
Seminar on Sublinear Time Algorithms

Lecture 3
April 7, 2010

Lecturer: Robert Krauthgamer Scribe by: Tamar Zondiner Updated: April 29, 2010

1 Maximum Matching

During the previous lecture, and in the homework, we proved that a Maximal Matching in
a graph is of at least half the size of a Maximum Matching. We now construct an approx-
imation algorithm with ±εn error for the problem of Maximal Matching, thus resulting in
a (2, ε)-approximation for a Maximum Matching.

Suppose we are given a graph G, with max-degree=D. For each vertex we keep a vector
of D neighbors (some coordinates may be empty). We assume that no vertex is isolated.

Our algorithm assigns each edge e, a priority pe, creating a random permutation of the
edges of the graph. Let M be the greedy matching defined by p. An edge e is in the
matching if ∀ei, adjacent edges to e (i = 1, 2, .., 2(D−1)) s.t. pei > pe, it holds that ei /∈ M .
This is checked recursively. The base case for this recursion is finding an edge e s.t. ∀ei

adjacent edges to e, it holds that pei < pe.

Algorithm for approximating Maximal Matching:

1. Choose a random permutation of the edges, by assigning each edge, e, a random
priority pe.

2. Choose s = O(D
ε2

) edges, denoted as e1, ..., es at random from the n ·D possible pairs
(v, i) ∈ V × [D].

3. For each edge ei, evaluate Xi, which is an indicator for the edge ei being in M , by
exploring the neighborhood of ei.

4. Report (
∑

Xi

s) · Dn =the probability of a single edge × number of edges, as an ap-
proximation of the fraction of edges in the matching.

Analysis:

Claim 1 The Algorithm returns, w.h.p., an approximation within additive εn of the size of
the Maximal Matching, M.

Proof

E[X1] = P [X1 = 1] =
|M |
Dn

.

E[ALG] =
Dn

s
E[

∑
Xi] =

Dn

s
· s · |M |

Dn
= |M |.

3-1

V ar[X1] = E[X2
1]−E[X1]2 ≤ E[X2

1] = E[X1] =
|M |
Dn

.

V ar[ALG] =
D2n2

s2
· V ar[

∑
Xi] =

D2n2

s
· |M |

Dn
≤ Dn|M |

s
.

Using Chebyshev’s inequality, we get:

P [|ALG− |M || ≥ εn] ≤ V ar(ALG)
ε2 · n2

≤ Dn|M |
sε2n2

=
|M |
10n

≤ 1
10

for s = 10D
ε2

. So with high probability, the algorithm gives an estimation within εn of |M |.

Claim 2 The Algorithm runs in time DO(D) · 1
εO(1) .

Proof We must first emphasize that the two first stages of the algorithm are done ”on
the fly”, and so do not take additional time. The analysis only needs to involve the traversal
of edges.

The probability of checking a path of length k from edge e is 1
k! , since an increasing ordering

of the permutation p is required. The number of paths of length k from edge e is (2D)k.

P [exploration around e gets to radius k] ≤ (2D)k

k!

decreases in k, and for k = cD:

P [exploration around e gets to radius k] ≤ (2D)k

k!
=

(2D)cD

√
2πcD (cD)cD

ecD

≤ (
2e

c
)cD,

thus for a large enough c we can obtain a large probability that all edges traversed are
within the (2D)cD edges closest to e. Thus, the total runtime is

O(#iterations times #edges traversed) = O(s · (2D)cD+1) = DO(D) · 1
εO(1)

.

2 Property Testing

For a certain input, we wish to test if a property holds. We want a very efficient Tester
algorithm that checks whether an object (Graph, List, Function) satisfies a certain property
(2-colorable, sorted, linear etc), or is very ”far” from having that property. For a problem
of ”Property Testing” we need to define:

1) What the object is?
2) What the property is?

3-2

3) What does it mean to be ε-far from the property?

A Tester algorithm is one that responds as follows:
1) If the object satisfies the property, w.h.p. the algorithm accepts.
2) If the object is ε-far from the propery, w.h.p the algorithm rejects.
3) Otherwise, the algorithm may respond either way.

3 Testing a list for monotonicity

Input: List of n distinct integers, allowing random access to its elements.
Goal: Decide if a list is monotone or ε-far from monotone.

A list is called monotone if it is increasing. A list is ε-close to monotone, if it can be
made monotone by changing less than εn of its entries. Otherwise it is called ε-far from
monotone.

Theorem 3 (Ergun-Kannan-Kumar-Rubinfeld-Viswanathan) : There is a tester
for the monotonicity problem that works in time O(1

ε log n).

We present the following algorithm:
Algorithm - Test Monotonicity

1) Repeat 2
ε times:

1.1. Choose random i ∈ [n] and perform binary search for xi.
2) If all binary searches succeed, accept. Otherwise, reject.

Analysis:
Runtime: clearly, the algorithm simply runs O(1

ε) binary searches.
Runtime is O(1

ε · log n).

Correctness: Let I = {i ∈ [n] : binary search on xi succeeds}.
Lemma 4 I is a monotone subsequence.

Proof Suppose i, i′ ∈ I, and i < i′. Then the binary searches reach some xj that separates
xi from xi′ . Since both binary searches succeed, it holds that xi ≤ xj ≤ xi′ ⇒ xi < x′i.

Claim 5 The algorithm is a tester for monotonicity of a list (i.e. If x is monotone, w.h.p
the algorithm accepts, and if x is ε-far from monotone, w.h.p the algorithm rejects.)

Proof If x is monotone, all searches succeed, and the algorithm accepts with probabil-
ity=1. Assume henceforth that x is ε-far from monotone.

Suppose towards contradiction that |I| > (1− ε)n. From the Lemma, I is an increasing
subsequence, so all it takes to make x monotone is to change the values at coordinates i /∈ I.
There are at most εn such coordinates ⇒ x is ε-close to monotone, in contradiction to our
previous assumption.

3-3

Therefore, |I| ≤ (1− ε)n. This implies that

P [ALG accepts] = (
|I|
n

)
2
ε ≤ (1− ε)

2
ε ≤ e−2 <

1
3
.

Thus if x is ε-far from monotone, the algorithm rejects with probability > 2
3 , which proves

the correctness of both the claim and the theorem.

3-4

