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1 A theorem about vertex separators

Given a graph G(V,E) and a set of vertices S ⊂ V , an S-flap is the set of vertices in a
connected component of the graph induced on V \ S. A set S is a vertex separator if no
S-flap has more than n/2 vertices.

Lipton and Tarjan showed that every planar graph has a separator of size O(
√
n). This

was later generalized by Gilbert, Hutchinson and Tarjan to any graph embeddable on a
surface of bounded genus. This was further generalized by Alon, Seymour and Thomas to
any family of graphs that excludes some fixed (arbitrary) subgraph H as a minor. Their
proof (like all previous proofs) is constructive – it provides a polynomial time algorithm
that finds the desired separator.

Theorem 1 There a polynomial time algorithm that given a parameter h and an n vertex
graph G(V,E) either outputs a Kh minor, or outputs a vertex separator of size at most
h
√
hn.

Theorem 1 does not completely subsume the previous results on separators, because
there are some differences regarding the leading constant in the O(

√
n) size bound, and

differences in the running time of the algorithms (the algorithm of Lipton and Tarjan runs
in linear time). Moreover, in some cases one would like the separators to have certain
structure (e.g., be a cycle in a planar graph), and Theorem 1 does not guarantee this. We
remark that it is an open question whether the size bound in Theorem 1 can be improved
(possibly to h

√
n).

2 Proof of the vector separator theorem

Let X be a proposed vertex separator. Let Y be the largest connected component that re-
mains after removing X. We shall only consider vertex separators X satisfying the following
key properties:

1. |X| ≤ h
√
hn. More specifically, X ⊂ ∩k

i=1Ci for Ci as defined shortly.

2. For some k ≤ h, there are k disjoint sets of vertices C1, . . . Ck in V \ Y such that:

(a) For every 1 ≤ i ≤ k, the subgraph induced on Ci is connected.

(b) For every 1 ≤ i ≤ k, 0 < |X ∩ Ci| ≤
√
hn.
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(c) If k ≥ 2, then for every 1 ≤ i < j ≤ k there is an edge between some vertex of
Ci and some vertex of Cj .

We present an iterative algorithm that progresses over a sequence of such X candidates,
until either one is found for which the corresponding Y satisfies |Y | ≤ n/2, or k = h, in which
case the respective {Ci} form an Kh minor. Our measure of progress in the construction
will be P t = 3|Y t|+ |Xt|+ kt, where superscript t is the iteration number. We show that if
both kt < h and |Y t| > n/2 the necessarily P t+1 < P t. As P t is integer and nonnegative,
it must be that eventually either k = h or |Y | ≤ n/2.

Initially, X1 can be taken as an arbitrary vertex v ∈ V , one can take k = 1 and C1 = {v}.
All key properties above hold. We consider now the inductive step, in which Xt, Y t, kt and
Ct
1, . . . C

t
kt are given, with |Y t| > n/2 and kt < h.

Suppose that for some i, Ct
i has no neighbor in Y t. In this case, let Xt+1 = Xt \ Ct

i ,
Y t+1 = Y t, kt+1 = kt − 1, and the Ct+1

j are the same as Ct
j except that Ct

i is removed.

Observe that indeed Xt+1 separates Y t+1 = Y t from the rest of the graph, because Xt

did, and (N(Y t+1) ∩Xt) = (N(Y t+1) ∩Xt+1) (where for T ⊂ V , N(T ) denotes the set of
neighbors of T in G). Necessarily P t+1 < P t, because kt+1 < kt whereas |Xt+1| ≤ |Xt| and
|Y t+1| ≤ |Y t|.

Hence it remains to deal with the case that for every i, Ct
i has a neighbor in Y t. For

every 1 ≤ i ≤ kt, let Ai = (N(Ct
i ) ∩ Y t). All Ai are nonempty, and they may intersect. We

shall now use the following lemma.

