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Lecture 13

Course Recap via Communication Complexity Lower Bounds∗

Robert Krauthgamer

1 Communication Complexity

Model: Two parties, called Alice and Bob, receive inputs x, y respectively. They can exchange
messages, in rounds, until one of them (or both) reports an output f(x, y).

Main measure is communication complexity, i.e., total communication between the parties (in bits).

Variants of randomization: none (deterministic), shared/public, or private.

Number of rounds: zero (simultaneous, i.e., without direct communication), one (one-way commu-
nication), or more/unbounded.

Connection to sketching: simultaneous protocols can be viewed as a sketch, and vice versa.

Examples: follow from our skeching examples.

We will focus on these models.

Indexing problem:

Alice’s input is x ∈ {0, 1}n (equivalently a subset T ⊂ [n]), Bob’s input is an index i ∈ [n].

Their goal is to output xi.

Theorem [Kremer, Nisan, and Ron, 1999]: The randomized one-way communication com-
plexity of indexing is Ω(n), even with shared randomness.

It’s therefore a “canonical” problem for reductions (in this model).

Proof by [Jayram, Kumar and Sivakumar, 2008]:

Assume there is a protocol with (constant) error probability δ > 0 and communication complexity
t. Fix an error correcting code with Hamming distance 4δ, namely, a subset A ⊂ {0, 1}n of size
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|A| ≥ 2αn for α = α(δ), where the for all x ̸= y ∈ A, the Hamming distance is ∥x − y∥1 ≥ 4δn.
Consider an input chosen uniformly at random from this code A.

By taking the “best” coins in the assumed randomized protocol (we’re actually using Yao’s minimax
principle), we get that there is also a deterministic protocol, whose error probability on this input
distribution is ≤ δ.

Now suppose Alice sends the same message m for several inputs x, x′, . . .. On at most one of these
inputs, the protocol errs on ≤ 2δn coordinates i; indeed, let z = z(m) ∈ {0, 1}n be the protocol’s
outputs when Alice send message m to Bob, who follows the protocol with different i’s as his input;
then at most one of these inputs can be < 2δn-close to z (otherwise, we have x, x′ ∈ A such that
by triangle inequality ∥x− x′∥1 ≤ 4δn).

Overall, for at most 2t of Alice’s inputs x ∈ A, the protocol errs on < 2δn coordinates i ∈ [n], thus
looking at the “rest”, we have

2αn−2t

2αn · 2δ ≤ Pr
input

[det. protocol errs] ≤ δ.

Simplifying, we get t ≥ αn− 1.

QED.

Exer: Use Yao’s minimax principle to prove an Ω(n) lower bound for the following problem. The
input is an array of n bits (accessed only by reading a single bit each time), and the goal is to find
a position where the array contains 1.

2 Gap Hamming Distance (GHD)

Problem definition of GHD: Alice and Bob’s inputs are x, y ∈ {0, 1}n, respectively, and their
goal is to determine whether the hamming distance between x, y is ≤ n

2 −
√
n or ≥ n

2 +
√
n.

Theorem [Woodruff, 2004]: The randomized one-way communication complexity of GHD is
Ω(n), even with shared randomness.

Proof from [Jayram, Kumar and Sivakumar, 2008]: We reduce from the indexing problem,
so consider inputs u ∈ {−1,+1}n and ei ∈ {0, 1}n for indexing. We shall show how to solve this
instance assuming there is a protocol for GHD that uses t = t(N) bits. Without loss of generality,
we assume n is odd.

Alice and Bob can pick, using the shared randomness, a common r ∈ {+1,−1}n, and compute,
without using any communication, x := sgn(⟨u, r⟩) and y := sgn(⟨ei, r⟩) = ri, respectively. The key
idea is that for some absolute constant c > 0,

Pr
r
[x ̸= y] = Pr

r
[sgn(⟨u, r⟩) ̸= ri]

{
≥ 1

2 + c√
n

if ui = −1;

≤ 1
2 − c√

n
if ui = +1.

(1)

Assume for now the bound (1) holds. Then, Alice and Bob can repeat this process N = 16n/c2

times, and produce x̄, ȳ ∈ {0, 1}N whose Hamming distance is WHP either ≥ (12 +
c√
n
)N − 3

√
N =
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1
2N +

√
N or ≤ 1

2N −
√
N . If they apply protocol we assumed for GHD, which succeeds WHP,

they can distinguish between the two cases, i.e., determine ui, using communication of t(N) bits.
Applying our lower bound for indexing, t(N) ≥ Ω(n) = Ω(c2N).

To prove the bound (1), write ⟨u, r⟩ = uiri + w where w :=
∑

j ̸=i ujrj ; note w is random but
independent of ui. Observe that if w ̸= 0 then necessarily |w| ≥ 2, and then the desired probability
is exactly 1/2. But with probability at least 2c/

√
n, we have w = 0, in which case sgn(⟨u, r⟩) = uiri,

and then the desired event becomes uiri ̸= ri, and its probability is 1 when ui = −1, and is 0 when
ui = +1. The theorem follows by the total probability formula.

QED.

Corollary: The one-way communication complexity of determining whether the Hamming dis-
tance between x, y ∈ {0, 1}n is ≤ R or ≥ (1 + ε)R is at least Ω(1/ε2) bits (for suitable R = Θ(n)
and assuming n ≥ 1/ε2).

Exer: Prove it formally.

Corollary: Approximating the ℓ1-norm in the data stream model requires Ω(1/ε2) bits.

Proof: Suppose there is a streaming algorithm with space requirement s. The we could design
the following one-way protocol for GHD on inputs x, y. Alice executes the streaming algorithm on
x, send her entire memory, which is only s bits, to Bob, who continues executing the streaming
algorithm on −y, and then (1 + ε)-approximates (in the above promise model) ∥x − y∥1. Thus
s ≥ Ω(1/ε2).

Theorem [Chakrabarti and Regev, 2011]: The communication complexity (with unbounded
number of rounds) of GHD is Ω(n), even with shared randomness.

Remark: Such communication complexity methods were recently used also to give tight lower
bounds for cut sparsifiers [Andoni, Krauthgamer and Woodruff, 2014].
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