Randomized Algorithms 2015A
Lecture 12 — Compressed Sensing and RIP matrices*

Robert Krauthgamer

1 Compressed Sensing

Problem definition: We wish to learn an unknown vector € R through linear measurements,
which means we choose a vector a € R" and observe the inner-product a”x.

We want to minimize m, the number of linear measurements. If they are non-adaptive, then the
measurement algorithm (without decoding part) can be described as a matrix A € R™*™.

Naive solution: Any choice of m = n linear measurements that are linearly independent (i.e., A
is invertible) is clearly sufficient (and also necessary).

Sparsity: We may know (by “prior information”) that = is k-sparse, i.e., has at most k non-zeros.
We will actually focus on almost k-sparse vector in the sense that x = 2’ + 2 where 2’ is sparse and
z is “noise”, say ||z||1 is small. This is essentially a linear sketch for sparse inputs.

Exer: See if the results about sketching heavy hitters can be used here and what bounds do they
imply.

Turns out that m = O(klogn) measurements suffice, and A can be taken to be a matrix of
independent Gaussians.

Algorithmic approach: Recall we are given the vector of observations, which is the product
Az. Under exact k-sparsity ||z||o < k, an ideal algorithm could be to solve

min{||z*||o : Az* = Az},

In the general case, our algorithm will minimize instead the £;-norm

min{||z"||; : Az™ = Az}.

Exer: Verify that solving this problem (computing z*) can be done in polynomial time using linear
programming.

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.



Theorem 1: Define E¥(z) = min{|lz — 2/||; : 2/ is k-sparse}. Then with probability at least
1 —2/n over the choice of A,

|lz* —z]|2 = O(EY(2)/Vk). (1)

This formalizes the scenario mentioned above, with EF(z) = ||z||1, and then the approximation to
true z’ depends only on magnitude of noise. In particular, if z was exactly k-sparse, then we obtain
exact recovery.

The statement provides a so-called “for each” guarantee — for each x € R", with high probability
the approximation () holds. We will actually prove something stronger, called “for all” guarantee
— with high probability the approximation (0) holds for all z € R™.

RIP: The key will be to prove that WHP A has the following property: A matrix A € R™*"
satisfies the (k, §)-Restricted Isometry Property (RIP) if for every k-sparse vector x € R,

(1 =9)lzlls < [[Azll2 < (1 +d)[|l]]2. (2)

Remark: this condition is equivalent to requiring that for every submatrix of A a consisting of k
columns, all the singular values lie in the range [1 —J,1 + ¢].

The theorem follows immediately from the following two theorems.

Theorem 2: For suitable m = O(klogn), if the entries of A € R™*™ are independent Gaussians
with distribution N(0,1/k), then with property at least 1 — 2/n, matrix A is (k, 1/3)-RIP.

Theorem 3: If A is (25k,1/3)-RIP then (for all x) (I) holds.

2 Constructing RIP matrix (Proof of Theorem 2)

Claim 4 (Crude Bound): WHP,

Ve €R", || Azl < n?|al.

The proof, based on straightforward calculation, was seen in class.

Proof of theorem 2: The proof seen in class is based on a union bound over all subsets 7' C [n]
of size |T| = k; for each such T, the problem reduces to proving that for a matrix B € R™** of
independent Gaussians N (0, 1/k), with high probability

vy eRY Ryl < IByll2 < 3llylla- (3)

The latter is achieved by discretizing the unit sphere in R¥, using Claim 5 below, applying on that
discrete set the JL-lemma, and then extending the bound to the entire sphere. Overall, we get a
failure probability (}) |P|2=%(m) < 9O(klogn)=0(m) < 1 /n which proves Theorem 2.

Claim 5: For every ¢ € (0,1) there is a set P C S of size O(1/¢)* that is an e-net of S, i.e., for
every x € S there is p € P such that |[p —z| <e.



Exer: Does the analysis above actually work for m = O(klog )? (This is effective to beat the
trivial bound m = n when k is “large”.)

Exer: Let the matrix A € R™*™ have independent {£1} entries. Prove that with high probability

[All2 = supjg|,=1llAz[l2 is at most O(y/nlogn). (Using one more idea, it is actually possible to
prove a better bound of O(y/n).)

3 {(;-decoding (Proof of Theorem 3)

To simplify notation, let h = 2* — 2z, and recall our goal is to bound |/hll2. WLOG order the
coordinates such that

o |z1],...,|z| are all at least |xgi1],. .., |zn]-

o |hpy1| >0 > |hyl.
Define the sets of indices

[ ] TOZ{lvak}
o Ty ={k+1,...,26k}
o Th = {26k +1,...,51k},

and so forth. Notice that |Tp| = k and |T;| = 25k for all i > 1.

Define also Tp; = To U T, and Ty = [n] \ Tp. Let X7 be the restriction of = to coordinates in the
set T', and define (recall our ordering)

k
e = Ey(z) = |zglh

Recall that our goal is to bound ||hs < O(1/Vk)e.

Claim 6: |hyc|y < [y |1 + O(c).

Claim 7: ||h|l2 < |y 12 + O(/VR).

Claim 8: ||hry, |2 < O(s/VE).

Proof of Theorem 3: Using triangle inequality, then Claim 7 and then 8§,
o™ = zllo = [hll> < [mou 2 + ol < 2llbmy, > + O(e/VE) < O(e/VE).

QED.

We did not cover in class the proof of the three claims above; their proof can be found in Nick
Harvey’s lecture notes (Lecture 8). (Claim 6 is needed to prove of Claims 7 and 8.)