Lemma 2 Let G(V,E) be a connected graph on n vertices and let for 1 ≤ i ≤ k let Ai be
subsets of V . Then for every r one of the following two alternatives must hold:

1. There is a subgraph C which is connected and intersects all Ai, with |C| ≤ r.

2. There is a set S of vertices such that no S-flap intersects all the Ai, and moreover,
|S| ≤ kn/r.

Moreover, there is a polynomial time algorithm that finds either C or S as above.

Proof: For intuition, consider first the special case where |Ai| = 1 for every i, but
one does not simply want to pick S = Ai in alternative 2. Then we could check whether
d(Ai, Ai+1) ≤ r/k for every i < k. If so, concatenation of the respective paths gives C (the
first alternative). If not, then for some i, r/k levels of BFS from Ai do not suffice in order
to reach Ai+1. One of these levels is of size at most nk/r, and it separates Ai from Ai+1.
This gives S (the second alternative). This argument does not prove the lemma when the
Ai are sets, because paths between sets cannot be concatenated (the end vertex of the path
Ai−1 −Ai might not coincide with the starting vertex of Ai −Ai+1). Hence we modify the
above argument.

One may assume that k ≥ 3, because for k ≤ 2 the above proof works. Construct a
graph G′(V ′, E′) with k − 1 blocks. Each block is a copy of G, where vertex vi in block i
denotes the ith copy of v ∈ V . For 2 ≤ i ≤ k − 1, for every vertex vi with v ∈ Ai, include
the edge (vi, vi−1).

For a vertex u ∈ V ′, let d(u) be the length of the shortest path in G′ from u to vertices
of A1 in the first block. There are two alternatives.
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1. There is some vertex u of Ak in the last block with d(u) ≤ r. The path of length r
certifying this value of d necessarily goes through all Ai (it starts at A1, ends at Ak,
and crosses to layer i through Ai, for 2 ≤ i ≤ k − 1). This is the first alternative in
the lemma.

2. For every vertex u of Ak in the last block, d(u) > r. By comparing with the average,
there is some value j ≤ r such that the set of vertices with d(u) = j contains at
most (k− 1)n/r vertices. This vertex set S′ separate A1 of the first block from Ak of
the last block in G′. Consequently, the vertices of V represented in S′ form S in the
second alternative in the lemma. (If there were an S-flap with a1 ∈ A1, a2 ∈ A2, . . .,
ak ∈ Ak, then a tour visiting these vertices could also be followed in V ′ \ S′.)

2

We now apply Lemma 2 on Y t and the associated Ai from above, and with r =
√
hn.

There are two cases to consider.
The first alternative holds. In this case, take Xt+1 = Xt ∪ C (for C as in the first

alternative in the lemma), kt+1 = kt +1, Ct+1
i = Ct

i for i ≤ kt and Ct+1
kt+1 = C, and Y t+1 to

be the largest connected component of Y t \C (if any of them is larger than n/2 – otherwise
we are done). Observe that |Y t+1| ≤ |Y t| − |C| and hence indeed P t+1 < P t.

Only the second alternative holds (in particular implying that kt ≥ 2). Intuitively,
we would like Xt+1 to be Xt ∪ S (for S as in the second alternative in Lemma 2), but this
would cause a problem with key property 2. Hence we will do something slightly different.

Let Y ′ be the largest S-flap in Y t. We may assume that |Y ′| > n/2, as otherwise Xt+1

as above is indeed a separator of size at most (kt+1)
√
hn ≤ h

√
hn. By Lemma 2, for some

i ≤ kt, Ai is disjoint from Y ′. This Ai allows us to extend the corresponding Ct
i into Y t

while maintaining Ct
i connected. We extend Ct

i into Y t as much as possible, but without
invading Y ′. This will be the new Ct+1

