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Lecture 2 – The second moment and data-stream algorithms∗

Robert Krauthgamer

1 The second moment

Chebychev’s inequality: Let X be a random variable with finite variance σ2 > 0. Then

∀t ≥ 1, Pr
[
|X − EX| ≥ tσ

]
≤ 1

t2
.

Intuition: Such a random variable is WHP in the range µ± σ.

Proof: seen in class based on Markov’s inequality.

Exer: Prove Markov’s inequality. (Hint: use the law of total expectation.)

2 More occupancy problems

2.1 Empty bins for m = n balls

Let Zi be an indicator for the event that bin i is empty, which in the languange of previous class is
just I{Xi=0}. Denote the number of empty bins by Z =

∑
i Zi, then we saw last week E[Z] ≈ n/e.

Can we give a high probability bound on the value of Z?

E[Z2] = E[
∑
i,j

ZiZj ] =
∑
i,j

Pr[Zi = Zj = 1] =
∑
i̸=j

(1−2/n)n+
∑
i

(1−1/n)n ≈ n(n−1)
e2

+ n
e ≈

n2

e2
.

Thus, when analyzing Var(Z) = E[Z2]− (EZ)2 ≈ n2

e2
− n2

e2
requires going into lower order terms...

Exer: Prove that Var(Z) ≤ O(n).

Using the exercise, we can conclude that WHP Z = n
e ±O(

√
n).

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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2.2 Hitting all bins (coupon collector)

Let Yi be the number balls thrown until i distinct bins are hit. We are interested in Yn, and by
definition Y1 = 1. Observe that Zi = Yi − Yi−1 has geometric distribution G(p = n−(i−1)

n ). Thus,

E[Zi] =
1
p = n

n−i+1 , Var(Zi) = (1− p)/p2 = i−1
n ·

n2

(n−i+1)2
= (i−1)n

(n−i+1)2
.

Since we can write Yn =
∑n

i=1 Zi (by convention Z1 = 1), we can easily see that E[Yn] ≈ n lnn and
Var(Yn) ≤ O(n2). Thus, using Chebyshev’s inequality,

Pr[Yn > 3n lnn] ≤ Pr[Yn − EYn ≥ 2n lnn] ≤ O(1/ ln2 n).

But we can get a stronger bound using a direct calculation:

Pr[X1 = 0] ≤ (1− 1/n)m ≤ e−m/n = 1/n3,

hence

Pr[∃i,Xi = 0] ≤ nPr[X1 = 0] ≤ 1/n2.

2.3 Collisions for m = c
√
n (birthday paradox)

We shall use Chebyshev’s inequality, although it’s also possible to analyze via a direct computation.

Exer: Show that if c > 0 is a sufficiently small constant, then with high (constant) probability
there are no collisions, i.e., the maximum load is maxiXi ≤ 1. (Hint: Look at every pair of balls.)

Exer: Show that if c > 0 is a sufficiently large constant, then with high (constant) probability there
is at least one collision, i.e., maxiXi ≥ 2. (Hint: Look at every pair of balls.)

3 AMS algorithm for ℓ2-norm of a data stream

Data stream model:

Input: a vector x ∈ Rn, given as a stream (sequence) of m updates of the form (i, a), meaning
xi ← xi + a.

Motivation: We receive a stream of m items, each in the range [n], and we let xi is the frequency
of item i. Upon seeing an item i ∈ [n], we update (i,+1). Then the second frequency moment F2

is just ∥x∥22.

ℓp-norm problem:

Assumption: updates a are integral and |xi| ≤ poly(n).

Goal: estimate its ℓp-norm ∥x∥p. It’s usually more convenient to work with its p-th power (∥x∥p)p =∑n
i=1 |xi|p.
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We focus here on p = 2. Note that we could have a < 0 (deletions) and maybe even xi < 0.

Linear sketch: We shall use a randomized linear map L : Rn → Rs for small s > 0. The
algorithm will only maintain Lx, which is easy to update since:

L(x+ aei) = Lx+ a(Lei).

Of course, one has to choose L that somehow “stores” ∥x∥2. Note that L is essentially an s × n
(real) matrix.

