Many of the sublinear algorithms are approximate and/or randomized. We will see some examples today.

Diameter of a Metric [Approximate]

Input: \(n\) points and all pairwise distances satisfying triangle inequality.

Goal: Compute the diameter of the set, which is the largest pair-wise distance.

Theorem (by Indyk): There is a deterministic algorithm that approximates the diameter within factor 2 in time \(O(n)\).

The only requirement is that it’s a metric (so we have the triangle inequality) and the distances is symmetric.

Algorithm

Choose 1 point arbitrarily and check the distance between it and all other points. Then take the max.

Analysis

Runtime: \(O(n)\) - Obvious.

Correctness:

Denote \(D_{ij}\) as the distance between point \(i\) and point \(j\).

Suppose \(OPT = D_{ab}\) and suppose the arbitrary point we chose is \(i\).

By the triangle inequality: \(OPT = D_{ab} \leq D_{ai} + D_{ib}\)

At least one of \(D_{ai}\) or \(D_{ib}\) is \(\geq \frac{1}{2} OPT\).

So \(ALG \geq \frac{1}{2} OPT\), which means we have a 2 approximation.

Finding element in sorted list [Randomized]

Input: Given a list that is sorted but in a linked list structure. However, it also has direct access. (for instance - an array of elements, where each element points at the index of the next element)

Goal: Find whether \(q\) appears in the list.

Theorem (by Chazelle,-Liu-Magen): There is a randomized algorithm that runs in time \(O(\sqrt{n})\) and is correct with high probability. The error is one sided – so if \(q\) is found it is certainly there. If not, then it is not there with high probability.
Note: With high probability we mean that it's bigger than \(\frac{2}{3} \). One can later amplify it if needed.

Algorithm

Define \(t = 2\sqrt{n} \)

1. Scan the first \(t \) elements of the list. If \(q \) was found report it was found.
2. Choose at random \(k = \sqrt{n} \) elements from the list
3. Find which of them is \(\leq q \) and take the largest
4. Scan the linked list starting from this element for the next \(t \) elements and report whether \(q \) was found or not.

Analysis

Runtime: Obviously \(O(k + t) = O(\sqrt{n}) \)

Correctness: wlog, \(q \) in the list. Since if not we will certainly not find it and return the right answer. Let the linked list be: \(a_1 < a_2 < \ldots < a_n \) and suppose that \(q = a_j \)

\[
\Pr\left[\text{none of the } k \text{ samples } \in \left\{ a_{j-t+1}, \ldots, a_j \right\} \right] \leq \left(1 - \frac{1}{n} \right)^k \leq e^{-\frac{tk}{n}} \leq \frac{1}{7}.
\]

It follows that with probability over \(\frac{6}{7} \) the algorithm will sample at least one of \(q_{j-t+1}, \ldots, a_j = q \) in which case the scan will find \(q \).

We can even refine the argument. For instance, we can have a witness for not having \(q \) in the list if when scanning we go from a value smaller than \(q \) to a value that is larger. In addition, we can say we scan the list until we find \(q \) (or find it’s not there) and thus the algorithm will always return the right answer but the runtime is randomized (with a small expectation).

Approximate average degree in a graph

Input: A connected graph given as an adjacency list.

Goal: Compute the average degree in the graph.

Theorem [A weaker version of a theorem by Feige]: There is a randomized algorithm that approximates the average degree within a factor of \(2 + \varepsilon \) (for any desired \(\frac{1}{2} > \varepsilon > 0 \)) in time \(O\left(\left(\frac{1}{\varepsilon} \right)^{O(1)} \cdot \sqrt{n} \right) \)

Algorithm

1. Choose a set \(S \) by picking at random \(S = \left(\frac{1}{\varepsilon} \right)^{O(1)} \cdot \sqrt{n} \) vertices.
2. Compute the average degree \(-d_s \)
3. Repeat the above $\frac{8}{\epsilon}$ times and report the smallest value in step 2.

Analysis

Runtime: $O\left(\frac{1}{\epsilon} O(1) \cdot \sqrt{n}\right)$ — obvious.

Correctness: Let d_s be the average degree of S, and let d be the average degree in G

Lemma 1: In one iteration:

$$\Pr[d_s < \frac{1}{2} (1 - \epsilon) d] \leq \frac{\epsilon}{64}$$

Lemma 2: In one iteration:

$$\Pr[d_s > (1 + \epsilon) d] \leq 1 - \frac{\epsilon}{2}$$

Given these two lemmas this is how you prove the theorem:

$$\Pr[ALG > (1 + \epsilon) d] \leq \left(1 - \frac{\epsilon}{2}\right)^{\frac{8}{\epsilon}} < e^{-4} < \frac{1}{8}$$

$$\Pr\left[ALG < \frac{1}{2} (1 - \epsilon) d\right] \leq \frac{8 \cdot \epsilon}{64} = \frac{1}{8} \Rightarrow$$

Algorithm achieves approximation $2 + \epsilon$ with probability $\geq \frac{3}{4}$.

