Seminar on Algorithms and Geometry 2014B
Lecture 2 — Doubling metrics and Nearest Neighbor Search (cont’d)*

Robert Krauthgamer

1 NNS algorithm

We continue in our proof of the following theorem. (We already saw the preprocessing algorithm.)

Theorem: One can preprocess a subset S C M of size n, and build a data structure of size
20(ddim S) .1y 50 as to answer (1-+¢)-NNS queries (for every e < 1/2) in time (1/£)0(ddm9) 1o &(S).

Query procedure (for ¢ € M):

Idea: maintain a set Z; of level ¢ net points “near” the query
1. Initialize Z,, = Y,,.

2. Tteratively for ¢ = m — 1 going down to 0

3. Let Z; contain all the points “pointed to” from Z;y1, i.e., Uyez,,, Lyi+1, that are within
distance (7/¢)2" from q.

4. Ifd(q,Z;) > (3/¢) - 2¢ then return the point attaining this.

Query time: The number of iterations is log ®(S). In each iteration, we scan the pointers coming
out of Z;,1; We already bounded the size of any single list, and we can bound |Z;| < 20(ddimS) py
the packing lemma. Overall, the query time is (1/¢)?(d4m5) Jog &(S).

To prove correctness of the query algorithm, we show it maintains a certain invariant.

Lemma (Invariant): Every set Z; constructed by the query algorithm is exactly Y; N B(q, (7/¢) -
2%).

Proof: Was seen in class, by induction on 1.

Correctness of the output: Let a* be an optimal NNS, i.e., d(¢q,a*) = d(q,S) = OPT. Consider
the iteration ¢ in which the stopping condition is met. (formally, it might never be met, as discussed
below.) Then a* is covered by some point y € Y;, and we get that

d(q,y) < (¢,a*) +d(a*,y) < OPT + 2.

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

As seen in class, we can use the invariant to prove that OPT > (1/£)2". We can also show that
Yy € Z;, because the stopping condition was not met at the previous iteration ¢ + 1. Hence, the
algorithm reports y or an even closer one, and then d(q,y) < OPT + 2" < (1 +¢)OPT.

(ddim S)

Improved storage: The data structure can be stored using 2¢ n words.

Proof: Asseen in class, we count how many lists L, ; are non-trivial in the sense that they contain
at least other point than y itself. Bounding this number is done by charging each list to some point
in the list, that is chosen carefully so that every point is charged O(1) times in total.

Exer: Show that the following version of the query algorithm achieves O(1)-approximation: Instead
of keeping a set Z;, we keep only one point z;, where each z; is the closest point to ¢ among L, , i11.

Exer: Suppose we modify the preprocessing, as follows. At each level i, if some point z appears in
more than one list L, ;, then remove all but one of its occurrences. This means that for every 7,
the sets L, ; for y € Y; are disjoint. Show that this reduces the preprocessing storage to O(n), and
that the query procedure still works. (Some changes in constants might be needed.)

2 Spanners of Doubling Spaces

We can think of a metric space (M, d) as a complete graph on vertex set M with edge weights.
Defn: A k-spanner of an (edge-weighted) graph G = (V, E) is a subgraph G’ = (V, E’) such that

Vu,v €V, dg(u,v) <k-dg(u,v).

We also say that G’ is a spanner of G with stretch k.

Applying this definition, a spanner of a metric space (M, d) is a collection of edges E' C (|Z\2/[\) (with
weights according to d) such that dg approximates d.

Theorem: For every € € (0,1/2), every finite metric space (M, d) admits a (1 + €)-spanner with
at most (1/¢)0ddim M)y odges.

Exer: Prove this theorem.

Conjecture: For every € € (0,1/2), every finite metric space (M,d) admits a (1 + €)-spanner
with total edge-weight (1/¢)(ddim M) MST(M).

What is currently known: The known bound has an additional O(logn) term [Smid 2009]. In
the special case of Euclidean k-dimensional metrics, the conjecture is true with (1/¢)°®) MST(M)
[Das-Narasimhan-Salowe’95, Arya-Das-Mount-Salowe-Smid’95].

