
Seminar on Algorithms and Geometry 2014B

Lecture 1 – Doubling metrics and Nearest Neighbor Search∗

Robert Krauthgamer

1 Introduction

Algorithms meet geometry?:

I interpret geometry as anything that involves distances (metric spaces), including Euclidean, other
norms, tree metrics, edit distances, earthmover distance, etc.

These concepts arise in many algorithmic settings: as part of the model/problem (e.g. the input
is points in the plane) or from the algoithmic method of solving it (e.g. for cut problems, we use a
linear program that “produced” a metric).

Motivation:

Use geometric tools (mathematics) to design good algorithms

2 Nearest Neighbor Search (NNS)

Setup: a metric space (M,d)

Examples: Euclidean space Rk, or a collection of DNA sequences and the edit distance between
them

Assume for simplicity that d(x, y) can be computed in O(1) time

Problem definition:

Preprocess: a collection (database) of n points S ⊂ M

Query: Given a point q ∈ M , find its closest data, i.e., a ∈ S that minimizes d(q, a).

Naive solution: no real preprocessing (just store the points in O(n) space), and at query time search
S exhaustively (by n distance computations) in O(n) time.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Holy grail: preprocessing O(n) and query time O(log n) [sorting reals, in dimension one]

A lower bound under black-box access:

Assume only black-box access to the distance between points.

Lemma: There is a dataset that requires (worst-case) Ω(n) distance computation to answer an
NNS query, even with preprocessing.

Idea: S is a large uniform metric

Question: Is this the “only” obstruction to fast algorithms?

This is a “high-dimensional” phenomenon. How can we exclude this scenario?

3 Doubling metrics

Defn: A ball B(x, r) := {y ∈ M : d(x, y) ≤ r}.

Defn: The doubling dimension of a metric space (M,d) is the smallest k > 0 such that every ball
can be covered by at most 2k balls of half the radius. We denote it ddim(M).

Exer: Prove that the doubling dimension of k-dimensional Euclidean space is O(k). And the same
for ℓ∞-norm.

Exer: Let k = ddim(M) and define k′ similarly using diameter instead of radius (covering by sets
of half the diameter). Prove that k′ = Θ(k).

Exer: Suppose M = M1 ∪M2. Prove that ddim(M) ≤ O(ddim(M1) + ddim(M2)).

Exer: Let M ′ ⊂ M be a submetric of (M,d). Prove that ddimM ′ ≤ O(ddimM).

Exer: Let M contain all vectors in Rm that are k-sparse (have at most k nonzeros), and let d be
the Euclidean distance (ℓ2-norm). Prove that (M,d) has doubling dimension O(k logm).

Defn: The aspect ratio (or spread) of S is Φ(S) :=
maxx,y∈S d(x,y)
minx̸=y∈S d(x,y) .

(We assume throughout all distances are strictly positive.)

Packing Lemma: Let S ⊂ M be finite. Then

|S| ≤ (4Φ(S))ddim(M) .

Conclusion: A metric of low doubling dimesion does not have a large (near) uniform metric.

Proof: Seen in class.

4 Nets

Will take the role of “grids” (of some resolution) in Euclidean spaces.

2

Defn: An r-net of M is a subset Y ⊂ M satisfying

1. Packing: for all distinct y, y′ ∈ Y we have d(y, y′) > r;

2. Covering: for all x ∈ M we have d(x, Y) = miny∈Y d(x, y) ≤ r.

Greedy construction of nets: Find a point that is not currently covered and add it to Y , and
repeat

More formally: Initialize Y = ∅, and iterate over all points x ∈ M , and if this x is not covered by
the current Y , just add it to Y .

5 NNS in doubling spaces

We decribe an scheme for (1 + ε)-approximate NNS, i.e., report a point a such that

d(a, q) ≤ (1 + ε)min
x∈S

d(x, q).

Theorem: One can preprocess a subset S ⊂ M of size n, and build a data structure of size
2O(ddimS) ·n, so as to answer (1+ε)-NNS queries (for every ε < 1/2) in time (1/ε)O(ddimS) ·log Φ(S).

Assume by normalization that minx̸=y∈S d(x, y) = 2.

Remark: Can do also insertion and deletion (updates to the set S) in similar time 2O(ddimS) ·
log Φ(S).

Remark: There are subsequent refinements, like replacing log Φ(S) with log n, or (alternatively)
improving the space to O(n), but it is sometimes on the expense of simplicity.

Preprocessing procedure: For every integer i from 0 to m := ⌈log2 diam(S)⌉ construct a 2i-net
of S, called Yi.

Observe that Y0 = S and |Ym| = 1.

We can further ensure the nets are nested, i.e., each Yi ⊂ Yi−1. How? In the greedy construction of
Yi−1, the order is arbitrary so if we start with the points of Yi, these points will surely be included.

For every point level i and y ∈ Yi, construct a list (“pointers” to nearby lower-level net-points)

Ly,i = {z ∈ Yi−1 : d(y, z) ≤ 3 · 2i}.

The packing lemma immediately implies that |Ly,i| ≤ 2O(ddimS).

Preprocessing space: We can bound it by
∑

i

∑
y∈Yi

|Ly,i| ≤ 2O(ddimS)n log Φ(S). We will later
show an improved analysis that uses the nesting.

3

