
Randomized Algorithms 2013A

Lecture 11 – Importance Sampling, and the Local Lemma∗

Robert Krauthgamer

1 Counting DNF solutions via Importance Sampling

Problem definition: The input is a DNF formula f with m clauses C1, . . . , Cm over n variables
x1, . . . , xn, i.e. f = ∨m

i=1Ci where each Ci is the conjunction of literals like x2 ∧ x̄5 ∧ xn.

The goal is the estimate the number of Boolean assignments that satisfy f .

Theorem 1 [Karp and Luby, 1983]: Let S ⊂ {0, 1}n be the set of satisfying assignments.
Then |S| can be estimated within factor 1 + ε in time that is polynomial in m+ n+ 1/ε.

1.1 A first attempt

Random assignments: Sample t random assignments, and let Z count how many of them are
satsifying. We can estimate |S| by Z/t · 2n.

Formally, let Zi be an indicator for the event that the i-th sample satisfies f . Then Z = 1
t

∑
i(Zi·2n).

We can see it is an unbiased estimator:

E[Z · 2n/t] =
t∑

i=1

E[Zi] · 2n/t = |S|.

Observe that Var(Z) = 1
t2
∑

iVar(Zi · 2n) = 1
t Var(Z1 · 2n). But even though we can use Chernoff-

Hoeffding bounds since Zi are independent, it’s not very effective because the variance could be
exponentially large.

Exer: Show that the standard deviation of Z1 (and thus Z) could be exponentially large.

1.2 A second attempt

Let Si ∈ {0, 1}n be all the assignments that satisfy the i-th clause, hence |Si| = 2n−len(Ci).

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Remark: The naive approach does not use the DNF structure at all. Using this structure, we can
write S = ∪iSi, which can be expanded using the inclusion-exclusion formula, but it would be too
complicated to estimate efficiently.

Algorithm E:

1. Choose a clause Ci with probability proportional to |Si| (namely, |Si|/M where M =
∑

i |Si|).

2. Choose at random an assignment a ∈ Si.

3. Compute the number ya of clauses satisfied by a.

4. Output Z = M
ya
.

We proved in class the following two claims.

Claim 1a: E[Z] = |S|.

Claim 1b: σ(Z) ≤ n · E[Z].

Exer: Show that |S| can be approximated within factor 1 ± ε with success probability at least
3/4, by averaging O(m2/ε2) independent repetitions of the above.

Exer: Show how increasing the number of repetitions by an O(log 1
δ) factor can improve the

success probability to 1− δ.

1.3 Importance sampling

It’s a tool to reduce variance when sampling. The idea is to have a more “focused” sample, rather
than uniform distribution, and then “factor out” the bias in this sample.

Setup: We want to estimate z =
∑

i∈[s] zi without reading all the zi values. The main concern
is that the zi are unbounded, and thus most of the contribution might come from a few unknown
elements, but we have a “good” lower bound on each element.

Theorem 2 [Importance Sampling]: Let z =
∑

i∈[s] zi, and λ ≥ 1. Let Ẑ be an estimator

computed by sampling a single index i ∈ [s] with probability pi and setting Ẑ = zi/pi, where each
pi ≥ zi

λz and
∑

i∈[s] pi = 1. Then

E[Ẑ] = z and σ(Ẑ) ≤
√
λE[Ẑ].

Proof: was seen in class.

Exer: Let z =
∑

i∈[s] zi and suppose that for each zi we already have an estimate within factor
b ≥ 1, i.e., some zi ≤ yi ≤ bzi. How many samples are needed to compute, with probability at least
3/4, a 1± ε factor estimate for z?

Exer: Explain our DNF counting algorithm above using the importance sampling theorem.

Hint: Assignments a that satisfy no clause are chosen with zero probability.

2

2 The Local Lemma

Setup: We have many “bad” events, each happening with a small probability, but they are NOT
independent. Instead, each event “depends” (in a very strong sense, see more below) only on a few
other events.

Example: n events “organized” in a 2d-grid, where dependencies are only between nodes connected
by an edge.

Theorem 3 [Lovász Local Lemma, general version, 1975]: Let A1, . . . , Am be random
events, and for every i, let Γ(Ai) be a subset of the events such that Ai is independent, even
mutually, of the events {A1, . . . , Am} \ (Γ(Ai) ∪ {Ai}). If there are 0 < xi < 1 for every i ∈ [m]
such that

Pr[Ai] ≤ xi
∏

j:Aj∈Γ(Ai)

(1− xj),

then Pr[∩i∈[m]Āi] ≥
∏

i∈[m](1− xi) > 0.

