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Lecture 3 – Proof of Hoeffding’s bound and sketching algorithms∗

Robert Krauthgamer

We first finish something from last class on streaming algorithms, showing a key application of
point queries.

1 Heavy hitters via point queries

Heavy hitters set: HHp
ϕ(x) = {i : |xi| ≥ ϕ∥x∥p}.

Observe that the number of HH1
ϕ is bounded by 1/ϕ.

Hence, we may hope to compute it using small space. However, we cannot expect to solve it exactly,
since this set is very sensitive to small changes in xi and we cannot “remember” the exact value of
each xi.

Approximate HH problem:

Parameters: ϕ > ε > 0.

Goal: return a set S ⊆ [n] such that

HHp
ϕ ⊆ S ⊆ HHp

ϕ−ε.

Reduction of HH to point query:

Assume we have an algorithm for ℓp point queries with parameter α = ε/2 and error probability
1/3n.

Execute this algorithm to compute for every i ∈ [n] an estimate x̃i (this step takes time O(n log n)
or even more) and report the set S = {i ∈ [n] : |x̃i| ≥ (ϕ− ε/2)∥x∥p}.

Remark: This assumes we know ∥x∥p exactly. We saw in previous class how to approximate ∥x∥2.

Storage: For p = 1, we saw in previous class how to answer such point queries via a Count-Min
sketch using O(ε−2 log n) machine words.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1



Analysis: With probability ≥ 2/3, all the n estimates are correct within additive ε/2. In this case,
S contains all the ϕ-HH, and is contained in the (ϕ− ε)-HH.

2 Proof of Hoeffding’s bound

We will prove one variant of the deviations bounds stated in the first class. After proving this
theorem, we will see a version of it that resolves the concern raised in the analysis of quicksort that
the indicators are really independent.

Theorem 1: Let X1, . . . , Xn ∈ [0, 1] be independent random variables, and let µ1, . . . , µn be such
that for all i ∈ [n], EXi ≤ µi. Then

∀t > 0, Pr[
∑
i

Xi ≥
∑
i

µi + t] ≤ e−t2/2n.

Proof: The main idea called Chernoff’s method is to use Markov’s inequality on the moment
generating function eλX , which requires to analyze, λ 7→ E[eλX ], for an “optimized” choice of
λ > 0.

The proof seen in class requires the following lemma, whose proof uses basic calculus.

Lemma 2: Let Y ∈ [a, b] be a random variable with EY = 0. Then

∀λ > 0, E[eλY ] ≤ eλ
2(b−a)2/8.

We saw in class a somewhat simpler proof for the case [a, b] = [−1, 1], which is the case we actually
used for Hoeffding.

Exer: Use/adapt the proof to bound deviation to the other direction. (Hint: Looks at 1 − Xi,
which is equivalent to looking at −Y .)

Theorem 3: Let X1, . . . , Xn ∈ [0, 1] be random variables such that for all i and X1, . . . , Xi−1 we
have E[Xi | X1, . . . , Xi−1] ≤ µi. Then

Pr[
∑
i

Xi ≥
∑
i

µi + t] ≤ e−t2/2n.

Exer: Prove this theorem by adapt the previous proof.

Hint: The key step where we used indepedence is changed along the following lines:

E[e
∑

i Xi ] = EX1,...,Xn−1 [EXn [e
∑

i Xi | X1, . . . , Xn−1]] law of total expectation

= EX1,...,Xn−1 [e
∑

i≤n−1 Xi · EXn [e
Xn | X1, . . . , Xn−1]]

and now apply the lemma where Y is the conditioned Xn − E[Xn | X1, . . . , Xn−1].
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3 Sketching Algorithms

What is Sketching: We have some input x, which we want to “compress” into a sketch s(x)
(much smaller), but want to be able to later compute some f(x) only from the sketch. Often,
randomization helps.

Applications: Many in the context of massive data sets (internet, query logs).

Example we already saw: Sketching x ∈ Rn so that later we could estimate any xi (point queries).

We consider today the problem of estimating the lp distance between two vectors x, y within factor
1 + ε.

Problem definition: Estimating ℓp distance:

Parameters: approximation ε > 0 and integer n.

Algorithms: a randomized sketching function s = sr (here r is the random coins) and an answer
function a, such that for all x, y ∈ [n]n,

Pr
r
[a(sr(x), sr(y)) = (1± ε)∥x− y∥p] ≥ 2/3.

Note: a operates on the sketches; might use the randomness (a = ar). We care mostly about the
sketch size |s(x)|, usually measured in bits. We care “less” about computation time.

Example: ℓ2 distance between two vectors:

Let s be the linear sketch L : [n]n 7→ Zk for k = O(1/ε2) that we saw in the previous class for
estimating the ℓ2 norm. We want function a to apply algorithm B (from previous class) to x− y.
Is it possible?

Recall algorithm B basically computs the linear sketch L(x− y), and outputs the average squared-
coordinate 1

k∥L(x−y)∥22. This is just 1
k∥Lx−Ly∥22 (since L is linear), hence function a can compute

this estimate from its inputs Lx and Ly.

The above achieves (1 ± ε)-approximation for the ℓ2-squared distance, and thus also (1 ± ε)-
approximaton for ℓ2 distance.

Sketch size: |s(x)| ≤ O(ε−2 log n) bits.

Exer: Use the above to derive a solution for ℓ1 distance. (Hint: Convert to unary.)

Example application: closest/furthest pair:

Input: n vectors x1, . . . , xn ∈ [n]n.

Goal: Find i ̸= j that minimizes/maximizes ∥xi − xj∥2.

Exer: Show that an approximate solution within 1±ε factor can be computed in timeO(n2ε−2 log n).

Theorem [Equality testing]: For every n and t there is a randomized sketching algorithm,
meaning s(.) and a(·, ·), that uses t bits and such that for all x, y ∈ {0, 1}n can determine whether
x = y with probability 1− 2−t.
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Proof: Let h : {0, 1}n → {0, 1}t be a random (hash) function determined by the common
randomness. Let s(x) = h(x) and let a(s1, s2) be the indicator for s1 = s2. Clearly, if x = y then
referee always outputs 1 (i.e., YES). If x ̸= y, then referee outputs 0 (i.e., NO) with probability
1− 2−t.

Algorithm with fewer random bits (same sketch size): We start with the algorithm for
t = 1. Choose a random r ∈ {0, 1}n using the common randomness. Define s(x) =

∑n
i=1 xiri

(mod 2) which is the inner product ⟨x, r⟩. For general t, repeat the above t times (in parallel) and
let s(x) be their concatenation. As before, a(s1, s2) be the indicator for s1 = s2.

The analysis was seen in class, using the principle of deferred decision.
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