Randomized Algorithms 2013A
Lecture 3 — Proof of Hoeffding’s bound and sketching algorithms*

Robert Krauthgamer

We first finish something from last class on streaming algorithms, showing a key application of
point queries.

1 Heavy hitters via point queries

Heavy hitters set: HH}(x) = {i: [zi| > ¢llz[,}.
Observe that the number of H Hé is bounded by 1/¢.

Hence, we may hope to compute it using small space. However, we cannot expect to solve it exactly,
since this set is very sensitive to small changes in z; and we cannot “remember” the exact value of
each z;.

Approximate HH problem:
Parameters: ¢ > ¢ > 0.

Goal: return a set S C [n] such that

P P
HHY CSCHHY__.

Reduction of HH to point query:

Assume we have an algorithm for ¢, point queries with parameter o = ¢/2 and error probability
1/3n.

Execute this algorithm to compute for every i € [n] an estimate Z; (this step takes time O(nlogn)
or even more) and report the set S = {i € [n] : |Z;| > (¢ — /2)]|z||,}

Remark: This assumes we know ||z||, exactly. We saw in previous class how to approximate ||z||2.

Storage: For p = 1, we saw in previous class how to answer such point queries via a Count-Min
sketch using O(¢~?logn) machine words.

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

Analysis: With probability > 2/3, all the n estimates are correct within additive /2. In this case,
S contains all the ¢-HH, and is contained in the (¢ — ¢)-HH.

2 Proof of Hoeffding’s bound

We will prove one variant of the deviations bounds stated in the first class. After proving this
theorem, we will see a version of it that resolves the concern raised in the analysis of quicksort that
the indicators are really independent.

Theorem 1: Let Xi,...,X, € [0, 1] be independent random variables, and let 1, ..., i, be such
that for all ¢ € [n], EX; < p;. Then

ve>0, P X > i+t <ent/

Proof: The main idea called Chernoff’s method is to use Markov’s inequality on the moment
generating function e*X, which requires to analyze, A\ — E[e)‘X], for an “optimized” choice of
A>0.

The proof seen in class requires the following lemma, whose proof uses basic calculus.

Lemma 2: Let Y € [a,b] be a random variable with EY = 0. Then

YA>0, E[eMN]< N (0-a)*/8

We saw in class a somewhat simpler proof for the case [a,b] = [—1, 1], which is the case we actually
used for Hoeffding.

Exer: Use/adapt the proof to bound deviation to the other direction. (Hint: Looks at 1 — Xj,
which is equivalent to looking at —Y.)

Theorem 3: Let Xi,...,X,, € [0,1] be random variables such that for all i and X3,..., X;_1 we
have E[X; | X1,...,X;-1] < p;. Then

Pr> X > g+t < et/
% i

Exer: Prove this theorem by adapt the previous proof.

Hint: The key step where we used indepedence is changed along the following lines:

EleXi Xi] = Ex, . .x..Ex, [e2Xi | X1, ..., X d]] law of total expectation

=Ex,, . x, [e=<n 15 Ex, [| X1, ..., X

and now apply the lemma where Y is the conditioned X,, — E[X,, | X1,..., Xp—1].

3 Sketching Algorithms

What is Sketching: We have some input x, which we want to “compress” into a sketch s(x)
(much smaller), but want to be able to later compute some f(z) only from the sketch. Often,
randomization helps.

Applications: Many in the context of massive data sets (internet, query logs).
Example we already saw: Sketching x € R™ so that later we could estimate any z; (point queries).

We consider today the problem of estimating the [, distance between two vectors x,y within factor
1+e.

Problem definition: Estimating /, distance:
Parameters: approximation € > 0 and integer n.

Algorithms: a randomized sketching function s = s, (here r is the random coins) and an answer
function a, such that for all x,y € [n]™,

Pria(sy(2), sr(y)) = (1 £ &)z —yl,] = 2/3.

r

Note: a operates on the sketches; might use the randomness (a = a,). We care mostly about the
sketch size |s(z)|, usually measured in bits. We care “less” about computation time.

Example: /; distance between two vectors:

Let s be the linear sketch L : [n]" + ZF for k = O(1/e?) that we saw in the previous class for
estimating the ¢ norm. We want function a to apply algorithm B (from previous class) to x — y.
Is it possible?

Recall algorithm B basically computs the linear sketch L(x —y), and outputs the average squared-
coordinate 7 ||L(z—y)||3. This is just ¢||Lz— Ly||3 (since L is linear), hence function a can compute
this estimate from its inputs Lx and Ly.

The above achieves (1 £ ¢)-approximation for the fs-squared distance, and thus also (1 £ ¢)-
approximaton for ¢y distance.

Sketch size: |s(z)| < O(e72logn) bits.
Exer: Use the above to derive a solution for ¢; distance. (Hint: Convert to unary.)
Example application: closest/furthest pair:

Lo 2™ e n]™

Input: n vectors x
Goal: Find i # j that minimizes/maximizes ||z° — 27| 2.
Exer: Show that an approximate solution within 14¢ factor can be computed in time O(n?c~2logn).

Theorem [Equality testing]: For every n and ¢ there is a randomized sketching algorithm,
meaning s(.) and a(-,), that uses ¢ bits and such that for all z,y € {0,1}" can determine whether
x = y with probability 1 — 27,

Proof: Let h : {0,1}" — {0,1}! be a random (hash) function determined by the common
randomness. Let s(z) = h(z) and let a(s1, s2) be the indicator for sy = sy. Clearly, if © = y then

referee always outputs 1 (i.e., YES). If # y, then referee outputs 0 (i.e., NO) with probability
1—27%

Algorithm with fewer random bits (same sketch size): We start with the algorithm for
t = 1. Choose a random r € {0,1}" using the common randomness. Define s(z) = > 7" | z;r;
(mod 2) which is the inner product (z,r). For general ¢, repeat the above ¢ times (in parallel) and
let s(x) be their concatenation. As before, a(sy, s2) be the indicator for s; = ss.

The analysis was seen in class, using the principle of deferred decision.

