Randomized Algorithms 2015A
Lecture 9 – Dimension Reduction in ℓ_2, Sketching, and NNS in ℓ_1

Robert Krauthgamer

1 Dimension Reduction in ℓ_2

The Johnson-Lindenstrauss (JL) Lemma: Let $x_1, \ldots, x_n \in \mathbb{R}^d$ and fix $\varepsilon > 0$. Then there exist $y_1, \ldots, y_n \in \mathbb{R}^k$, $k = O(\varepsilon^{-2} \log n)$, such that
\[\forall i, j \in [n], \quad \|y_i - y_j\| \in (1 \pm \varepsilon)\|x_i - x_j\|. \]

Moreover, there is a randomized linear mapping $L : \mathbb{R}^d \rightarrow \mathbb{R}^k$ (oblivious to the given points), such that if we define $y_i = Lx_i$, then with probability at least $1 - 1/n$ all the above inequalities hold.

Remark: Note there is no assumption on the input points (e.g., that they lie on a low-dimensional space).

Idea: The map L is essentially (up to normalization) a matrix of standard Gaussian. In fact, random signs ± 1 would also work!

Since L is linear, $Lx_i - Lx_j = L(x_i - x_j)$, and it suffices to verify that L preserves the norm of any vector (instead of looking at pairs of vectors).

Main Lemma: Let $G : \mathbb{R}^{d \times k}$ be a random matrix of standard gaussians, for suitable $k = O(\varepsilon^{-2} \log n)$.
\[\forall v \in \mathbb{R}^d, \quad \Pr[\|Gv\| \in (1 \pm \varepsilon)\sqrt{k}\|v\|] \geq 1 - 2/n^3. \]

We saw in class how the theorem’s proof using the Main Lemma, and also how to prove the latter using the following fact and claim.

Fact (Gaussians are 2-stable): Let X_1, \ldots, X_n be independent standard Gaussian $N(0, 1)$, and let $\sigma_1, \ldots, \sigma_n \in \mathbb{R}$. Then $\sum_i \sigma_i X_i \sim N(0, \sum_i \sigma_i^2)$.

Claim: Let Y have chi-squared distribution with parameter k, i.e., $Y = \sum_{i=1}^k X_i^2$ for independent $X_1, \ldots, X_k \sim N(0, 1)$. Then
\[\forall \varepsilon \in (0, 1), \quad \Pr[Y > (1 + \varepsilon)^2 k] \leq e^{-(3/4)\varepsilon^2 k}. \]
Remark: This claim and its proof are similar to Chernoff bounds.

2 Sketching

What is Sketching: We have some input \(x \), which we want to “compress” into a sketch \(s(x) \) (much smaller), but want to be able to later compute some \(f(x) \) only from the sketch. Often, randomization helps. We’ll denote it as \(s_r(x) \) where \(r \) is the sequence of random coins.

Examples:

1. Sketching \(x \in \mathbb{R}^n \) so that later we could estimate any \(x_i \) (point queries).

2. Sketching for equality testing by hashing and testing whether \(h(x) = h(y) \), using a hash function \(h : \{0,1\}^n \to \{0,1\}^t \), for instance a random function or as in the exercise below (an inner product \(\langle x, r \rangle \) in \(GF[2] \)). It’s important here to choose \(h \) using public randomness, i.e., same \(h \) for both \(x, y \).

Exer: Analyze the hash function \(h_r(x) = \sum_{i=1}^n x_i r_i \pmod{2} \), where \(r \in \{0,1\}^n \) is random, offers a good sketch for equality testing in the sense that

\[
\forall x \neq y, \quad \Pr_r[h_r(x) = h(y)] = 1/2.
\]

3. Sketching for \(\ell_p \) distance, namely, for all \(x, y \in [n]^n \),

\[
\Pr[a(s_r(x), s_r(y)) = (1 \pm \varepsilon)||x - y||_p] \geq 2/3.
\]

We implemented such \(s \) for \(\ell_2 \) norm using a linear sketch \(L : [n]^n \to \mathbb{Z}^k \) for \(k = O(1/\varepsilon^2) \), hence \(|s(x)| \leq O(\varepsilon^{-2} \log n) \) bits.

Question: Can we use (for \(\ell_1 \) or \(\ell_2 \)) only \(O(\varepsilon^{-2}) \) bits? No if we want an estimate. But maybe for a decision version (output is YES/NO)?

Theorem 1 [Estimating \(\ell_1 \) distance]: For all \(0 < \varepsilon < 1 \) there is a randomized sketching algorithm (simulatenous protocol) that can estimate the \(\ell_1 \) (or Hamming) distance between vectors within factor \(1 + \varepsilon \) in the decision version (i.e., given any parameter \(R > 0 \), it can decide whether \(||x - y|| \leq R \) or \(> (1 + \varepsilon)R \)) with sketch size \(O(1/\varepsilon^2) \).

The sketching algorithm seen in class had two steps, the first chooses \(I \subset [n] \) to subsample the coordinates with rate \(1/R \), and the second applies to \(x_I, y_I \) the equality testing mentioned earlier (inner-product in \(GF[2] \)).

Review of key points:

1. Design a single-bit sketch with small “advantage”

2. Amplify success probability using Chernoff bounds
3 NNS under ℓ_1 norm (logarithmic query time)

Problem definition (NNS): Preprocess a dataset of n points $x_1, \ldots, x_n \in \mathbb{R}^d$, so that then, given a query point $q \in \mathbb{R}^d$, we can quickly find the closest data point to the query, i.e. report x_i that minimizes $\|q - x_i\|_1$.

Performance measure: Preprocessing (time and space) and query time.

Two naive solutions: exhaustive search with query time $O(n)$, and preparing all answer in advance with preprocessing space 2^d (at least).

Challenge: being polynomial in dimension d, but still getting query time sublinear (or polylog) in n.

Approximate version (factor $c \geq 1$): find x_j such that $\|q - x_j\|_1 \leq c \cdot \min_i \|q - x_i\|_1$.

Theorem 2 [Indyk-Motwani’98, Kushilevitz-Ostrovsky-Rabani’98]: For every $\varepsilon > 0$ there is a randomized algorithm for $1+\varepsilon$ approximate NNS in \mathbb{Z}^d under ℓ_1-norm with preprocessing space $n^{O(1/\varepsilon^2)} \cdot O(d)$ and query time $O(\varepsilon^{-2}d \text{ polylog } n)$.

Remark 1: We shall omit/neglect the precise polynomial dependence on d.

Remark 2: The success probability is for a single query (assuming it’s independent of the coins).

Remark 3: We only need to solve the decision version i.e. there is a target distance $R > 0$, and if there is data point x_j such that $\|q - x_j\|_1 \leq R$ then we need to find point x_i such that $\|q - x_i\|_1 \leq cR$. If no point is within distance cR, then report NONE. Otherwise, can report either answer. This follows by preparing in advance for all powers of $1+\varepsilon$ as the value of R (then trying all of them or binary search).

Remark 4: WLOG x_i and q are in $\{0,1\}^d$.

Main idea: We basically repeat the single-bit sketching algorithm from Theorem 1 $k = O(\varepsilon^{-2} \log n)$ times to reduce the error probability to $1/n^2$, apply it to each x_i. We compute at query time $\tilde{s}(q) \in \{0,1\}^k$, but prepare “in advance” an answer for every possible value of $\tilde{s}(q)$, using a table of size 2^k.