Extra credit:

1. Design a variant of Cheeger’s inequalities, where the input graph comes with two distinguished vertices $s, t \in V$, and we only consider cuts that separate s from t. Specifically, find a value $\lambda_{st}(G)$ that satisfies something like:

$$\frac{1}{2} \lambda_{st}(G) \leq \min_{S \colon |\{s;t\} \cap S| = 1} \phi_{G}(S) \leq \sqrt{2 \lambda_{st}(G)}$$

Remark: This $\lambda_{st}(G)$ need not be an eigenvalue, although it is derived from the (normalized) Laplacian matrix.

If helpful, you may assume that G is d-regular.

2. Let $G = (V, E)$ be a capacitated graph (i.e., with edge capacities $c_{e} \geq 0$). Show that the algorithm below outputs a capacitated tree T on the same vertex set V that is flow-equivalent to G, in the sense that for all $s, t \in V$, the maximum st-flow in G is equal to that in T. (Notice that T has same vertices, but in general different edges and capacities than G.)

Algorithm:

(1) Construct on V a complete graph G', with every edge capacity c'_{st} is equal to $s, t \in V$ are connected by an edge whose capacity c'_{st} is defined to be the maximum st-flow in G.

(2) Compute a maximum spanning tree T for G' (with respect to the edge capacities c'_{e}).

Hint: A maximum spanning tree is analogous to a minimum spanning tree; in particular, it is just a minimum spanning tree for the capacities $-c'_{e}$.