Proof of lemma 2:

Denote $s = |S|$

Let X_i for $i = 1, ..., s$ be the degree of the i'th vertex chosen to $S \Rightarrow d_s = \frac{1}{s} \sum_{i=1}^{s} X_i$ and so:

$$E[d_s] = \frac{1}{s} \sum_{i=1}^{s} E[X_i] = d$$

Markov's inequality:

If $Z \geq 0$ is a random variable, then for all $\alpha > 1$:

$$\Pr[Z \geq \alpha E[Z]] \leq \frac{1}{\alpha}$$

So by using Markov's inequality we get:

$$\Pr[d_s \geq (1 + \epsilon) d] \leq \frac{1}{1 + \epsilon} < 1 - \frac{\epsilon}{2}$$

Proof of lemma 1:

Let H be the set of $\sqrt{\epsilon n}$ vertices with the highest degree.
Let \(L = V \setminus H \).

Wlog, we assume \(S \) is chosen from \(L \) (the true \(d_s \) dominates this analysis).

So now, let \(X_i \) for \(i = 1, \ldots, s \) be the degree of \(i \)th vertex chosen.

\[
d_s = \frac{1}{s} \sum_{i=1}^{s} X_i
\]

Chernoff bound:

Let \(Z_i \in \{0,1\} \) for \(i = 1, \ldots, s \) be independent random variables. Then for all \(0 < \delta < 1 \):

\[
\Pr \left[\sum_{i=1}^{s} Z_i \leq (1 - \delta) \cdot E \left[\sum_{i=1}^{s} Z_i \right] \right] \leq e^{-\delta^2 \frac{E[\sum Z_i]}{4}}
\]

Denote \(d_H \) to be the smallest degree in \(H \).

Then \(1 \leq X_i \leq d_H \)

\[
\Pr \left[d_s \leq (1 - \epsilon) E[d_s] \right] = \Pr \left[\frac{\sum X_i}{d_H} \leq (1 - \epsilon) E \left[\frac{\sum X_i}{d_H} \right] \right] \leq e^{-\epsilon^2 \frac{E[\sum Z_i]}{4}} = e^{-\epsilon^2 \frac{E[\sum X_i]}{4d_H}}
\]

\[
E \left[\sum X_i \right] = |S| \cdot \frac{E[X_1]}{average degree in L}
\]

So now we would like to find the size of \(S \) such that we’ll reach our bound. Thus, we’ll split into cases based on \(d_H \)

Case 1 - \(d_H \geq \frac{1}{\epsilon} |H| \):

Note the following facts:

(*) Each vertex in \(|H| \) has a degree that is higher than \(d_H \) so the sum of all the degrees of vertices in \(|H| \) is larger than \(|H| \cdot d_H \)

(**) The maximal number of edges of \(H \) that have both their ends in \(H \) is the number of possible pairs of vertices of \(H \cdot \binom{|H|}{2} \), and so the contribution of those edges to the degrees of the vertices of \(H \) is at most \(2 \cdot \binom{|H|}{2} = |H|(|H| - 1) \leq |H|^2 \)

\[
E[X_1] \geq \frac{d_H |H| - |H|^2}{|L|} = \frac{(d_H - |H|) \cdot |H|}{|L|} = \left(1 - \frac{|H|}{d_H} \right) \cdot d_H \cdot |H| \geq \frac{n > |L|}{\epsilon} (1 - \epsilon) \cdot d_H \cdot |H| / n
\]

So in this case:
\[e^{-\epsilon^2 \cdot \frac{E[\sum X_i]}{4 \cdot d_H}} \leq e^{-\epsilon^2 \cdot \frac{s(1-\epsilon) \cdot \#H}{4 \cdot d_H}} \]

Enough to have (up to constants and \(\log \frac{1}{\epsilon} \) factors):

\[\frac{s \cdot \epsilon^2 \cdot |H|}{n} \geq 1 \]

To get our desired bound.

This implies that it satisfies to have:

\[s \geq \epsilon^{-2} \cdot \frac{n}{|H|} \cdot \frac{|H|=\sqrt{n}}{\sqrt{n}} \cdot (1 - \epsilon)^{O(1)} \cdot \sqrt{n} \]

To be continued next class...