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1 The simplex algorithm

The simplex algorithm was designed by Danzig in 1947. This write-up presents the main
ideas involved. It is a slight update (mostly in Section 1.9) of lecture notes from 2004. In
2011 the material was covered in much less detail, and this write-up can serve as supple-
mentary material for those students who want to know more about the simplex algorithm.
Sections 1.7 and 1.8 were not discussed at all in class.

1.1 A geometric view

Recall that a linear program defines a polyhedron. For simplicity, let us assume here
that this polyhedron is nonempty (i.e., the LP is feasible) and bounded (namely, it is a
polytope). Then we know that the optimal value of the LP is attained at a vertex of the
polytope (equivalently, at a basic feasible solution to the LP). We say that two vertices of
a polytope are adjacent if they are connected by an edge of the polytope.

The basic idea of the simplex algorithm is as follows. One starts at an arbitrary vertex
of the polytope. (The question of how to find a starting vertex will be addressed shortly.)
Thereafter, at every iteration, the algorithm moves to a neighboring vertex of better value
(of the objective function). The algorithm ends when such a move is no longer possible,
meaning that the current vertex is a local optimum compared to all adjacent vertices.

The above description gives only the basic idea. A more serious treatment involves prov-
ing that the solution found is optimal, showing how one can implement a single iteration,
deciding which of several improving adjacent vertices to move to, how to find a starting
feasible vertex, deal with polyhedrons that are unbounded, with degeneracies, analysing the
number of iterations required (and showing that this number is finite) and so on. An even
more serious treatment involves the many ideas that come into improved implementations
of the simplex algorithm.

1.2 LPs in various forms

In principle, a simplex-like algorithm can be run on linear programs in canonical form, or
even in general form. However, for reasons of efficiency, the simplex algorithm is run on
linear programs in standard form. This allows for many shortcuts in the implementation.
We note however that there are cases where one runs a simplex-like algorithm on an
LP that is not in standard form. This may happen if the number of constraints is much
larger than the number of variables. Transforming such an LP to standard form greatly



increases the number of variables (by introducing a slack variable for every constraint), an
effect that is undesirable. Moreover, in some cases the number of constraints is so large
that they are not explicitly recorded. Instead, they are generated “on the fly” during the
run of the algorithm, making it impossible to work in standard form. (Later in the course,
when we discuss the Ellipsoid algorithm, we shall see scenarios where constraints are not
given explicitly.)

1.3 Finding a feasible solution

In order to start the simplex algorithm, one needs some basic feasible solution. In principle,
the complexity of finding whether an LP is feasible is polynomially related to that of finding
the optimal solution to LPs. Given the ability to find optimal solutions, we can certainly
find feasible solutions. Given the ability to find feasible solutions, we can find optimal
solutions by performing binary search on the value of the objective function (treated as
a constraint). Here we use the fact that the optimal solution, if bounded, is attained at
a vertex, and that numerical precision (representing numbers as rational numbers) that is
polynomially related to the input size suffices in order to exactly represent a vertex.

Hence in principle, one should not expect to be able to find feasible solutions significantly
more quickly than optimal solutions, and the problem of starting the simplex algorithm is
as hard as the problem of running it. This gives a clue as to how to start the simplex
algorithm.

Recall that we are dealing with LPs in standard form.

minimize ¢’z

subject to

Ax =10

x>0

We may assume without loss of generality that b > 0, as we can always multiply con-
straints by —1. Now introduce a vector y of m variables (similar to slack variables) and
consider the new LP in standard form:

minimize 17y

subject to

Az +y=1»

x>0

y=>0

(Here 17 is the all 1 row vector.) In this new program, setting = 0 and y = b is a
bfs. Hence the simplex algorithm can be started. Let z*,y* be the final bfs found by the
simplex algorithm, and assume that it is optimal. There are three cases:

1. y* = 0 and z* has exactly m nonzero coordinates. In this case x* is a bfs for the
original program, and the nonzero variables are the basic variables.

2. y* = 0 and «* has less than m nonzero coordinates. In this case * is a bfs for the
original program, and one can complete the set of nonzero variables to a basis (by
adding O-variables whose respective columns are linearly independent).

3. y* # 0. In this case the original LP is not feasible.



Hence to start the simplex algorithm on an LP, one first runs the simplex algorithm on
an initialization LP.

1.4 The linear algebra of the simplex algorithm

Consider a linear program in standard form.

minimize ¢’z

subject to

Axr=b

z>0

We assume at this point that there are no degeneracies (every bfs m has nonzero vari-
ables), and that we are given some bfs. In this case, a single iteration of the simplex
algorithm will do the following:

Move to an adjacent bfs with lower value of ¢ z. If no such adjacent bfs exists, stop.

