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Lecture 6 – Spectral graph theory∗

Robert Krauthgamer

1 Basic spectral graph theory

Today we will see how combinatorial properties of the graph are manifested by eigenvalues and
eigenvectors of matrices related to the graph.

1.1 Adjacency and Laplacian matrices

Let G = (V,E) be an undirected graph, with edge weights we ≥ 0, where wij = 0 effectively means
that ij /∈ E. As usual, it is illustrative to think of the unit-weight case, and in fact even regular
graphs. The analog of the degree of vertex i is defined as di =

∑
j:ij∈E wi, and it is useful to put

these values in a diagonal matrix D = diag(d⃗).

The graph can be described by its adjacency matrix A = AG given by:

Aij =

{
wi if ij ∈ E,

0 otherwise.

It is often more convenient to work with the graph’s Laplacian matrix L = LG given by:

Lij =


−wij if ij ∈ E,

di if i = j,

0 otherwise.

Fact 1. L = D −A.

1.2 Recall (eigenvalues and eigenvectors)

LetM be a square n×nmatrix whose entries are real values. Then λ ∈ R is an eigenvalue associated
with nonzero eigenvector x⃗ ∈ Rn if Mx⃗ = λx⃗. Note that scaling x⃗ preserves this condition.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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The eigenvalues are exactly the roots of characteristic polynomial det(A− λI) = 0, hence A has at
most n eigenvalues, possibly with multiplicities. Since A (and similarly L) is symmetric, it has n
pairs (eigenvalue λ ,eigenvector v), all with real values, such that the n eigenvectors are orthogonal
meaning ⟨x, y⟩ = xT y =

∑
i xiy = 0.

Fact 2. If G is r-regular then D = rI. Thus, Av⃗ = λv⃗ iff Lv⃗ = (r − λ)v, meaning that A and L
have the same eigenvectors (and the eigenvalues are “reflected”).

1.3 Recall (from variational characterization):

The eigenvalues of a symmetric matrix M can be found by minimizing/maximizing the Rayleigh
quotient:

λmax(M) = max
x

xTMx

xTx
; λmin(M) = min

x

xTMx

xTx
.

Exer: Prove that λmax(A) is between the average degree 1
n

∑
i di and the maximum degree maxi di.

Fact 3. For every x⃗ ∈ RV ,

xTLx =
∑
ij∈E

wij(xi − xj)
2.

Proof: Write L as summation of |E| matrices, each corresponding to one edge and is “effectively”
a 2× 2 matrix

( wij −wij

−wij wij

)
, which contributes wij(xi − xj).

Exer: Prove that we can write L = BTB where B ∈ RE×V is a (signed and weighted) incidence
matrix. Verify that xTLx = ∥Bx∥2 and use it to give a different proof for Fact 3.

Fact 4. Denote the eigenvalues of L by λ1 ≤ · · · ≤ λn. Then λ1 = 0 (in particular, L is PSD).

Proof: λ1 ≥ 0 follows from Fact 3. Plugging in the all-ones vector, we further get λ1 ≤ 0.

1.4 Graph connectivity and λ2

It turns out that λ2 represents the connectivity of G, and is thus called the algebraic connectivity.

Lemma 5. Denote the eigenvalues of L by λ1 ≤ · · · ≤ λn. Then G is disconnected iff λ2 = 0.

The proof was seen in class. One direction follows by using the vectors x = 1S and y = 1S̄ , or a
suitable linear combination of them (which is orthogonal to all ones vector). For the other direction,
take an eigenvector that is orthogonal to the all ones vector and letting S ⊂ V be all coordinates
of the same (say maximum) value.

Exer: Prove that the multiplicity of eigenvalue 0 equals the number of connected components in G.

Exer: The analogous claim for A would be that G is disconnected iff the two largest eigenvalues of
A are equal. Is it true?
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2 Cheeger’s inequalities

As we will now, Lemma 5 above has an approximate version: if λ2 is close to 0 then the graph is
“almost” disconnected. The connectivity will be in terms of a variant of edge-expansion/sparse-cut
usually called conductance (the names are sometimes interchanged).

We will do a version that does not depend on the maximum degree dmax = maxi∈V di.

2.1 Conductance and sparsity

Let us extend the weights w and d to sets by defining w(S1, S2) =
∑

ij∈E∩(S1×S2)
wij for S1∩S2 = ∅

and d(S) =
∑

i∈S di.

The sparsity of a set S ⊂ V is defined as

spG(S) :=
w(S,S̄)

d(S)d(S̄)/d(V )
,

and the sparsity of a graph is

sp(G) := min
S⊂V

spG(S).

Exer: Prove that sp(G) is an instance of sparse-cut from last week.

