1 Concurrent flow and sparse-cut

1.1 Concurrent flow

Consider the same setup as in the multicommodity flow problem, i.e. undirected graph G with edge-capacities and k demand pairs $\{s_i, t_i\}$. In the concurrent flow problem, the goal is to ship λ units of flow between every demand pair, for the largest possible $\lambda > 0$.

The problem can be written as the LP below. We let P_i be the set of all $s_i - t_i$ paths. We have variables for flow paths and also λ.

$$\begin{align*}
\text{maximize} & \quad \lambda \\
\text{subject to} & \quad \sum_{p \in P_i} f^i_p \geq \lambda \quad \forall i \in [k] \\
& \quad \sum_{i \in [k]} \sum_{p \in P_i : e \in p} f^i_p \leq c_e \quad \forall e \in E \\
& \quad f^i_p \geq 0 \quad \forall i \in [k], \forall p \in P_i
\end{align*}$$

Exer: Write an equivalent program that has a polynomial size.

1.2 Sparse-Cut

In the sparse-cut problem, the input is as above, and the goal is to find a set of edges $E' \subseteq E$ that minimizes the ratio between capacity(E') and the number of demands that are disconnected in $G \setminus E'$ (which might have many connected components).

Exer: show directly that in every network

$$\text{maximum concurrent flow} \leq \text{minimum sparse-cut},$$

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.
and give an example where the inequality is strict (hint: use the complete bipartite graph $K_{2,3}$).

Exer: Prove that there is always an optimal solution that corresponds to some subset $A \subset V$, namely E' is a cut (A, \bar{A}).

By the exercise, it suffices to seek $A \subset V$ that minimizes:

$$\text{sparsity}(A) = \frac{\text{capacity(edges cut)}}{\#(demands separated)} = \sum_{uv \in E} c_{uv} 1\{|(u,v)\cap A|=1\} / \sum_{i \in [k]} 1\{|(s_i, t_i)\cap A|=1\} = \frac{\sum_{uv \in E} c_{uv} |1_A(u) - 1_A(v)|}{\sum_{i \in [k]} |1_A(s_i) - 1_A(t_i)|}.$$

1.3 LP relaxation for sparse-cut

The dual LP for (P) has variables $(y_e : e \in E)$ and exponentially many constraints:

| minimize $\sum_{e \in E} c_e y_e$
| subject to $\sum_{e \in P} y_e \geq y_i \quad \forall i \in [k], \forall p \in P_i$
| $\sum_{i \in [k]} y_i = 1$
| $y_e \geq 0 \quad \forall e \in E$
| $y_i \geq 0 \quad \forall i \in [k]$ |

Observe that the second constraint can be abolished by changing the objective to be the ratio $\frac{\sum_{e \in E} c_{uv} y_e}{\sum_{i \in [k]} y_i}$. Now, we can assume WLOG that y_i is just the shortest-path distance between s_i and t_i according to edge-lengths y_e.

Exer: Prove that this LP is a relaxation of the sparse-cut problem.

1.4 Flow/cut gap

Theorem 1 [Aumann-Rabani and Linial-London-Rabinovich after Leighton-Rao]:

$$\text{minimum sparse-cut} \leq O(\log k) \cdot \text{maximum concurrent flow}.$$

Proof: Again, interpret the variables y_e as edge-lengths, and let $d(u, v)$ denote the distance (shortest-path) from u to v according to y_e. Observe that the LP value is at most $\sum_{e \in E} c_{uv} d(u, v) / \sum_{i \in [k]} d(s_i, t_i)$. Informally, the next step is to “convert” these arbitrary distance to a “tree metric” with only an $O(\log k)$ factor loss. We then convert the tree distances into a “cut metric” (with no further loss) which is just a cut (A, \bar{A}).

Lemma 2 [Probabilistic embedding into trees] [Gupta-Nagarajan-Ravi and Fakcharoenphol-Rao-Talwar after Bartal]: Let $d(.)$ be a metric on a set V of size n, and let $T \subset V$ be a collection
of k terminals. Then there exists a randomized tree τ with vertex set $V_\tau \supseteq V$ (in fact the leaves are exactly V) and edge-lengths giving some distance d_τ, such that:

- For all $u, v \in V$ we have $E[d_\tau(u, v)] \leq O(\log k) \cdot d(u, v)$; and
- For all $t, t' \in T$ we have $d_\tau(t, t') \geq d(t, t')$ (with probability 1).

It is instructive to think of the case $T = V$ (thus $k = n$).

Proof of lemma: Below. The idea is to use algorithm CKR (from last week) recursively.