We shall show now that such an iteration can be performed in polynomial time.

Let zp = =p(1),---,TB(m) be the current bfs, and let B = (Ap()... Apum)) be the
corresponding basis matrix.

Let x; be a nonbasic variable, and lets check whether it is profitable to have it enter the
basis.

We know that at the beginning of the current iteration,

B$B = B.TB + Aj%j =b.

Define direction variables dg, d; that indicate by how much we change the current value
of the basic variables and of ;. (For other variables, their corresponding value in the vector
d is 0.) Then they need to satisfy Bdp + Ajd; = 0, implying

dp = —B_lAjdj.

When d; = 1, the change in the objective function is

Cj =¢j — C%B_lAj,
which is called the reduced cost.

We want x; to enter the basis only if the reduced cost is negative. We remark here that
if z; is already in the basis, B_lAj is just the indicator vector for x;, implying that ¢; = 0.

If the reduced cost is negative, we can move in the direction of d to a distance 6, until
one of the previous basic variables becomes 0. Hence:

0 = min, pasis —q -

The x; for which 6 is realized leaves the basis.

If no d; < 0, then the optimum is —ooc.

The issue of degeneracies may cause problems (force § = 0), and they will be addressed
at a later section.

Lemma 1 The new solution reached by one iteration of the simplex algorithm is also a bfs.

Proof: If not (meaning that the corresponding columns have a linear dependency) then
in the vector d leading to it we would necessarily have had d; = 0 for the variable that left
the basis, which is a contradiction. O

Lemma 2 Let x be a bfs with basis matriz B (and matriz N corresponds to the rest of A),
and let ¢ be the corresponding vector of reduced costs for all nonbasic variables. Then



1. If x is optimal and non-degenerate, then ¢ > 0.

2. If¢ >0, then x is optimal.

Proof: To prove 1, observe that if ¢; < 0, then moving in the direction of the corre-
sponding d reduces the objective function.

To prove 2, let y be an arbitrary feasible solution, and define d = y — . Then Ad = 0,
implying Bdg + Ndy = 0, and dg = —B~'Ndy. Now we can compute the change in cost
that results from a move by d.

I'd = cgdB + c%dN = (c% — chle)dN =cnTdy

As dy > 0, and we assumed that ¢y > 0, the change in cost is positive. O

1.5 Handling degeneracies

If a bfs is degenerate, then we may be required to choose §# = 0 and there is no progress in
the objective function in a single iteration. In this case, we do perform a change of basis
(but stay in the same vertex of the polyhedron).

A problem that might occur is cycling. We may continue changing bases in a cyclic
function without ever leaving the vertex (even if the vertex is not optimal). One can design
examples were cycling occurs, and it has been reported to occur in practice. There are
several ways for avoiding cycling:

1. A generic way. A degeneracy is a result of numerical coincidence. Slightly perturbing
b at random will eliminate it. However, this approach is not favored because it is
computationally costly — requires high precision. Moreover, care must be taken not
to ruin feasibility of the LP.

2. At a degenerate vertex, decide at random which of several plausible nonbasic variables
enters the basis, and which plausible basic variable leaves the basis. Eventually, with
probability 1, one gets out of the vertex.

3. Use some deterministic pivoting rule that ensures getting out of the vertex. This is
the preferred approach. One such rule is Bland’s rule: when there is a choice between
different variables (to enter or leave the basis), always choose the lexicographically
first one.

1.6 Pivot selection

Many nonbasic variables may have negative reduced cost. Hence one needs a rule to resolve
the ambiguity of the simplex algorithm. Many options are possible here. Among them we
have:

1. Choose the variable with most negative reduced cost.
2. Choose the variable with greatest impact on the objective function (minimizing 6¢;).

3. Choose an anti-cycling rule.



The performance of the simplex algorithm and the complexity of implementing it de-
pends on the particular pivot selecting rule. A major open question asks whether there is
a pivot selection rule that guarantees a polynomial number of iterations. We shall discuss
this question later in Section 1.9.

In practice, in most cases and with many of the pivot selection rules, the number of
iterations of the simplex algorithm is typically O(m).

1.7 Implementation issues

The way we described the simplex algorithm appears to invert a matrix B in every iteration,
giving a complexity of roughly m? operations per iteration. Moreover, potentially one needs
to compute B_lAj for every nonbasic variable, making the complexity O(m?n). However,
we note that between consecutive iterations, the matrix B changes by only one column, a
fact that can be used in order to speed up the algorithm. We illustrate his by presenting
the tableau version of the simplex algorithm.