The memory requirement depends on the dimension s, the accuracy needed for each coordinate,
and the representation of L (more precisely, storing a few random bits that suffice to produce Lij

on the fly).

Theorem 1 [Alon-Matthias-Szegedy’96]: One can estimate the ℓ2 norm within factor 1 + ε
using a linear sketch of s = O(ε−2 log n) memory words.

Algorithm A:

1. Choose initially r1, . . . , rm independently and uniformly at random from {−1,+1}.

2. Maintain Z =
∑

i rixi (a linear sketch, hence can be updated as above).

3. Output: Z2.

Analysis of expectation: As seen in class, E[Z2] =
∑

i x
2
i = ∥x∥22.

We aren’t done yet since we want to get 1 + ε accuracy...

Analysis of second moment: As seen in class, Var(Z2) ≤ E[Z4] ≤ 3(E[Z2])2.

Algorithm B: Execute t = O(1/ε2) independent copies of Algorithm A, denoting their estimates
by Y1, . . . , Yt, and output their mean Ỹ =

∑
j Yj/t.

Observe that the sketch (Y1, . . . , Yt) ∈ Rt is still linear.

Analysis: As seen in class, using Chebychev’s inequality and an appropriate t = O(1/ε2)

Pr[Ỹ ̸= (1± ε)∥x∥22] ≤ 3
tε2
≤ 1/3.

Space requirement: t = O(1/ε2) words (for constant success probability), without counting
memory used to represent/store L.

Concern: How do we store the n values r1, . . . , rn?

Exer: For what value of k would the basic analysis work assuming that r1, . . . , rn are k-wise
independent?

Exer: What would happen (to accuracy analysis) if the ri’s were chosen as standard gaussians
N(0, 1)?

High probability bound:

Lemma: Let B′ be a randomized algorithm to approximate some function f(x), i.e.,

∀x, Pr[B′(x) = (1± ε)f(x)] ≥ 2/3.
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Let algorithm C output the median of O(log 1
δ ) independent executions of algorithm B′. Then

∀x, Pr[C(x) = (1± ε)f(x)] ≥ 1− δ.

Exer: prove this lemma. (Hint: Use the Chernoff-Hoeffding bound.)

4 Count-min sketch for ℓ1 point queries

ℓp point query problem:

Goal: at the end of the stream, given query i, report, for a parameter α ∈ (0, 1),

x̃i = xi ± α∥x∥p.

Observe: ∥x∥1 ≥ ∥x∥2 ≥ . . . ≥ ∥x∥∞, hence higher norms (larger p) gives better accuracy.

Exer: Show that the ℓ1 and ℓ2 norms differ by at most a factor of
√
n, and that this is tight. Do

the same for ℓ2 and ℓ∞.

Theorem 2 [Cormode-Muthukrishnan’05]: One can answer ℓ1 point queries within error α
with probability 1− 1/n2 using a linear sketch of O(α−1 log n) memory words.

Algorithm D: (We assume for now xi ≥ 0 for all i.)

1. Set w = 2/α and choose a random function h : [m]→ [w] (actually, a hash function).

2. Maintain a table Z = [Z1, . . . , Zw] where each Zj =
∑

i:h(i)=j xi (which is a linear sketch).

3. When asked to estimate xi, output x̃i = Zh(i).

Analysis (correctness): As seen in class, x̃i ≥ xi holds always, and using Markov’s inequality,
Pr[x̃i − xi ≥ α∥x∥1] ≤ 1/2.

Algorithm E: Execute t = O(log n) independent copies of algorithm D, i.e., maintain vectors
Z1, . . . , Zt and functions h1, . . . , ht. When asked to estimate, output the minimum among the t
estimates, i.e., x̂i = minl Z

l
hl(i)

.

Analysis (correctness): Setting t = O(log n) we have

Pr[|x̂i − xi| ≥ α∥x∥1] ≤ (1/2)t = 1/n2.

Space requirement: O(α−1 log n) words (for success probability 1 − 1/n2), without counting
memory used to represent the hash functions.

Exer: Extend the algorithm to general x. (Hint: replace the min operator by median.)
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