i . As Y t was connected, necessarily Ct+1
i extends into

S. Now let Xt+1 = (Xt \Ct
i )∪ (S ∩Ct+1

i ). Observe that this Xt+1 satisfies key properties 1
and 2 above, with kt+1 = kt. Let us now analyze the corresponding Y t+1. As Y ′ is still
connected and |Y ′| > n/2 we have that Y t+1 is the connected component containing Y ′ in
G \ Xt+1. The crucial observation is that this connected component cannot contain any
vertex from Ct+1

i , because any path from Ct+1 to Y ′ must go through S, and its intersection
with S must be in Xt+1. Consequently, Y t+1 is entirely contained in Y t (it cannot invade
Xt because the only vertices of Xt not in Xt+1 are in Ct+1

i ). It follows that

P t+1 = 3|Y t+1|+ |Xt+1|+ kt+1 ≤ 3(|Y t| − |S ∩ Ct+1
i |) + |Xt|+ |S ∩ Ct+1

i |+ kt < P t

as desired.

3 Extensions and applications

Theorem 1 has several useful corollaries.

Corollary 3 Let G(V,E) be an arbitrary graph with no Kh minor, and let W ⊂ V . Then
one can find in polynomial time a set S of at most h

√
hn vertices such that every S-flap

contains at most |W |/2 vertices from W .
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Proof: The proof given for Theorem 1 can easily be adapted to this setting. 2

Corollary 4 Every graph with no Kh as a minor has treewidth O(h
√
hn). Moreover, a

tree decomposition with this treewidth can be found in polynomial time.

Proof: We have seen last week an algorithm that given a graph of treewidth p constructs
a tree decomposition of treewidth 8p. Using Corollary 3, that algorithm can be modified to
give a tree decomposition of treewidth 8h

√
hn in our case, and do so in polynomial time.

(The leading constant of 8 can be reduced with extra care.) 2

It is known that computing maximum independent sets in planar graphs is NP-hard.
As an easy consequence of Corollary 4, maximum weighted independent set can be solved
in time 2O(

√
n) in planar graphs, and more generally, in graphs with excluded minors. In

general graphs, no algorithm with running time 2o(n) is known.
Rather than spend superpolynomial time and solve an optimization problem exactly, one

is sometimes interested in polynomial time algorithms that solve problems approximately.
The following corollary is useful for this purpose.

Corollary 5 In every n-vertex graph with no Kh-minor and for every k, one can find in
polynomial time a set S of vertices with |S| ≤ O(hn

√
h/k) such that no S-flap contains

more than k vertices.

Proof: For simplicity (and with no loss of generality, up to a choice of constants in
the O notation), assume that n and k are both powers of 2. We shall prove a bound of
|S| ≤ 4hn

√
h/k. By Theorem 1, the statement holds for k = n/2. We shall now assume

the Corollary for 2k, and prove for k. Hence we already have S′ of size at most 4hn
√
h/2k

for which no S′-flap has size more than 2k. Consider now only those S′-flaps of size at least
k. There are at most n/k such S′-flaps. For each of them use Theorem 1 to find a vertex
separator of size at most h

√
hk. The combination of S′ and all these new separators is the

desired S. Its size is at most 4hn
√
hn/2k + h

√
hk n

k = ( 4√
2
+ 1)hn

√
h/k ≤ 4hn

√
h/k, as

desired. 2

Observe that every n-vertex planar graph has an independent set of size at least n/4
by the 4-color theorem. More generally, the average degree of any graph with no Kh minor
is known to be bounded as a function of h, and hence when fixing h (and treating it as
a constant) every n vertex graph with no Kh minor has an independent set of size Ω(n).
Applying Corollary 5 with k = log n and discarding the vertices of S, at most |S| vertices of
the maximum independent set are lost. On the small components that remain, a maximum
independent set in each of them can be found by exhaustive search in time proportional to
2k ≤ n. The union of these independent sets is by itself an independent set, of size equal
to the maximum independent set minus O(n/

√
log n), which is a low order term.

The above argument can be strengthened by taking k = (log n)2, and using also Corol-
lary 4 to find maximum independent sets in components of size (logn)2. Hence we have the
following corollary.