Let us first recall how Gaussian elimination computes the inverse of a matrix B. One
appends to it the identity matrix I to obtain a matrix C' = [I; B]. Then one performs row
operations until the submatrix B is transformed into a matrix I, and at this point the result
is [B~1;I]. A very useful fact to note is that performing these row operations is equivalent
to multiplying C on the left by B~1. (Every row operation is equivalent to multiplying by a
matrix, and B~! is the unique solution to the matrix equation X[I; B] = [B~!;I].) Hence
if one would append a column y to the matrix C', then the same row operations on the
matrix [I; B;y] would lead to the matrix [B~%; I; B~'y]. If one is not explicitly interested
in the matrix B~!, but only in the product B~'b, then there is no need to carry around the
first component of the matrix, and it suffices to consider a matrix [B;y| and perform on it
row operations until the B changes to I.

Now lets get back to the simplex algorithm. Recall that we wish to compute quantities
such as xp = B~'b, and that dp depends on B_lAj (where Aj is a column corresponding
to a nonbasic variable). Recall that we may view A as [B; N]|. Consider now the matrix
[B; N;b]. Performing row operations we can obtain the matrix [[; B~'N; B~1b]. Altogether,
the number of row operations performed to obtain this matrix is O(m?), giving a total of
O(m?n) basic operations.

Now we reach the main point. In the next iteration of the simplex algorithm, only one
column is exchanged between B and N. Exchanging the locations of these columns in the
matrix [I; B~'N; B~'b] gives a matrix whose left portion is identical to I, except for one
column. Now m row operations suffice in order to reach the next [I; B~'N; B~1b]. Hence
the number of operations per iteration can be reduced to O(mn).

It is convenient to add a row [cg; c%; 0] to the matrix above. Performing row operations
that make the first component of this row 0, one obtains [0; CCZ]\} — CEB_lN; —CEB_lb], which
gives the reduced costs and the value of the objective function (negated).

Summarizing, when working in tableau form we do the following:

1. For simplicity, think of the columns of A as being rearranged so that the basic variables
are first. (This need not be done in practice.) Then we have the matrix [B; N;b].
Extend it by the cost row [ck; L5 0].



2. Perform row operations until one gets the matrix X = [I; B~'N; B~'b]. Then perform
row operations to modify the cost row to [0;ck — cEB~IN; —cL5B~1b).

3. Find a column j with negative reduced cost. (If there are several such columns,
use your pivot selection rule to decide among them.) If there is no such column,
stop, and then the last column of the matrix gives the bfs and the (negation of the)
corresponding value of the objective function.

4. If X;; < 0 for all 1 < ¢ < m then stop and report that the objective function is
unbounded.

5. Compare the last column to column j, to find min[XZ-(nH) /Xi;] over all i with positive
Xij. (If there are several such ¢, use your pivot selection rule to decide among them.)

6. Exchange columns i and j and go back to step 2. (The exchange need not be done
explicitly in practice.)

A toy example of how the simplex algorithm is run will be given in class, but is not
presented here due to my laziness.

In practice, one rarely runs the tableau version of the simplex algorithm. A major reason
for this is that this version fails to capitalize on special structure of the matrix A.

e If A has a very large aspect ratio n > m, then one uses techniques that do not hold
all of N simultaneously, but just enough so as to find a variable to pivot on.

e Often the matrix A is very sparse (most entries are 0). The tableau version destroys
this property. Other versions of the simplex algorithm, like the so called revised ver-
sion, take advantage of sparseness and reduce the number of operations per iteration.

e Sometimes the matrix A has special structure that allows one to decompose it into
smaller blocks, and then one runs versions of the simplex algorithm that take advan-
tage of the block structure.

1.8 Column geometry

We give here another geometric view of the simplex algorithm.

k + 1 vectors yi,...,yr+1 in R™ are affinely independent if the k vectors (y; — yx+1)
for 1 < i < k are linearly independent. The convex hull of yi,...,yx11 in R™ is called a
k-dimensional simplex.

Consider an arbitrary linear program in standard form:

minimize ¢’z

subject to

Axr =b

x>0

We wish it to have some additional properties, that will be explained shortly. We
describe a transformation that allows us to achieve these properties.

Let M be large enough so that for every basic feasible solution _ z; < M. Let us add an
auxiliary slackness variable y > 0, and the constraint y+>_ x; = M. Dividing all constraints



by M, and introducing a new variable z for the objective function, we may bring the LP to
the following form:

minimize z

subject to

Ar =b
lr=z
x>0

The last two constraints can be viewed as convexity constraints. They require the vector
b to be a convex combination of the columns of A (rather than just a nonnegative linear
combination), and the objective function z to be a convex combination of the entries of the
vector ¢ (and the coefficients in both convex combinations are the same).

