Randomized Algorithms 2013A
Lecture 2 — The second moment and data-stream algorithms

*

Robert Krauthgamer

1 The second moment

Chebychev’s inequality: Let X be a random variable with finite variance ¢ > 0. Then

Vt>1, Pr||X—-EX|>to| <%

Intuition: Such a random variable is WHP in the range p + o.
Proof: seen in class based on Markov’s inequality.

Exer: Prove Markov’s inequality. (Hint: use the law of total expectation.)

2 More occupancy problems

2.1 Empty bins for m = n balls

Let Z; be an indicator for the event that bin ¢ is empty, which in the languange of previous class is
just I;x,—oy- Denote the number of empty bins by Z =}, Z;, then we saw last week E[Z] ~ n/e.

Can we give a high probability bound on the value of Z7

2

E[Z%) =E)>_ ZiZ] =Y PrlZi=2Z;=1=Y (1-2/n)"+Y (1-1/n)" ~ 200 4 n & n
i,J 1,5 i

i#]
Thus, when analyzing Var(Z) = E[Z?] — (EZ)? ~ 2—22 - Z—; requires going into lower order terms...

Exer: Prove that Var(Z) < O(n).
Using the exercise, we can conclude that WHP Z = 2 + O(y/n).

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

2.2 Hitting all bins (coupon collector)

Let Y; be the number balls thrown until 7 distinct bins are hit. We are interested in Y;,, and by
definition Y7 = 1. Observe that Z; = Y; — Y;_1 has geometric distribution G(p = w) Thus,

n i— n? i—1)n
% R N) Var(Zi) = (1 _p)/p2 = Tl C it DZ T (71(—2'—&-)1)2'

E[Z;] =

Since we can write Y, = > | Z; (by convention Z; = 1), we can easily see that E[Y,] ~ nlnn and
Var(Y,,) < O(n?). Thus, using Chebyshev’s inequality,

Pr[Y;, > 3nlnn] < Pr[Y,, — EY, > 2nlnn] < O(1/1n*n).

But we can get a stronger bound using a direct calculation:
Pr[X; =0] < (1—1/n)" <e ™" =1/n3,
hence

Pr[3i, X; = 0] < nPr[X; = 0] < 1/n%

2.3 Collisions for m = ¢y/n (birthday paradox)

We shall use Chebyshev’s inequality, although it’s also possible to analyze via a direct computation.

Exer: Show that if ¢ > 0 is a sufficiently small constant, then with high (constant) probability
there are no collisions, i.e., the maximum load is maz; X; < 1. (Hint: Look at every pair of balls.)

Exer: Show that if ¢ > 0 is a sufficiently large constant, then with high (constant) probability there
is at least one collision, i.e., max; X; > 2. (Hint: Look at every pair of balls.)

3 AMS algorithm for /;-norm of a data stream

Data stream model:

Input: a vector z € R", given as a stream (sequence) of m updates of the form (i,a), meaning
T; <— x; + a.

Motivation: We receive a stream of m items, each in the range [n], and we let z; is the frequency
of item 7. Upon seeing an item i € [n]|, we update (i, +1). Then the second frequency moment F,
is just ||z[|3.

{p-norm problem:
Assumption: updates a are integral and |z;| < poly(n).

Goal: estimate its £,-norm ||z||,. It’s usually more convenient to work with its p-th power (||z||,)? =

E?:l |;]P.

We focus here on p = 2. Note that we could have a < 0 (deletions) and maybe even z; < 0.

Linear sketch: We shall use a randomized linear map L : R" — R? for small s > 0. The
algorithm will only maintain Lz, which is easy to update since:

L(z + ae;) = Lx + a(Le;).

Of course, one has to choose L that somehow “stores” |z||2. Note that L is essentially an s x n
(real) matrix.

The memory requirement depends on the dimension s, the accuracy needed for each coordinate,
and the representation of L (more precisely, storing a few random bits that suffice to produce L;;
on the fly).

Theorem 1 [Alon-Matthias-Szegedy’96]: One can estimate the ¢ norm within factor 1 + ¢
using a linear sketch of s = O(¢~2logn) memory words.

Algorithm A:

1. Choose initially rq, ..., r,, independently and uniformly at random from {—1,+1}.
2. Maintain Z =), 7x; (a linear sketch, hence can be updated as above).

3. Output: Z2.

Analysis of expectation: As seen in class, E[Z2] = Y, 2? = ||z3.

We aren’t done yet since we want to get 1 4 ¢ accuracy...

Analysis of second moment: As seen in class, Var(Z?) < E[Z%] < 3(E[Z?])2.

Algorithm B: Execute t = O(1/¢?) independent copies of Algorithm A, denoting their estimates
by Y1,...,Y:, and output their mean Y = Zj Y;/t.

Observe that the sketch (Y1,...,Y;) € R is still linear.
Analysis: As seen in class, using Chebychev’s inequality and an appropriate t = O(1/2)

PrY # (1£e)[2ll3) < & < 1/3.

te?

Space requirement: t = O(1/¢2) words (for constant success probability), without counting
memory used to represent/store L.

Concern: How do we store the n values rq,...,r,7?
Exer: For what value of k would the basic analysis work assuming that rq,...,7, are k-wise
independent?

Exer: What would happen (to accuracy analysis) if the r;’s were chosen as standard gaussians
N(0,1)7?

High probability bound:
Lemma: Let B’ be a randomized algorithm to approximate some function f(z), i.e.,

Vo, Pr[B'(z)=(1%e)f(z)] >2/3.

Let algorithm C' output the median of O(log %) independent executions of algorithm B’. Then

Ve, Pr[C(z)=(1=xe)f(z)>1-—0.

Exer: prove this lemma. (Hint: Use the Chernoff-Hoeffding bound.)

4 Count-min sketch for /; point queries

¢, point query problem:

Goal: at the end of the stream, given query i, report, for a parameter o € (0, 1),

i’i =T + Oé”:CHp

Observe: ||z|[1 > ||z|l2 > ... > ||z|lco, hence higher norms (larger p) gives better accuracy.

Exer: Show that the ¢; and ¢3 norms differ by at most a factor of y/n, and that this is tight. Do
the same for /5 and /.

Theorem 2 [Cormode-Muthukrishnan’05]: One can answer ¢; point queries within error «
with probability 1 — 1/n? using a linear sketch of O(a—11logn) memory words.

Algorithm D: (We assume for now z; > 0 for all i.)

1. Set w = 2/« and choose a random function h : [m| — [w] (actually, a hash function).

2. Maintain a table Z = [Z1, ..., Zy] where each Z; = 3, _; i (which is a linear sketch).
3. When asked to estimate z;, output ; = Zj).

Analysis (correctness): As seen in class, Z; > z; holds always, and using Markov’s inequality,
Pr(z; — z; > o||z|1] < 1/2.

Algorithm E: Execute t = O(logn) independent copies of algorithm D, i.e., maintain vectors
Z'. ..., Z" and functions h',...,h'. When asked to estimate, output the minimum among the ¢
estimates, i.e., £; = min; Z;Ll(i)'

Analysis (correctness): Setting ¢t = O(logn) we have
Prl|2; — 5] > allz|1] < (1/2)" = 1/n”.

Space requirement: O(a~!logn) words (for success probability 1 — 1/n?), without counting
memory used to represent the hash functions.

Exer: Extend the algorithm to general xz. (Hint: replace the min operator by median.)