Corollary 6 For every fixed h there is a polynomial time algorithm that given any graph
G on n vertices with no Kh minor finds an independent set of size (1 − O(1/ log n))α(G),
where α(G) is the size of the maximum independent set in G.
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4 Low treewidth k-coloring

Observe that Corollary 6 was stated only for maximum cardinality independent set, and
not for maximum weight independent set (in graphs in which vertices have nonnegative
weight). This is because for the separator vertices all that we argued was that their number
is small, rather than that their weight is small. We now develop a different algorithmic
paradigm that is in many cases easier to apply than the vertex separator framework. In
particular, it gives an 1 − O(1/ log n) approximation to maximum weight independent set
in planar graphs.

The algorithmic paradigm is based on the following Theorem of DeVos, Ding, Oporowski,
Sanders, Reed, Seymour and Vertigan.

Theorem 7 For every graph H and every k, there is an integer p such that the vertex set
of every graph G(V,E) that does not contain H as a minor can be partitioned into k sets
V1, . . . , Vk such that for every 1 ≤ i ≤ k, the graph induced on V \ Vi has treewidth at most
p. Moreover, such a partition can be found in polynomial time.

The proof of Theorem 7 uses structural properties of graphs with excluded minors, and
is beyond the scope of the course. Instead, we shall prove the theorem in the interesting
special case that G is planar. This (in slightly different formulation) is a result of Brenda
Baker that predated (and motivated) Theorem 7.

Theorem 8 For every k, the vertex set of every planar graph G(V,E) can be partitioned
into k sets V1, . . . , Vk such that for every 1 ≤ i ≤ k, the graph induced on V \Vi has treewidth
at most 3(k − 1). Moreover, such a partition and the associated tree decompositions can be
found in polynomial time.

Before we prove Theorem 8 we provide some definitions. A planar graph is outerplanar
if it can be embedded in the plane with all vertices on the outer face. It is k-outerplanar if
it can be embedded in the plane in a way that becomes (k−1)-outerplanar after all vertices
of the outer face are removed (together with their edges). Given an embedding of a planar
graph in the plane, a vertex is said to be in layer i if an iterative procedure that in each
step removes the vertices of the current outer face would remove it in step i.

Throughout the proofs we assume that a particular embedding of the planar graph is
given, and use the terms outerplanar, k-outerplanar and layer as referring to this particular
embedding.

Lemma 9 In a planar graph, for every 1 ≤ i < j − 1, there cannot be an edge between a
vertex v in layer i and a vertex u in layer j.

Proof: If v is at layer i and has an edge to u, then after the removal of layer i, vertex
u is visible from the outer face (along the corridor opened by the removal of edge (v, u)),
and hence the layer of u is at most i+ 1 < j. 2

We now prove of Theorem 8:
Proof: Consider an arbitrary planar embedding of G. For 1 ≤ i ≤ k, let Vi be all the

vertices in layers of the form kN + i for integer N . Removing Vi, the graph decomposes
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into connected components (by Lemma 9), where each component is (k − 1)-outer-planar.
The proof of Theorem 8 now follows from Lemma 12 below. 2

Before proving Lemma 12 we shall need two propositions.

Proposition 10 Every k-outerplanar graph is a minor of a k-outerplanar graph of degree
at most 3.

Proof: Consider an arbitrary vertex v of degree d > 3 at layer i and number its edges
clockwise (with respect to the layout of the planner embedding). Let us first single out two
of the edges incident to v via the following procedure. Remove all vertices that belong to
layers less than i together with their edges, except for the edges that connect to v (such
edges remain dangling with one endpoint in v). Since v is in layer i, it is now visible from
the outside, and so are at least two of its edges, say e1 and e2. These are the edges that we
single out.