For comparison, if the events were completely independent, then the probability would be exactly∏
i(Pr[Āi]) which is at least

∏
i(1− xi).

Theorem 4 [LLL, symmetric version]: Let A1, . . . , Am be random events, each happening
with probability p. Assume that every event Ai is independent (mutually) of all but d other events,
i.e. |Γ(Ai)| ≤ d. If p(d+ 1) ≤ 1/e, then Pr[∩i∈[m]Āi] > 0.

Proof: was seen in class using the general version.

Theorem 5: Every k-CNF formula with n variables in which each variable appears in less than
2k/ek clauses is satisfiable.

Proof: was seen in class using the LLL.

3 Algorithmic version of the local lemma

We will see an algorithmic version for the k-CNF problem. This method works for many, but not
all, applications of the LLL, sometimes with somewhat worse parameters.

Theorem 6 [Moser-Tardos’09]: Given a k-CNF formula with n variables in which each variable
appears in less than 0.92k/ek clauses, a satisfying assignment can be computed in polynomial time.

Algorithm MT:

(1) Pick a random assignment for each variable.

(2) While there are unsatisfied cluases, pick one such clause arbitrarily, and assign all its variables
new random values.

The algorithm only terminates when a satisfying assignment is found. But how long does it usually
take? The analysis will show that with high probability, the algorithm terminates in polynomial
time. Recall that each clause is satisfied with probability p = 2−k, and that p(d+ 1) < 0.9/e.

3

Main idea: For any specific clause that is not satisfied, we can easily fix the assignment to satisfy
this clause, in fact flipping any variable would do. It could have been great if we could always
reduce the number of unsatisfied clauses, but this is not realistic. Instead, we sample it at random,
which should succeed with high probability.

Proof: Suppose the random values for the variables are written down in advance, as a table R
that has n columns (one for each variable) and r rows. In particular, the first assignment is just
the first row in the table.

Denote the clause “fixed” by the algorithm in iteration i by Ci. (They need not be distinct.)
Consider clause Ct from iteration t. We can “trace” the execution backwards from iteration t to
1, building along the way a labeled tree Tt. We start (at i = t) with the tree being just Ct, which
throughout will be the root of the tree. Next, assuming we already traced iterations t, t−1, . . . , i+1,
let us consider iteration i.

If Ci does not overlap any clause in the tree, we make no change to the tree, basically ignoring Ci.
Otherwise, we find the deepest (furthest from root) node Cj whose label overlaps Ci, and add to it
a child labeled Ci. The tree Tt is completed after doing i = 1.

We saw the rest of the proof in class, using the following three lemmas.

Claim 5a: If two clauses Ci and Cj for i < j, are at the same depth in a tree Tt, then they are
disjoint.

The completed tree Tt determines uniquely which locations in R are used to set the values of all
clauses Ci in the tree. Indeed, just scan the tree from the leaves (deepest nodes) towards the root,
and use the claim to “advance” inside R.

Given a table R, we say that a tree Tt is feasible, if a (determinisitc) execution of the algorithm can
produce Tt. (The tree is not determined uniquely from R because of the choice of t.) In particular,
the clauses appearing in the tree must all be unsatisfied.

We denote the number of clauses in the formula by m ≤ dn.

Claim 5b: Fix q∗ ≥ 1. If for a given table R, the algorithm runs for ≥ q∗m iterations, then R
must have a feasible tree of size ≥ q∗. Thus,

Pr
R
[#iterations ≥ q∗m] ≤ Pr

R
[R has a feasible tree of size ≥ q∗].

Claim 5c: The number of labeled trees of size q is ≤ m
(
(d+1)q
q−1

)
≤ m((d+ 1)e)q, and each one is

feasible for a random R with probability ≤ pq.

Putting it together: Using Claims 5a and 5b and setting q∗ = Θ(logm), we have

Pr
R
[#iterations ≥ q∗m] ≤

∑
q≥q∗

m((d+ 1)e)qpq ≤ m
∑
q≥q∗

(p(d+ 1)e)q ≤ m
∑
q≥q∗

0.9q ≤ 1/2.

Exer: Use this analysis to prove that the expected runtime is polynomial.

4