By applying Lemma 2 to a solution to LP (2) and terminals $T = \{s_1, t_1, \ldots, s_k, t_k\}$, we obtain a randomized tree τ such that:

$$\frac{\mathbb{E}_\tau[\sum_{uv \in E} c_{uv} d_\tau(u, v)]}{\sum_{i \in [k]} d_\tau(s_i, t_i)} \leq O(\log k) \cdot \frac{\sum_{uv \in E} c_{uv} d(u, v)}{\sum_{i \in [k]} d(s_i, t_i)} \leq O(\log k) \cdot \frac{\sum_{e \in E} c_e y_e}{\sum_{i \in [k]} y_i}$$

Fix henceforth a tree τ for which $\sum_{uv \in E} c_{uv} d_\tau(u, v)$ is no more than its expectation.

Lemma 3 [Extracting a cut from a tree metric]: Given a tree τ, there is $A \subset V_\tau$, i.e. a cut $(A, V_\tau \setminus A)$, such that

$$\frac{\sum_{uv \in E} c_{uv} |1_A(u) - 1_A(v)|}{\sum_{i \in [k]} |1_A(s_i) - 1_A(t_i)|} \leq \frac{\sum_{uv \in E} c_{uv} d_\tau(u, v)}{\sum_{i \in [k]} d_\tau(s_i, t_i)}$$

To understand the lemma, it is instructive to think of the tree τ as a path, and then the cut A will be some “prefix” of the path.

Proof of lemma: Below. Basically an averaging argument over the tree’s edges.

Using Lemma 3, we get a set $A \subset V_\tau$, and WLOG we may assume $A \subset V$ (because vertices of $V_\tau \setminus V$ do not really appear in the lemma), such that:

$$\frac{\sum_{uv \in E} c_{uv} |1_A(u) - 1_A(v)|}{\sum_{i \in [k]} |1_A(s_i) - 1_A(t_i)|} \leq \frac{\sum_{uv \in E} c_{uv} d_\tau(u, v)}{\sum_{i \in [k]} d_\tau(s_i, t_i)} \leq O(\log k) \cdot \frac{\sum_{e \in E} c_e y_e}{\sum_{i \in [k]} y_i}$$

i.e., a sparse-cut whose value is within factor $O(\log k)$ of the LP.

Theorem 2.1 follows using strong duality. QED.

Remark: It’s not hard to verify that this gives a polynomial-time $O(\log k)$ approximation algorithm for the sparse-cut problem, which is NP-hard.

1.5 Proof of Lemma 3 (sketch)

Let E_τ be the set of edges in the tree τ, and let $\ell(.)$ be the edge lengths. Just like in every tree, removing a tree-edge separates the tree into two connected components. Thus, every tree-edge $xy \in E_\tau$ defines a partition $V_\tau = A_{xy} \cup A_{yx}$. Observe that we can write

$$d_\tau(u, v) = \sum_{xy \in E_\tau} \ell(xy)|1_{A_{xy}}(u) - 1_{A_{yx}}(v)|.$$
As seen in class, the lemma follows by using this formula together with the simple inequality:
\[\min_i \left\{ \frac{c_i}{d_i} \right\} \leq \frac{c_1 + \cdots + c_n}{d_1 + \cdots + d_n}. \]

1.6 Proof of Lemma 2 (sketch)

The tree \(\tau \) will correspond to a hierarchical decomposition (recursive partitioning) of \(V \), as described below. Assume WLOG the minimum interpoint distance is 4, and set \(\delta = \log \text{diam}(V) + 2 \).

Partition \(V \) using algorithm CKR (from last week) with \(R = 2^\delta \), then compute a new partition of \(V \) using algorithm CKR with \(R = 2^{\delta - 1} \), and so forth using \(R = 2^i \) for \(i = \delta, \delta - 1, \ldots, 1, 0 \). At each stage, “force” the partition of level \(i \) partition to be a refinement of all the previous partitions (by breaking level \(i \) clusters according to all higher level partitions). The result of this forced nesting is that now every level \(i \) cluster is completely contained in some level \(i + 1 \) cluster.

The tree \(\tau \) is the natural representation of this hierarchical decomposition, with the root of the tree representing the vertex-set \(V \), its children represent the clusters at level \(\delta \), and so forth, until the leaves of the tree which represent the clusters for \(R = 1 \). Edges between a tree node at level \(i \) and its parent are given length \(2^i + 2 \). Ordinarily, the clusters at the leaves of the tree represent a cluster of size 1 (single vertex of \(V \)), but not always because CKR algorithm has a “leftover” cluster \(V_0 \). In this last case we add under this leaf \(|V_0| \) children, each representing a single vertex of \(V_0 \), connected with zero edge lengths. It follows that the leaves of \(V_\tau \) can be thought of as \(V \).

The rest of the analysis (bounds on \(d_\tau \)) was seen in class, and uses the important remark about how algorithm CKR depends on the term \(O(\log \frac{|B_T(u, 2^i)|}{|B_T(u, 2^i/2)|}) \).