Advanced Algorithms 2012A
Lecture 5 — flow/cut gap for sparse-cut*

Robert Krauthgamer

1 Concurrent flow and sparse-cut

1.1 Concurrent flow

Consider the same setup as in the multicommodity flow problem, i.e. undirected graph G with
edge-capacities and k demand pairs {s;,t;}. In the concurrent flow problem, the goal is to ship A
units of flow between every demand pair, for the largest possible A > 0.

The problem can be written as the LP below. We let P; be the set of all s; — t; paths. We have
variables for flow paths and also A.

maximize A\
subject to Z f; > A Vi € [k]
IS (1)

Z Z f;gce Veec E

'Le[k] pEP;:e€p
fp =0 Vi € [k],Vp € P;

Exer: Write an equivalent program that has a polynomial size.

1.2 Sparse-Cut

In the sparse-cut problem, the input is as above, and the goal is to find a set of edges £/ C FE
that minimizes the ratio between capacity(FE’) and the number of demands that are disconnected
in G\ E' (which might have many connected components).

Exer: show directly that in every network

maximum concurrent flow < minimum sparse-cut,

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.



and give an example where the inequality is strict (hint: use the complete bipartite graph K»3).

Exer: Prove that there is always an optimal solution that corresponds to some subset A C V,
namely E’ is a cut (A, A).

By the exercise, it suffices to seek A C V' that minimizes:

sparsity(A) — Capacity(edges CUt) _ ZUUEE Cuvl{\{uﬂ)}ﬂN:l} _ ZuveE cuv|1A(u) - 1A(U)|
#(demands separated) 2iel] H{sit:nA|=1} Dicp [Lalsi) = 1a(t)]

1.3 LP relaxation for sparse-cut

The dual LP for (@) has variables (y. : e € F) and exponentially many constraints:

minimize Z CeYe
ecE
subject to Zye >y, Vi€ lk],Vp e P,

eip:yizl @)

1€[k]
Ye =0 Veec E
y; >0 Vi € [k]

Observe that the second constraint can be abolished by changing the objective to be the ratio
ZeEE CelYe
iclk] Yi

according to edge-lengths ye.

. Now, we can assume WLOG that y; is just the shortest-path distance between s; and ¢;
Exer: Prove that this LP is a relaxation of the sparse-cut problem.

1.4 Flow/cut gap

Theorem 1 [Aumann-Rabani and Linial-London-Rabinovich after Leighton-Rao]:

minimum sparse-cut < O(log k) - maximum concurrent flow.

Proof: Again, interpret the variables y. as edge-lengths, and let d(u,v) denote the distance
ZuveEcuvd(u,v)

(shortest-path) from u to v according to y.. Observe that the LP value is at most YT CEARE

ic isli
Informally, the next step is to “convert” these arbitrary distance to a “tree metric” with only an
O(log k) factor loss. We then convert the tree distances into a “cut metric” (with no further loss)
which is just a cut (4, A).

Lemma 2 [Probabilistic embedding into trees| [Gupta-Nagarajan-Ravi and Fakcharoenphol-
Rao-Talwar after Bartal]: Let d(.) be a metric on a set V of size n, and let T'C V be a collection



of k terminals. Then there exists a randomized tree 7 with vertex set V. O V (in fact the leaves
are exactly V') and edge-lengths giving some distance d, such that:

e For all u,v € V we have E[d,(u,v)] < O(logk) - d(u,v); and
e For all t,t' € T we have d.(t,t") > d(t,t') (with probability 1).

It is instructive to think of the case T'=V (thus k = n).

Proof of lemma: Below. The idea is to use algorithm CKR (from last week) recursively.

By applying Lemma 2 to a solution to LP (B) and terminals T = {s1,¢1,..., sk, tx}, we obtain a
randomized tree 7 such that:

ET [ZquE cuvdT(u? U)]
2 iclk) r(sis ti)

> wver Cund (U, v)
Zz‘e[k] d(si,t;)

EeGE CelYe
Zie[k] Yi

< O(logk) -

< O(logk) -

Fix henceforth a tree 7 for which )  p cuvds(u,v) is no more than its expectation.

Lemma 3 [Extracting a cut from a tree metric]: Given a tree 7, there is A C V;, i.e. a cut
(A, V- \ A), such that

EquE CUUHA(U) - lA(U)‘ < ZuUEE CUUdT(ua U)
Dici 11alsi) = 1alt)l = Xicpy dr(siste)

To understand the lemma, it is instructive to think of the tree 7 as a path, and then the cut A will
be some “prefix” of the path.

Proof of lemma: Below. Basically an averaging argument over the tree’s edges.

Using Lemma 3, we get a set A C V;, and WLOG we may assume A C V (because vertices of
V: \ V do not really appear in the lemma), such that:

ZquE CUU|]‘A(U) - 1A(U)| < ZUUEE CUUdT(uﬂ U)
Zie[k] [Ta(si) = 1a(t)] — Ziem dr(siti)

i.e., a sparse-cut whose value is within factor O(log k) of the LP.

ZeGE CeYe
Zie[k] Yi

< O(logk) -

Theorem 2.1 follows using strong duality. QED.

Remark: It’s not hard to verify that this gives a polynomial-time O(log k) approximation algorithm
for the sparse-cut problem, which is NP-hard.

1.5 Proof of Lemma 3 (sketch)

Let E; be the set of edges in the tree 7, and let ¢(.) be the edge lengths. Just like in every tree,
removing a tree-edge separates the tree into two connected components. Thus, every tree-edge
xy € E; defines a partition V; = A,y U A,;. Observe that we can write

dr(u,0) = Y Uay)|la,, (u) = 1a,,©)].

zyeE,



As seen in class, the lemma follows by using this formula together with the simple inequality:

LG < Cbete
ming{ g} < gUTEgs

1.6 Proof of Lemma 2 (sketch)

The tree T will correspond to a hierarchical decomposition (recursive partitioning) of V', as described
below. Assume WLOG the minimum interpoint distance is 4, and set § = log diam(V') + 2.

Partition V using algorithm CKR (from last week) with R = 29 then compute a new partition of
V using algorithm CKR with R = 2°~!, and so forth using R = 2 for i = 6,6 — 1,...,1,0. At each
stage, “force” the partition of level ¢ partition to be a refinement of all the previous partitions (by
breaking level i clusters according to all higher level partitions). The result of this forced nesting
is that now every level i cluster is completely contained in some level ¢ + 1 cluster.

The tree 7 is the natural representation of this hierarchical decomposition, with the root of the
tree representing the vertex-set V', its children represent the clusters at level §, and so forth, until
the leaves of the tree which represent the clusters for R = 1. Edges between a tree node at level
i and its parent are given length 2¢+2. Ordinarily, the clusters at the leaves of the tree represent
a cluster of size 1 (single vertex of V'), but not always because CKR algorithm has a “leftover”
cluster V. In this last case we add under this leaf |Vj| children, each representing a single vertex
of Vj, connected with zero edge lengths. It follows that the leaves of V- can be thought of as V.

The rest of the analysis (bounds on d;) was seen in class, and uses the important remark about

how algorithm CKR depends on the term O(log %)



