1. Analyze the construction below of a stretch 3 distance oracle for a graph G, and show that its storage requirement almost matches that shown in class. (It is not really a distance oracle because its query time is not fast enough.) Analyze also the accuracy (stretch bound). Explain whether your bounds (storage and accuracy) hold in the worst-case, in expectation, or with high probability.

Preprocess(G): Choose $L \subseteq V$ as a random set of $l = \sqrt{n \log n}$ “landmark” vertices (with or without repetitions). For every vertex $v \in V$, store its distances (i) to the n vertices closest to it (denoted $B_v \subseteq V$); and (ii) to all the landmark vertices.

Query(u,v): If $u \in B_v$, i.e., u is among the n closest to v, report the distance. Otherwise, report $\min_{w \in L} [d(u,w) + d(w,v)]$.

Hint: in the “otherwise” case, show that $L \setminus B_v \neq \emptyset$.

2. Let B be a randomized algorithm that approximates some function $f(x)$ as follows:

$$\forall x, \quad \Pr \left[B(x) \leq (1 + \varepsilon) f(x) \right] \geq 2/3.$$

Let algorithm C output the median of $O(\log \frac{1}{\varepsilon})$ independent executions of algorithm B on the same input. Prove that

$$\forall x, \quad \Pr \left[C(x) \leq (1 + \varepsilon) f(x) \right] \geq 1 - \delta.$$

3. Design a streaming algorithm for the ℓ_1-point query problem, i.e., producing an estimate $\tilde{x}_i \in x_i \pm \varepsilon \|x\|_1$.

For simplicity, ignore the issue of storing the random bits.

Hint: Show a linear sketch by extending the count-min sketch seen in class (so as to remove the restriction $x_i \geq 0$).

Extra credit:

4. Let φ be an arbitrary 2-SAT formula on n variables x_1, \ldots, x_n. Assume that every clause c has weight $w_c \geq 0$, and the total weight is $\sum_c w_c = 1$ (by normalization). A 2-SAT formula φ' will be called a *sparsifier* of φ if it contains a subset of the clauses of φ, with arbitrary new weights w'_c.
Show that \(\varphi \) admits a sparsifier \(\varphi' \) with \(O(n/\varepsilon^2) \) clauses, such that for every truth assignment \(A \) to the \(n \) variables, the value of \(\varphi \) (i.e., total weight of clauses satisfied by \(A \)) differs from that of \(\varphi' \) by at most \(\varepsilon \) (additively).

Hint: Sample exactly \(t = O(n/\varepsilon^2) \) clauses from \(\varphi \) with repetitions, and give each of them weight \(1/t \), and analyze any fixed truth assignment using Hoeffding’s inequality (not Chernoff).