We can define the conductance of a set S ⊂ V to be

ϕG(S) :=
w(S,S̄)

min{d(S),d(S̄)} , thus ϕG(S) ≤ spG(S) ≤ 2ϕG(S).

and similarly

ϕ(G) := min
S⊂V

ϕG(S), thus ϕ(G) ≤ sp(G) ≤ 2ϕ(G).

Notice that both ϕG(S) = ϕG(S̄) and similarly for sparsity, i.e., both have symmetry between S
and S̄. It is thus useful to think of S as the “smaller” one according to d(.), and then d(S̄)/d(V ) ∈
[1/2, 1].

Interpretation: ϕG(S) measures what fraction of the edges incident to S actually leave S (i.e., go
out to S̄).

Example: Suppose G is a 2d-grid of size
√
n×

√
n. Let Sj ⊂ V contain the j leftmost columns, thus

|Sj | = j
√
n. To compute ϕ(G) we need to consider all subsets of V , but for the sake of example let

us consider here only the subsets Sj (without proving that one of these sets gives the minimum).
Observe that w(Sj , S̄j) =

√
n. Since almost all vertices have degree 4 (except for the boundary),

d(Sj) ≈ 4|Sj | and since we want assume d(Sj) ≤ d(S̄j) we are constrained to j ≤
√
n/2. Then

ϕ(G) = min
j≤

√
n/2

√
n

4j
√
n
=

Θ(1)√
n
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2.2 The normalized Laplacian

To get a more general bound (more sensitive to degrees, which is important for graphs that are
not regular or bounded degree), define the graph’s Normalized Laplacian to be the matrix L̂ = L̂G

given by:

L̂ij =


−wij/

√
didj if ij ∈ E,

1 if i = j,

0 otherwise.

Exer: Prove that L̂ = I −D−1/2AD−1/2 = D−1/2LD−1/2, and that for all x ∈ R

xT L̂x =
∑
ij∈E

wij · (xi/
√

di − xj/
√

dj)
2.

Furthermore, the smallest eigenvalue of L̂ is 0, and that d⃗1/2 is always an associated eigenvector.

Exer: Does Lemma 5 hold for the normalized Laplacian L̂?

2.3 Cheeger’s inequality

Theorem 6: [Alon, Alon-Milman, Sinclair-Jerrum, Mihail, after Cheeger] Let λ2 be the
second smallest eigenvalue of the normalized Laplacian L̂G. Then

1
2λ2 ≤ ϕ(G) ≤

√
2λ2.

We may assume λ2 > 0 (otherwise we’re done similarly to Lemma 5).

Observation 7: For every x ∈ RV , we can set y := D−1/2x and then

xT L̂x

xTx
=

xTD−1/2LD−1/2x

xTx
=

yTLy

(D1/2y)TD1/2y
=

∑
ij∈E wij(yi − yj)

2∑
i∈V diy2i

.

This is “almost” like the Rayleigh quotient of y with respect to L but with “weights” in the
denominator.

2.4 The easy direction

We want to show that the eigenvector problem is a relaxation of the cut problem, hence its value
can be only smaller. Specifically, for every cut (S, S̄) (including the optimal one) we look at the
Rayleigh quotient with respect to a vector that is roughly like 1S , but of course λ2 is the “minimum”
Rayleigh quotient.

The proof was seen in class. Here we only outline the main idea. Recall:

λ2 = min
x⊥d⃗1/2

xT L̂x

xTx
.
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Using Observation 7, we see that λ2 is the minimizer of xT L̂x
xT x

= yTLy
yTDy

under the condition 0 =

xTd1/2 = yTD1/2d1/2 = ⟨y, d⃗⟩.

First attempt. Fix S ⊂ V . Intuitively, it should be any set with small sparsity spG(S), perhaps
even the minimizer of sp(G). Building on Observation 7, it makes sense to choose x = D1/2y for
y = 1S . Then

xT L̂x

xTx
=

yTLy

yTDy
=

w(S, S̄)

d(S)
.

But yT d⃗ = d(S) ̸= 0.

Second attempt. We use a single positive value for all the coordinates i ∈ S, and a single negative
value for all coordinates i ∈ S̄. An appropriate weighting (similarly to Lemma 5) is to choose y to

be 1
d(S)1S − 1

d(S̄)
1S̄ . We need to verify that yT d⃗ = 0 and xT L̂x

xT x
= spG(S).

Finally, we let S be a minimizer of ϕG(S) to prove that λ2 ≤ xT L̂x
xT x

≤ sp(G) ≤ 2ϕ(G).

Exer: Prove a statement similar to Theorem 6 for λ2(L) and the isoperimetric number αG =

minS⊂V
w(S,S̄)

minn|S|,|S̄| . Note that now the inequalities might involve the maximum degree dmax =

maxi∈V di.

5


