll limit our analysis to distributions with low frequencies.
Suppose all elements have probability < θ

k where θ = 600 log n
δ2

.

Lemma

Let π be a symmetric property on distributions on [n] that is
(ε, δ)-weakly continuous.
Let p+, p− be two distributions for which all indices occur with
probability at most θ

k , where θ = 600 log n
δ2

.
If π(p+) > b and π(p−) < a , then no tester can distinguish

between π > b − ε and π < a + ε in k · δ3

no(1)
samples.
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Proof Sketch

Let p+ and p− be low frequency distributions such that
π(p+) > b and π(p−) < a.

1 We construct p̂+ and p̂− such that

|p̂± − p±| < δ, and therefore π(p̂+) > b − ε and
π(p̂−) < a + ε.
p̂+ and p̂− have similar Poisson moments vector for sample

size k̂ = k δ3

no(1)
.

2 For any sample size for which two distributions have similar
Poisson moments vectors, they also have similar fingerprints.

3 We now have two distributions with similar fingerprints; one
has the property and the other doesn’t. It is therefore
impossible to test for πba with k̂ samples.

Steps two and three are the “Wishful Thinking Theorem”.
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Wishful Thinking Theorem
Intuition

Each component of the fingerprint is a sum of many
indicators. For example, f3 is the sum of the indicators of the
events hi = 3.

Wishfully assume that the hi s are independent and distributed
Poisson with parameter ki = k · pi . Then E[fa] = Var[fa] = λa.

Wishfully assume that the fas are independent and
distributed Poisson with parameter λa.

If for p+ and p− and each a we have that |λ−a − λ+a | is smaller

than
√
λ+a then we expect the distributions’ fingerprints to be

indistinguishable.

If π(p+) > b and π(p−) < a then no tester can test πba .
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Wishful Thinking Theorem
Statement

Wishful Thinking Theorem

Given an integer k̂ > 0, let p+ and p− be two distributions, all of
whose frequencies are at most 1

500k̂
. Let λ+ and λ− be their

Poisson moments vectors for sample size k̂ . If it is the case that∑
a

|λ+a − λ−a |√
1 + max{λ+a , λ−a }

<
1

25

then it is impossible to test any symmetric property that is true for
p+ and false for p− in k̂ samples.

Reminder: whenever the canonical tester fails we are guaranteed to
have such p+ and p−.
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Wishful Thinking Theorem
Overview

1 Show hi ≈ poiki (and h ≈ Poi(kp)).

2 Show fa ≈ poiλa (and f ≈ Poi(λ)).

3 Bound |Poi(λ+)− Poi(λ−)|.
4 Deduce a bound on |f + − f −|.
5 Finally, conclude that since the fingerprints are

indistinguishable (even though the distributions might not
be), then the property can’t be tested.
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Poissonization

Poissonization

A k-Poissonized tester T is a function that correctly classifies a
property on a distribution p with probability 7/12 on input samples
generated in the following way:

Draw k ′ ← poik .

Return k ′ samples from p.

Lemma

If there exists a k-sample tester T for a property πba then there
exists a k-Poissonized tester T ′ for πba .
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Poissonization

After Poissonization, the histogram component hi is
distributed poiki , and the different hi s are independent.

By additivity of expectations and variances
E[fa] = Var[fa] =

∑
i poiki (a) = λa.

However, the different fas aren’t independent.
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Generalized Multinomial Distribution

Definition: Mρ, the generalized multinomial distribution(ρ)

Let ρ be a matrix with n rows, such that row ρi represents a
distribution.

From each such row, draw one column according to the
distribution.

Return a row vector recording the total number of samples
falling into each column (the histogram of the samples).

Lemma

The distribution of fingerprints of poi(k) samples from p (the
distribution of f after Poissonization) is the generalized
multinomial distribution, Mρ, when using ρi (a) = poiki (a) to
define the rows ρi .
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Roos’s Theorem

Roos’s theorem

Given a matrix ρ, letting λa =
∑

i ρi (a) be the vector of column
sums, we have

|Mρ − Poi(λ)| ≤ 8.8
∑
a

∑
i ρi (a)2∑
i ρi (a)

.

So, the multivariate Poisson distribution is a good approximation
for the fingerprints, if ρ is small enough.
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Roos’s Theorem

Bounding ρ using the low-frequencies

Suppose that for some 0 < ε ≤ 1
2 it holds that pi ≤ ε

k . Then

ρi (a) = poiki (a) =
e−ki ka

i
a! = e−k·pi (k·pi )a

a! ≤ (k · pi )a ≤ εa.

Thus:

∑
a

∑
i ρi (a)2∑
i ρi (a)

≤
∑
a

max
i
ρi (a) ≤

∑
a

εa ≤ 2ε

and by Roos’s theorem:

|Mρ − Poi(λ)| ≤ 2 · 8.8ε.
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Multivariate Poisson Statistical Distance

Bounding the statistical distance between λ+ and λ−

The statistical distance between two multivariate Poisson
distributions with parameters λ+, λ− is bounded by

|Poi(λ+)− Poi(λ−)| ≤ 2
∑
a

|λ+a − λ−a |√
1 + max{λ+a , λ−a }

.

Hence, by the theorem’s hypothesis:

|Poi(λ+)− Poi(λ−)| ≤ 2

25
.
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Wishful Thinking Theorem
(reminder)

Wishful Thinking Theorem

Given an integer k̂ > 0, let p+ and p− be two distributions, all of
whose frequencies are at most 1

500k̂
. Let λ+ and λ− be their

Poisson moments vectors for sample size k̂ . If it is the case that∑
a

|λ+a − λ−a |√
1 + max{λ+a , λ−a }

<
1

25

then it is impossible to test any symmetric property that is true for
p+ and false for p− in k̂ samples.
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Wishful Thinking Theorem
Proof of Wishful Thinking Theorem

Proof.

f ± ∼ Mρ± .

Combining Roos’s theorem with the bound on ρ, and assuming
that p±i ≤

1
500k , we get that |Mρ± - Poi(λ±)| ≤ 2·8.8

500 < 1
25 .

The theorem’s hypothesis implies |Poi(λ+)− Poi(λ−)| ≤ 2
25 .

Using the triangle inequality, we get that the statistical
distance between the distributions of fingerprints of Poi(k)
samples from p+ versus p− is at most 4

25 <
1
6 .

A k-tester (poissonized) must have a gap> 1
6 (succeed with

probability 7
12). This is impossible if |p+ − p−| < 1/6.

If a k-Poissonized tester doesn’t exist, then neither does a
k-tester.

⇒ it is impossible to test any symmetric property that is true for
p+ and false for p− in k samples.
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Questions?
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Thanks!
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