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Lecture 12 – Compressed Sensing and RIP matrices∗

Robert Krauthgamer

1 Compressed Sensing

Problem definition: We wish to learn an unknown vector x ∈ Rn through linear measurements,
which means we choose a vector a ∈ Rn and observe the inner-product aTx.

We want to minimize m, the number of linear measurements. If they are non-adaptive, then the
measurement algorithm (without decoding part) can be described as a matrix A ∈ Rm×n.

Naive solution: Any choice of m = n linear measurements that are linearly independent (i.e., A
is invertible) is clearly sufficient (and also necessary).

Sparsity: We may know (by “prior information”) that x is k-sparse, i.e., has at most k non-zeros.
We will actually focus on almost k-sparse vector in the sense that x = x′+ z where x′ is sparse and
z is “noise”, say ∥z∥1 is small. This is essentially a linear sketch for sparse inputs.

Exer: See if the results about sketching heavy hitters can be used here and what bounds do they
imply.

Turns out that m = O(k log n) measurements suffice, and A can be taken to be a matrix of
independent Gaussians.

Algorithmic approach: Recall we are given the vector of observations, which is the product
Ax. Under exact k-sparsity ∥x∥0 ≤ k, an ideal algorithm could be to solve

min{∥x∗∥0 : Ax∗ = Ax}.

In the general case, our algorithm will minimize instead the ℓ1-norm

min{∥x∗∥1 : Ax∗ = Ax}.

Exer: Verify that solving this problem (computing x∗) can be done in polynomial time using linear
programming.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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Theorem 1: Define Ek
1 (x) = min{∥x − x′∥1 : x′ is k-sparse}. Then with probability at least

1− 2/n over the choice of A,

∥x∗ − x∥2 = O(Ek
1 (x)/

√
k). (1)

This formalizes the scenario mentioned above, with Ek
1 (x) = ∥z∥1, and then the approximation to

true x′ depends only on magnitude of noise. In particular, if x was exactly k-sparse, then we obtain
exact recovery.

The statement provides a so-called “for each” guarantee – for each x ∈ Rn, with high probability
the approximation (1) holds. We will actually prove something stronger, called “for all” guarantee
– with high probability the approximation (1) holds for all x ∈ Rn.

RIP: The key will be to prove that WHP A has the following property: A matrix A ∈ Rm×n

satisfies the (k, δ)-Restricted Isometry Property (RIP) if for every k-sparse vector x ∈ Rn,

(1− δ)∥x∥2 ≤ ∥Ax∥2 ≤ (1 + δ)∥x∥2. (2)

Remark: this condition is equivalent to requiring that for every submatrix of A a consisting of k
columns, all the singular values lie in the range [1− δ, 1 + δ].

The theorem follows immediately from the following two theorems.

Theorem 2: For suitable m = O(k log n), if the entries of A ∈ Rm×n are independent Gaussians
with distribution N(0, 1/k), then with property at least 1− 2/n, matrix A is (k, 1/3)-RIP.

Theorem 3: If A is (25k, 1/3)-RIP then (for all x) (1) holds.

2 Constructing RIP matrix (Proof of Theorem 2)

Claim 4 (Crude Bound): WHP,

∀x ∈ Rn, ∥Ax∥2 ≤ n2∥x∥2.

The proof, based on straightforward calculation, was seen in class.

Proof of theorem 2: The proof seen in class is based on a union bound over all subsets T ⊂ [n]
of size |T | = k; for each such T , the problem reduces to proving that for a matrix B ∈ Rm×k of
independent Gaussians N(0, 1/k), with high probability

∀y ∈ Rk, 2
3∥y∥2 ≤ ∥By∥2 ≤ 4

3∥y∥2. (3)

The latter is achieved by discretizing the unit sphere in Rk, using Claim 5 below, applying on that
discrete set the JL-lemma, and then extending the bound to the entire sphere. Overall, we get a
failure probability

(
n
k

)
|P |2−Ω(m) ≤ 2O(k logn)−Ω(m) ≤ 1/n, which proves Theorem 2.

Claim 5: For every ε ∈ (0, 1) there is a set P ⊂ S of size O(1/ε)k that is an ε-net of S, i.e., for
every x ∈ S there is p ∈ P such that ∥p− x∥ ≤ ε.
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Exer: Does the analysis above actually work for m = O(k log n
k )? (This is effective to beat the

trivial bound m = n when k is “large”.)

Exer: Let the matrix A ∈ Rn×n have independent {±1} entries. Prove that with high probability
∥A∥2 = sup∥x∥2=1∥Ax∥2 is at most O(

√
n log n). (Using one more idea, it is actually possible to

prove a better bound of O(
√
n).)

3 ℓ1-decoding (Proof of Theorem 3)

To simplify notation, let h = x∗ − x, and recall our goal is to bound ∥h∥2. WLOG order the
coordinates such that

• |x1|, . . . , |xk| are all at least |xk+1|, . . . , |xn|.
• |hk+1| ≥ · · · ≥ |hn|.

Define the sets of indices

• T0 = {1, . . . , k}
• T1 = {k + 1, . . . , 26k}
• T2 = {26k + 1, . . . , 51k},

and so forth. Notice that |T0| = k and |Ti| = 25k for all i ≥ 1.

Define also T01 = T0 ∪ T1, and T0 = [n] \ T0. Let XT be the restriction of x to coordinates in the
set T , and define (recall our ordering)

ε = Ek
1 (x) = ∥xT0

∥1.

Recall that our goal is to bound ∥h∥2 ≤ O(1/
√
k)ε.

Claim 6: ∥hT0
∥1 ≤ ∥hT0∥1 +O(ε).

Claim 7: ∥hT01
∥2 ≤ ∥hT0∥2 +O(ε/

√
k).

Claim 8: ∥hT01∥2 ≤ O(ε/
√
k).

Proof of Theorem 3: Using triangle inequality, then Claim 7 and then 8,

∥x∗ − x∥2 = ∥h∥2 ≤ ∥hT01∥2 + ∥hT01
∥2 ≤ 2∥hT01∥2 +O(ε/

√
k) ≤ O(ε/

√
k).

QED.

We did not cover in class the proof of the three claims above; their proof can be found in Nick
Harvey’s lecture notes (Lecture 8). (Claim 6 is needed to prove of Claims 7 and 8.)
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