Now let us return to the original graph. Replace v by two vertices v1 and v2, where v1
keeps d− 2 edges of v including e1, v2 keeps the remaining two edges including e1, and an
edge (v1, v2) is added. Hence the degrees of v1 and v2 are smaller than the degree of v. The
original graph is a minor of the new graph. The new graph is planar because neighbors of
v1 are consecutive neighbors of v. The graph remains k-outerplanar because e1 and e2 are
visible once all vertices up to layer i − 1 and their edges are removed (except for possibly
e1 and e2), and hence so are v1 and v2. Hence they both are in layer i.

Continuing as above, all vertices can be made of degree at most 3. 2

Given a spanning forest F of a graph G(V,E), the load of a vertex v is the number of
different edges e ∈ (E \ F ) whose addition to F closes a cycle through v. The load of an
edge e′ ∈ F is one plus the number of different edges e ∈ (E \F ) whose addition to F closes
a cycle through e′. The load of F is the maximum load of any of its vertices and edges.

Proposition 11 If G has a spanning forest F of maximum degree 3 and load ℓ than it has
treewidth at most ℓ.

Proof: Consider the natural tree (in fact, forest, if G is not connected) decomposition
T of F whose bags are the vertices of G and the edges of F (a vertex bag in connected to the
bags of its incident edges). Consider a non-forest edge (u, v). This requires to have a bag
containing both u and v. Follow the path between u and v in F and add u to the respective
bags, if not already there. Doing so for all non-forest edges, each vertex bag increased by
at most the load of its respective vertex, and each edge bag increased by at most one less
than its load. 2

We now state and prove Lemma 12.

Lemma 12 Every k-outerplanar graph has treewidth at most 3k.

Proof: By Proposition 10 and the fact that treewidth does not increase by taking
minors, it suffices to prove the lemma for k-outerplanar graphs of degree at most 3. By
Proposition 11, it suffices to show that every k-outerplanar graph of degree at most 3 has
a spanning forest of load at most 3k. We prove this by induction.

Base case. A 1-outerplanar graph is simply an outerplanar graph. Consider an ar-
bitrary outerplanar embedding. Remove all edges visible from the outer face. No cycle
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remains. (This is one place where we use the restriction that the maximum degree is 3.)
Hence we have a forest. Put back some of the removed edges until a maximal forest is
obtained. Thereafter, every non-forest edge closes a cycle. It is important to note that this
cycle must be a face in the outerplanar embedding – no edge of G not in F can form an
inner cord of this cycle, because all edges not in F are on the outer face. As every edge is
only on two faces, the load per forest edge is at most 2. As every vertex is on at most three
faces (this is another place where we use the restriction that the maximum degree is 3), its
load is at most 3.

Inductive step. Assume the claim for (k − 1)-outerplanar graphs. Consider now an
arbitrary k-outerplanar graph G(V,E) of degree at most 3 and an arbitrary outerplanar
embedding for it. Remove the set O of edges of the outer face to obtain a graph G′. The
vertices of layer 1 in G have degree at most 1 in G′. Hence G′ is (k − 1)-outerplanar, and
has a spanning forest F ′ of load at most 3(k − 1). Let R′ denote the set of edges not in F ′

and not in O. Put back removed outer face edges until a maximal forest F is obtained. Let
R be the edges of O not in F . Edges of R can contribute at most 2 to the load of any edge
of F and at most 3 to the load of any vertex. (For the graph containing only the edges of
F and R every face contains an outer edge. Hence every edge of R closes a cycle which is a
face, similar to the base case.) The load incurred by edges or R′ was accounted for already
in F ′. 2

As an application of Theorem 8, we can prove:

Theorem 13 For every k there is at algorithm that runs in time nO(1)2O(k) and approxi-
mates maximum weight independent set (MWIS) in planar graphs within a ratio of 1−1/k.

Proof: Apply Theorem 8. One of the sets Vi contains at most a 1/k fraction of the
weight of the MWIS. Try all possible values of i. Remove the corresponding set Vi and solve
MWIS on the remaining graph, using dynamic programming on graphs of treewidth O(k).
2
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