Now consider the following geometric picture (which you can draw and visualize assum-
ing that m = 2, where m is the number of rows in A). The geometric picture is drawn in
R™HL where the last coordinate (the vertical one) is called the z direction.

There are vectors (points in R™*1) y;, one for each variable of the LP, where y; is com-
posed of column A; and one extra coordinate with value ¢;. There is a line in ™! parallel
to the z direction that corresponds to all points that have b as their first m coordinates.
We call it the b line.

A basic feasible solution is a set B of m + 1 affinely independent vectors from the y;
vectors, such that the b line intersects their convex hull (which is a simplex). The hyperplane
on which this simplex lies is called the dual plane. This is the set of points that can be
expressed as > \;y; for y; € B and Y- \; = 1. The value of the objective function is the
value of the z coordinate at the point of intersection.

During a pivot operation, we move from simplex to simplex, where the two simplices
differ in one vertex.

The reduced costs have a geometrical interpretation in this picture (whose proof is left
as homework). The reduced cost of variable x; is exactly the distance one needs to travel
from y; in the z direction until one eventually intersects the dual plane. If y; lies below this
dual plane, then the reduced cost is negative.

A degeneracy is a place where the b line intersects a simplex of lower dimension (e.g., a
line joining two points, when m = 2).

Remark: If the optimum value of the original LP is unbounded, then this is indicated
by having y = 0 at the optimal solution for the new LP.

1.9 Is the simplex algorithm a polynomial time algorithm?

Starting at an arbitrary bfs, how many pivot operations does it take the simplex algorithm
to reach the optimal solution? This depends on the pivot rule that is used.

Klee and Minty show that under certain pivot rules, there are LPs that require an
exponential number of pivot operations. The basic idea of their proof is as follows. A cube
in n dimensions has 2" vertices. They would like to cause the simplex algorithm to visit
all vertices of a cube. The simplex moves from a vertex to an adjacent vertex only if the
respective reduced cost is negative. The Klee-Minty LP is based on a so called squashed
cube. This is gives the following LP, where € is some parameter satisfying 0 < e < 1/2.

minimize —z,



subject to:

e<x <1,

exj_1 <xj <1—exj_q,for2<j<n.

By adding slackness variables, one gets an LP in standard form, 3n variables and 2n
constraints (and 3n nonnegativity constraints). The simplex algorithm may visit all 2"
vertices and still in every step improve the value of the objective function.

For almost all known deterministic pivot rules, there are known examples of linear
programs where the simplex algorithm visits exponentially many vertices.

The diameter of a polytope is the number of edges in the shortest path between the two
most distant vertices in the skeleton graph of the polytope (with vertices of the polytope
being vertices of the graph, and edges of the polytope being the edges of the graph). The
famous Hirsch conjecture (from 1957) says that every d-dimensional polytope defined by m
halfspaces has diameter at most m — d. The conjecture in this strong form was refuted in
2010 by Francisco Santos, though a diameter of O(m) (or even m + O(1)) is still plausible.
The best positive result known in this respect is by Gil Kalai, giving an upper bound of
ml°8?. However, Kalai’s proof does not give a polynomial time computable pivot rule.

There are known randomized pivot rules under which the simplex algorithm takes at
most mV" pivot steps (in expectation). Recently, negative examples were designed (by
Friedmann, Hansen and Zwick) showing that several randomized pivot rules do not work
in polynomial time.

In practice, the number of pivot operations performed by the simplex algorithm is small,
often O(m). Average case analysis for the simplex algorithm may potentially explain its
empirical success. Here are three random models that were considered, and in each of the
it was shown that a polynomial number of pivot operations (under some specific pivot rule)
suffice with high probability (where probability is taken over choice of input instance).

1. Random constraint matrix. Each entry of the constraint matrix is chosen indepen-
dently at random as a Guassian random variable with mean 0 and variance 1.

2. Random polarity. All coefficients of the LP (namely, A, b and ¢) are chosen in an
arbitrary manner. All constraints are inequalities. Only the direction of the inequality
(“<” versus “>") is chosen independently at random per inequality.

3. Smoothed analysis (of Spielman and Teng). The LP is chosen arbitrarily, and the
constraint matrix A is scaled so that it has no entries larger than 1 in absolute value.
Then random “noise” is added to A, where the entries of the noise matrix are inde-
pendent Guassian random variables with mean 0 and variance o2. For every LP, it
is shown that in this model the simplex algorithm runs with high probability in time
that is polynomial in 1/02, where probability is taken over the choice of noise matrix.

It would be nice to strengthen smoothed analysis so that the noise per entry is small
compared to the value of the entry (rather than being small compared to the maximum
entry of A). In particular, this will force 0 entries to remain 0.



